E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	eZ8
Core Size	8-Bit
Speed	20MHz
Connectivity	-
Peripherals	Brown-out Detect/Reset, LED, POR, PWM, WDT
Number of I/O	17
Program Memory Size	4KB (4K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 3.6V
Data Converters	A/D 7x10b
Oscillator Type	Internal
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SOIC (0.295", 7.50mm Width)
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/zilog/z8f0430sh020sg

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Revision History

Each instance in this document's revision history reflects a change from its previous edition. For more details, refer to the corresponding page(s) or appropriate links furnished in the table below.

Date	Revision Level	Chapter/Section	Description	Page No.
Dec 2012	13	GPIO	Modified GPIO Port D0 language in Shared Reset Pin section and Port Alternate Func- tion Mapping table.	<u>35, 36</u>
Sep 2011	12	LED Drive Enable Register	Clarified statement surrounding the Alternate Function Register as it relates to the LED function; revised Sector Based Flash Protec- tion description; revised Packaging chapter.	<u>51,</u> <u>115,</u> <u>199</u>
Dec 2007	11	n/a	Updated all instances of <i>Z8 Encore! XP</i> <i>F0830</i> to <i>Z8 Encore! F0830</i> .	All
Nov 2007	10	DC Characteristics, On-Chip Peripheral AC and DC Electri- cal Characteristics	Updated Tables 116 and and 122.	<u>185,</u> <u>193</u>
Sep 2007	09	Timers, PWM SINGLE OUT- PUT Mode, PWM DUAL OUT- PUT Mode, Analog-to-Digital Converter, Reference Buffer.	Updated Figures 2 and 4, Table 4.	<u>8, 9,</u> <u>11, 68,</u> <u>74, 75,</u> <u>98,</u> <u>101</u>
Apr 2007	08	Optimizing NVDS Memory Usage for Execution Speed, On-Chip Peripheral AC and DC Electrical Characteristics	Added a note under Table 93 in Nonvolatile Data Storage chapter. Updated Table 121 and Table 122 in Electrical Characteristics chapter. Other style updates.	<u>137,</u> <u>193,</u> <u>193</u>
Dec	07	General Purpose Input/Output	Added PD0 in Table 16.	<u>38</u>
2006		Overview, Interrupt Controller	Changed the number of interrupts to 17.	<u>1,5, 53</u>
		Nonvolatile Data Storage	Updated chapter.	<u>136</u>
		Oscillator Control Register Defi- nitions, AC Characteristics, On- Chip Peripheral AC and DC Electrical Characteristics	Updated Tables 117 and 122. Added Figure 24.	<u>156,</u> <u>189,</u> <u>193</u>
		Ordering Information	Updated Part Number Suffix Designations.	205
		n/a	Removed Preliminary stamp from footer.	All

iii

Table of Contents

Revision History	ii
List of Figures	х
List of Tables x	ii
Overview	1
Features	1
Part Selection Guide	2
Block Diagram	3
CPU and Peripheral Overview	4
General Purpose Input/Output	4
Flash Controller	4
Nonvolatile Data Storage	5
Internal Precision Oscillator	5
External Crystal Oscillator	5
10-Bit Analog-to-Digital Converter	5
Analog Comparator	5
Timers	5
Interrupt Controller	5
Reset Controller	6
On-Chip Debugger	6
Acronyms and Expansions	6
Pin Description	7
Available Packages	
Pin Configurations	7
Signal Descriptions	1
Pin Characteristics	
Address Space	4
Register File	
Program Memory	5
Data Memory	
Flash Information Area 1	
Register Map 1	7
Reset and Stop Mode Recovery	21
Reset Types	
Reset Sources	
Power-On Reset	

Data Memory

The Z8 Encore! F0830 Series does not use the eZ8 CPU's 64KB data memory address space.

Flash Information Area

Table 7 maps the Z8 Encore! F0830 Series Flash information area. The 128-byte information area is accessed, by setting bit 7 of the Flash Page Select Register to 1. When access is enabled, the Flash information area is mapped into program memory and overlays these 128 bytes at addresses FE00H to FE7FH. When information area access is enabled, all reads from these program memory addresses return information area data rather than program memory data. Access to the Flash information area is read-only.

Program Memory Address (Hex)	Function
FE00–FE3F	Zilog option bits
FE40-FE53	Part Number 20-character ASCII alphanumeric code Left-justified and filled with FH
FE54–FE5F	Reserved
FE60–FE7F	Reserved
FE80–FFFF	Reserved

Table 7. Z8 Encore! F0830 Series Flash Memory Information Area Map

The Voltage Brown-Out circuit can be either enabled or disabled during STOP Mode. Operations during STOP Mode is set by the VBO_AO Flash option bit. See the <u>Flash</u> <u>Option Bits</u> chapter on page 124 for information about configuring VBO_AO.

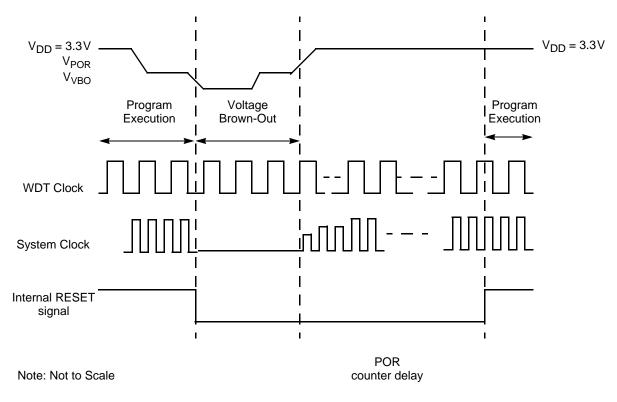


Figure 7. Voltage Brown-Out Reset Operation

Watchdog Timer Reset

If the device is operating in NORMAL or STOP Mode, the Watchdog Timer can initiate a system reset at time-out if the WDT_RES Flash option bit is programmed to 1; this state is the unprogrammed state of the WDT_RES Flash option bit. If the bit is programmed to 0, it configures the Watchdog Timer to cause an interrupt – not a system reset – at time-out. The WDT status bit in the Reset Status (RSTSTAT) Register is set to 1 to signify that the reset was initiated by the Watchdog Timer.

External Reset Input

The $\overline{\text{RESET}}$ pin has a Schmitt-triggered input and an internal pull-up resistor. After the $\overline{\text{RESET}}$ pin is asserted for a minimum of four system clock cycles, the device progresses through the system reset sequence. Because of the possible asynchronicity of the system

Interrupt Request 2 Register

The Interrupt Request 2 (IRQ2) Register, shown in Table 37, stores interrupt requests for both vectored and polled interrupts. When a request is sent to the Interrupt Controller, the corresponding bit in the IRQ2 Register becomes 1. If interrupts are globally enabled (vectored interrupts), the Interrupt Controller passes an interrupt request to the eZ8 CPU. If interrupts are globally disabled (polled interrupts), the eZ8 CPU can read the Interrupt Request 2 Register to determine if any interrupt requests are pending.

Bit	7	6	5	4	3	2	1	0
Field		Rese	erved		PC3I	PC2I	PC1I	PC0I
RESET	0	0	0	0	0	0	0	0
R/W	R/W	R/W R/W R/W R/W R/W R/W R/W						
Address		FC6H						
Bit	Description	n						
[7:4]	Reserved These regis	Reserved These registers are reserved and must be programmed to 0000.						
[3] PC <i>x</i> l	1 = An inter	rrupt reques	t is pending t from GPIO	Port C pin 2		service.		
Note: x in	dicates the sp	ecific GPIO p	ort pin numbe	ər (3–0).				

Table 37. Interrupt Request 2 Register (IRQ2)

IRQ0 Enable High and Low Bit Registers

Table 38 lists the priority control values for IRQ0. The IRQ0 Enable High and Low Bit registers, shown in Tables 39 and 40, form a priority-encoded enabling service for interrupts in the Interrupt Request 0 Register. Priority is generated by setting the bits in each register.

IRQ0EN	IH[x]	IRQ0ENL[x]	Priority	Description	
C)	0	Disabled	Disabled	
C)	1	Level 1	Low	
1		0	Level 2	Nominal	
1		1	Level 3	High	
Note: <i>x</i> indicates the register bits in the range 7–0.					

Table 38. IRQ0 Enable and Priority Encoding

Timer 0–1 PWM High and Low Byte Registers

The Timer 0–1 PWM High and Low Byte (TxPWMH and TxPWML) registers, shown in Tables 54 and 55, control PWM operations. These registers also store the capture values for the CAPTURE and CAPTURE/COMPARE modes.

Bit	7	6	5	4	3	2	1	0
Field		PWMH						
RESET	0	0	0	0	0	0	0	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Address		F04H, F0CH						

Table 54. Timer 0–1 PWM High Byte Register (TxPWMH)

Table 55. Timer 0–1 PWM Low Byte Register (TxPWML)

Bit	7	6	5	4	3	2	1	0
Field		PWML						
RESET	0	0	0	0	0	0	0	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Address	F05H, F0DH							

Bit Description

[7:0]	Pulse Width Modulator High and Low Bytes
PWMH,	These two bytes, {PWMH[7:0], PWML[7:0]}, form a 16-bit value that is compared to the current
PWML	16-bit timer count. When a match occurs, the PWM output changes state. The PWM output
	value is set by the TPOL bit in the Timer Control Register (TxCTL1).
	The TxPWMH and TxPWML registers also store the 16-bit captured timer value when operat-
	ing in capture or CAPTURE/COMPARE modes.

Bit	Description (Continued)
[2:0]	Timer Mode
TMODE	This field along with the TMODEHI bit in TxCTL0 register determines the operating mode of
	the timer. TMODEHI is the most significant bit of the timer mode selection value.
	0000 = ONE-SHOT Mode.
	0001 = CONTINUOUS Mode.
	0010 = COUNTER Mode.
	0011 = PWM SINGLE OUTPUT Mode.
	0100 = CAPTURE Mode.
	0101 = COMPARE Mode.
	0110 = GATED Mode.
	0111 = CAPTURE/COMPARE Mode.
	1000 = PWM DUAL OUTPUT Mode.
	1001 = CAPTURE RESTART Mode.
	1010 = COMPARATOR COUNTER Mode.

91

Z8 Encore![®] F0830 Series Product Specification

113

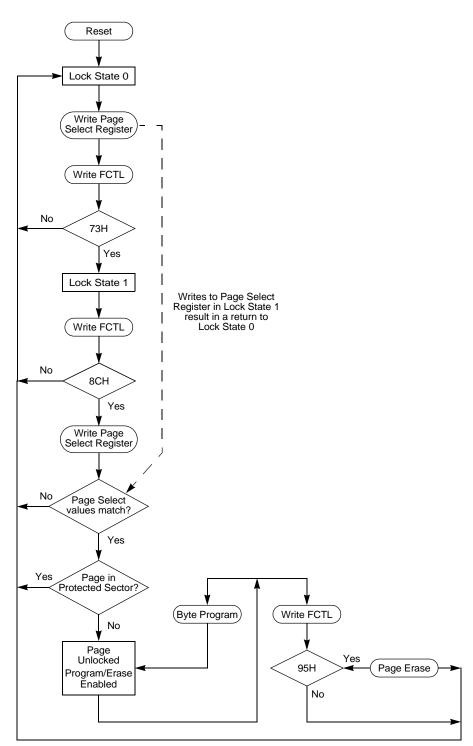


Figure 19. Flash Controller Operation Flow Chart

Note: The bit values used in Table 85 are set at the factory; no calibration is required.

Table 86. Trim Option Bits at 0002H (TIPO)

Bit	7	6	5	4	3	2	1	0
Field		IPO_TRIM						
RESET		U						
R/W		R/W						
Address		Information Page Memory 0022H						
Note: U =	Note: U = Unchanged by Reset. R/W = Read/Write.							

Bit	Description
[7:0]	Internal Precision Oscillator Trim Byte
IPO_TRIM	Contains trimming bits for the Internal Precision Oscillator.

Note: The bit values used in Table 86 are set at the factory; no calibration is required.

Table 87. Trim Option Bits at 0003H (TVBO)

Bit	7	6	5	4	3	2	1	0
Field		Rese	erved		Reserved		VBO_TRIM	
RESET		ι	J		U	1	0	0
R/W		R/	W		R/W		R/W	
Address		Information Page Memory 0023H						
Note: U =	Unchanged b	by Reset. R/W	/ = Read/Writ	e.				

Bit	Description
[7:3]	Reserved These bits are reserved and must be programmed to 11111.
[2]	VBO Trim Values
VBO_TRIM	Contains factory-trimmed values for the oscillator and the VBO.

>

Nonvolatile Data Storage

Z8 Encore! F0830 Series devices contain a Nonvolatile Data Storage (NVDS) element of up to 64 bytes (except when in Flash 12KB mode). This type of memory can perform over 100,000 write cycles.

Operation

NVDS is implemented by special-purpose Zilog software stored in areas of program memory that are not user-accessible. These special-purpose routines use Flash memory to store the data, and incorporate a dynamic addressing scheme to maximize the write/erase endurance of the Flash.

Note: The products in the Z8 Encore! F0830 Series feature multiple NVDS array sizes. See the <u>Z8 Encore! F0830 Series Family Part Selection Guide</u> section on page 2 for details.

NVDS Code Interface

Two routines are required to access the NVDS: a write routine and a read routine. Both of these routines are accessed with a CALL instruction to a predefined address outside of program memory that is accessible to the user. Both the NVDS address and data are singlebyte values. In order to not disturb the user code, these routines save the working register set before using it so that 16 bytes of stack space are required to preserve the site. After finishing the call to these routines, the working register set of the user code is recovered.

During both read and write accesses to the NVDS, interrupt service is not disabled. Any interrupts that occur during NVDS execution must not disturb the working register and existing stack contents; otherwise, the array can become corrupted. Zilog recommends the user disable interrupts before executing NVDS operations.

Use of the NVDS requires 16 bytes of available stack space. The contents of the working register set are saved before calling NVDS read or write routines.

For correct NVDS operation, the Flash Frequency registers must be programmed based on the system clock frequency. See *the* <u>Flash Operation Timing Using the Flash Frequency</u><u>Registers</u> *section on page 114*.

149

Table 96. OCD Control Register (OCDCTL)

Bit	7	6	5	4	3	2	1	0
Field	DBGMODE	BRKEN	DBGACK		Res	erved		RST
RESET	0	0	0	0	0	0	0	0
R/W	R/W	R/W	R/W	R	R	R	R	R/W
Bit	Descriptio	on						
[7] DBGMOD	stops fetch automatica Flash read cannot be 0 = The Z8	e enters DE ning new ins ally set whe protect option written to 0 B Encore! F(BUG Mode structions. C n a BRK inst on bit is enal 0830 Series 0830 Series	learing this ruction is de bled, this bit device is o	bit causes t ecoded and can only be perating in N	he eZ8 CPU breakpoints e cleared by NORMAL M	J to restart. are enable resetting th	This bit is d. If the
[6] BRKEN	are disable when a BR cally set to 0 = Breakp	ntrols the be ed and the E K instructio		on behaves	similar to a	n NOP insti	uction. If thi	s bit is 1
[5] DBGACK	This bit en Debug ack 0 = Debug	nowledge o acknowled	ebug acknow character (F ge is disable ge is enable	FH) to the h ed.				ends a
[4:1]	Reserved These bits	are reserve	ed and must	be progran	nmed to 000	00.		
[0] RST	Power-On bit is autor 0 = No effe	Reset seques natically cle ect.	sets the Z8F ience with th ared to 0 at ad protect o	the end of t	h that the Or the reset se	n-Chip Debi		

Assembly				Address Op Mode Code(s)			Fla	ags	Fetch	Instr.		
Mnemonic	Symbolic Operation	dst	src	(Hex)	С	Ζ	S	۷	D	Н		
CLR dst	dst ← 00H	R		B0	_	_	_	-	_	_	2	2
		IR		B1	_						2	3
COM dst	dst ← ~dst	R		60	-	*	*	0	-	_	2	2
		IR		61	_						2	3
CP dst, src	dst - src	r	r	A2	*	*	*	*	-	-	2	3
		r	lr	A3	_						2	4
		R	R	A4	_						3	3
		R	IR	A5	_						3	4
		R	IM	A6	_						3	3
		IR	IM	A7	_						3	4
CPC dst, src	dst - src - C	r	r	1F A2	*	*	*	*	-	-	3	3
		r	lr	1F A3	_						3	4
		R	R	1F A4	_						4	3
		R	IR	1F A5	_						4	4
		R	IM	1F A6	_						4	3
		IR	IM	1F A7	_						4	4
CPCX dst, src	dst - src - C	ER	ER	1F A8	*	*	*	*	_	_	5	3
		ER	IM	1F A9	_						5	3
CPX dst, src	dst - src	ER	ER	A8	*	*	*	*	-	-	4	3
		ER	IM	A9	_						4	3
DA dst	dst ← DA(dst)	R		40	*	*	*	Х	-	_	2	2
		IR		41	_						2	3
DEC dst	$dst \gets dst \text{ - } 1$	R		30	_	*	*	*	_	_	2	2
		IR		31	_						2	3
DECW dst	dst ← dst - 1	RR		80	_	*	*	*	_	-	2	5
		IRR		81	_						2	6
DI	IRQCTL[7] ← 0			8F	_	_	_	_	_	_	1	2

Table 113. eZ8 CPU Instruction Summary (Continued)

Note: Flags Notation:

* = Value is a function of the result of the operation.

- = Unaffected.

X = Undefined.

0 = Reset to 0.

1 =Set to 1.

Abbreviation	Description	Abbreviation	Description
b	Bit position	IRR	Indirect Register Pair
CC	Condition code	р	Polarity (0 or 1)
Х	8-bit signed index or displace- ment	r	4-bit Working Register
DA	Destination address	R	8-bit register
ER	Extended Addressing Register	r1, R1, Ir1, Irr1, IR1, rr1, RR1, IRR1, ER1	Destination address
IM	Immediate data value	r2, R2, Ir2, Irr2, IR2, rr2, RR2, IRR2, ER2	Source address
lr	Indirect Working Register	RA	Relative
IR	Indirect Register	rr	Working Register Pair
Irr	Indirect Working Register Pair	RR	Register Pair

Table 114. Op Code Map Abbreviations

Electrical Characteristics

The data in this chapter represents all known data prior to qualification and characterization of the F0830 Series of products, and is therefore subject to change. Additional electrical characteristics may be found in the individual chapters of this document.

Absolute Maximum Ratings

Stresses greater than those listed in Table 115 may cause permanent damage to the device. These ratings are stress ratings only. Operation of the device at any condition outside those indicated in the operational sections of these specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. For improved reliability, tie unused inputs to one of the supply voltages (V_{DD} or V_{SS}).

Parameter	Minimum	Maximum	Units	Notes
Ambient temperature under bias	0	+105	°C	
Storage temperature	-65	+150	°C	
Voltage on any pin with respect to V _{SS}	-0.3	+5.5	V	
Voltage on V_{DD} pin with respect to V_{SS}	-0.3	+3.6	V	
Maximum current on input and/or inactive output pin	-5	+5	μA	
Maximum output current from active output pin	-25	+25	mA	
20-pin Packages Maximum Ratings at 0°C to 70°C				
Total power dissipation		430	mW	
Maximum current into V_{DD} or out of V_{SS}		120	mA	
28-pin Packages Maximum Ratings at 0°C to 70°C				
Total power dissipation		450	mW	
Maximum current into V _{DD} or out of V _{SS}		125	mA	

Table 115. Absolute Maximum Ratings

188

Figure 32 displays the typical current consumption versus the system clock frequency in NORMAL Mode.

Figure 32. I_{CC} Versus System Clock Frequency (NORMAL Mode)

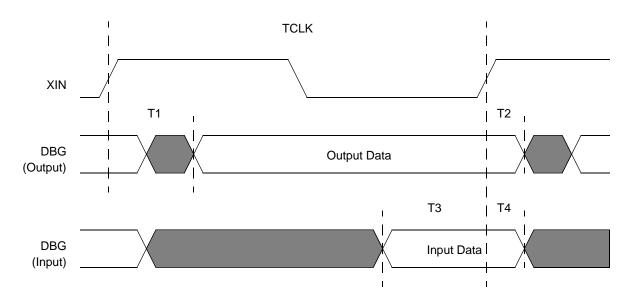
		= 2.7 to 0°C to +		V _{DD} = 2.7 to 3.6V T _A = -40°C to +105°C					
Parameter	Min	Тур	Max	Min	Тур	Max	Units	Notes	
NVDS Byte Read Time				71	-	258	μs	Withsystemclockat 20MHz	
NVDS Byte Pro- gram Time				126	-	136	μs	Withsystemclockat 20MHz	
Data Retention				10	_	_	years	25°C	
Endurance				100,000	-	-	cycles	Cumulative write cycles for entire memory	

Table 121. Nonvolatile Data Storage

Note: For every 200 writes, a maintenance operation is necessary. In this rare occurrence, the write can take up to 58 ms to complete.

Table 122. Analog-to-Digital Converter Electrical Characteristics and Timing

			= 2.7 to 0°C to +			= 2.7 to 40°C to			
Symbol	Parameter	Min	Тур	Max	Min	Тур	Мах	Units	Conditions
	Resolution				_	10	_	bits	
	Differential Nonlinearity (DNL) ¹				-1	-	+4	LSB	
	Integral Nonlinearity (INL) ¹				-5	_	+5	LSB	
	Gain Error					15		LSB	
	Offset Error				-15	_	15	LSB	PDIP package
	-				-9	-	9	LSB	Other packages
V _{REF}	On chip reference				1.9	2.0	2.1	V	
	Active Power Consumption					4		mA	
	Power Down Current						1	μA	


Note: ¹When the input voltage is lower than 20mV, the conversion error is out of spec.

193

>

On-Chip Debugger Timing

Figure 35 and Table 126 provide timing information for the DBG pin. The DBG pin timing specifications assume a 4 ns maximum rise and fall time.

Figure 35. On-Chip Debugger Timing	Figure 35.	On-Chip	Debugger	Timing
------------------------------------	------------	----------------	----------	--------

		Delay (ns)				
Parameter	Abbreviation	Minimum	Maximum			
DBG						
T ₁	XIN Rise to DBG Valid Delay	_	15			
T ₂	XIN Rise to DBG Output Hold Time	2	_			
T ₃	DBG to XIN Rise Input Setup Time	5	_			
T ₄	DBG to XIN Rise Input Hold Time	5	_			

		Power Consumption				
Category	Block	Typical	Maximum			
Logic	CPU/Peripherals @ 20MHz	5mA				
Flash	Flash @20MHz		12mA			
	ADC @20MHz	4mA	4.5mA			
	IPO	350µA	400µA			
	Comparator @10MHz	330µA	450µA			
Analog	POR & VBO	120µA	150µA			
	WDT Oscillator	2µA	ЗµА			
	OSC @ 20MHz	600µA	900µA			
	Clock Filter	120µA	150µA			
Note: The va	lues in this table are subject to change	· · ·				

Table 127. Power Consumption Reference Table

Figure 36. Flash Current Diagram

Hex Address: FDB

Bit	7	6	5	4	3	2	1	0		
Field	POUT7	POUT6	POUT5	POUT4	POUT3	POUT2	POUT1	POUT0		
RESET	0	0	0	0	0	0	0	0		
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Address		FDBH								

Hex Address: FDC

Table 181. Port D GPIO Address Register (PDADDR)

Bit	7	6	5	4	3	2	1	0	
Field		PADDR[7:0]							
RESET	00H								
R/W	R/W	R/W R/W R/W R/W R/W R/W R/W							
Address	FDCH								

Hex Address: FDD

Table 182. Port D Control Registers (PDCTL)

Bit	7	6	5	4	3	2	1	0		
Field		PCTL								
RESET	00H									
R/W	R/W	R/W R/W R/W R/W R/W R/W R/W								
Address		FDDH								

Hex Address: FDE

This address range is reserved.

Hex Address: FDF

Table 183.	Port D	Output	Data	Register	(PDOUT)
	IOIUD	Output	Data	Register	

Bit	7	6	5	4	3	2	1	0		
Field	POUT7	POUT6	POUT5	POUT4	POUT3	POUT2	POUT1	POUT0		
RESET	0	0	0	0	0	0	0	0		
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Address	FDFH									

Hex Addresses: FE0–FEF

This address range is reserved.

Watchdog Timer

For more information about the Watchdog Timer registers, see the <u>Watchdog Timer Con-</u> trol Register Definitions section on page 95.

Hex Address: FF0

The Watchdog Timer Control Register address is shared with the read-only Reset Status Register.

Bit	7	6	5	4	3	2	1	0		
Field	WDTUNLK									
RESET	Х	Х	Х	Х	Х	Х	Х	Х		
R/W	W	W	W	W	W	W	W	W		
Address		FF0H								

Bit	7	6	5	4	3	2	1	0	
Field	POR	STOP	WDT	EXT	Reserved				
RESET	See <u>Table 12</u> on page 29			0	0	0	0	0	
R/W	R	R	R	R	R	R	R	R	
Address	FFOH								

Table 185. Reset Status Register (RSTSTAT)