

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	eZ8
Core Size	8-Bit
Speed	20MHz
Connectivity	-
Peripherals	Brown-out Detect/Reset, LED, POR, PWM, WDT
Number of I/O	25
Program Memory Size	4KB (4K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 3.6V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/zilog/z8f0431qj020eg

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Description

The Z8 Encore! F0830 Series products are available in a variety of package styles and pin configurations. This chapter describes the signals and the pin configurations for each of the package styles. For information about the physical package specifications, see the <u>Packaging</u> chapter on page 199.

Available Packages

Table 3 lists the package styles that are available for each device in the Z8 Encore! F0830 Series product line.

Part Number	ADC	20-pin QFN	20-pin SOIC	20-pin SSOP	20-pin PDIP	28-pin QFN	28-pin SOIC	28-pin SSOP	28-pin PDIP
Z8F1232	Yes	Х	Х	Х	Х	Х	Х	Х	Х
Z8F1233	No	Х	Х	Х	Х	Х	Х	Х	Х
Z8F0830	Yes	Х	Х	Х	Х	Х	Х	Х	Х
Z8F0831	No	Х	Х	Х	Х	Х	Х	Х	Х
Z8F0430	Yes	Х	Х	Х	Х	Х	Х	Х	Х
Z8F0431	No	Х	Х	Х	Х	Х	Х	Х	Х
Z8F0230	Yes	Х	Х	Х	Х	Х	Х	Х	Х
Z8F0231	No	Х	Х	Х	Х	Х	Х	Х	Х
Z8F0130	Yes	Х	Х	Х	Х	Х	Х	Х	Х
Z8F0131	No	Х	Х	Х	Х	Х	Х	Х	Х

Table 3. Z8 Encore! F0830 Series Package Options

Pin Configurations

Figures 2 and 3 display the pin configurations of all of the packages available in the Z8 Encore! F0830 Series. See <u>Table 4</u> on page 11 for a description of the signals. Analog input alternate functions (ANAx) are not available on the following devices:

- Z8F0831
- Z8F0431
- Z8F0131
- Z8F0231
- Z8F1233

Address (Hex)	Register Description	Mnemonic	Reset (Hex)	Page No
Interrupt Contro	oller (cont'd)			
FCE	Shared interrupt select	IRQSS	00	66
FCF	Interrupt control	IRQCTL	00	67
GPIO Port A				
FD0	Port A address	PAADDR	00	39
FD1	Port A control	PACTL	00	41
FD2	Port A input data	PAIN	XX	41
FD3	Port A output data	PAOUT	00	41
GPIO Port B				
FD4	Port B address	PBADDR	00	39
FD5	Port B control	PBCTL	00	41
FD6	Port B input data	PBIN	XX	41
FD7	Port B output data	PBOUT	00	41
GPIO Port C				
FD8	Port C address	PCADDR	00	39
FD9	Port C control	PCCTL	00	41
FDA	Port C input data	PCIN	XX	41
FDB	Port C output data	PCOUT	00	41
GPIO Port D				
FDC	Port D address	PDADDR	00	39
FDD	Port D control	PDCTL	00	41
FDE	Reserved		XX	
FDF	Port D output data	PDOUT	00	41
FE0–FEF	Reserved	_	XX	
Watchdog Time	r (WDT)			
FF0	Reset status	RSTSTAT	XX	95
	Watchdog Timer control	WDTCTL	XX	95
FF1	Watchdog Timer reload upper byte	WDTU	FF	96
FF2	Watchdog Timer reload high byte	WDTH	FF	96
FF3	Watchdog Timer reload low byte	WDTL	FF	97
FF4–FF5	Reserved		XX	

Table 8. Register File Address Map (Continued)

Note: XX = Undefined.

Port	Pin	Mnemonic	Alternate Function Description	Alternate Function Set Register AFS1
Port B ²	PB0	Reserved		AFS1[0]: 0
		ANA0	ADC analog input	AFS1[0]: 1
	PB1	Reserved		AFS1[1]: 0
		ANA1	ADC analog input	AFS1[1]: 1
	PB2	Reserved		AFS1[2]: 0
		ANA2	ADC analog input	AFS1[2]: 1
	PB3	CLKIN	External input clock	AFS1[3]: 0
		ANA3	ADC analog input	AFS1[3]: 1
	PB4	Reserved		AFS1[4]: 0
		ANA7	ADC analog input	AFS1[4]: 1
	PB5	Reserved		AFS1[5]: 0
		V _{REF}	ADC reference voltage	AFS1[5]: 1
	PB6	Reserved		AFS1[6]: 0
		Reserved		AFS1[6]: 1
	PB7	Reserved		AFS1[7]: 0
		Reserved		AFS1[7]: 1

Table 16. Port Alternate Function Mapping (Continued)

Notes:

- Because there is only a single alternate function for each Port A and Port D (PD0) pin, the Alternate Function Set registers are not implemented for Port A and Port D (PD0). Enabling alternate function selections (as described in the <u>Port A–D Alternate Function Subregisters</u> section on page 42) automatically enables the associated alternate function.
- Because there are at most two choices of alternate functions for any Port B pin, the AFS2 Alternate Function Set Register is implemented but is not used to select the function. Additionally, alternate function selection (as described in the <u>Port A–D Alternate Function Subregisters</u> section on page 42) must also be enabled.
- Because there are at most two choices of alternate functions for any Port C pin, the AFS2 Alternate Function Set Register is implemented but is not used to select the function. Additionally, alternate function selection (as described in the <u>Port A–D Alternate Function Subregisters</u> section on page 42) must also be enabled.

Interrupt Controller

The Interrupt Controller on the Z8 Encore![®] F0830 Series products prioritize the interrupt requests from the on-chip peripherals and the GPIO port pins. The features of the Interrupt Controller include:

- Seventeen interrupt sources using sixteen unique interrupt vectors:
 - Twelve GPIO port pin interrupt sources
 - Five on-chip peripheral interrupt sources (Comparator Output interrupt shares one interrupt vector with PA6)
- Flexible GPIO interrupts
 - Eight selectable rising and falling edge GPIO interrupts
 - Four dual-edge interrupts
- Three levels of individually programmable interrupt priority
- Watchdog Timer can be configured to generate an interrupt m

Interrupt requests (IRQs) allow peripheral devices to suspend CPU operation in an orderly manner and force the CPU to start an interrupt service routine (ISR). Usually this interrupt service routine is involved with the exchange of data, status information or control information between the CPU and the interrupting peripheral. When the service routine is completed, the CPU returns to the operation from which it was interrupted.

The eZ8 CPU supports both vectored and polled interrupt handling. For polled interrupts, the Interrupt Controller has no effect on operation. For more information about interrupt servicing by the eZ8 CPU, refer to the <u>eZ8 CPU User Manual (UM0128)</u>, which is available for download at <u>www.zilog.com</u>.

Interrupt Vector Listing

Table 34 lists the interrupts available in order of priority. The interrupt vector is stored with the most significant byte (MSB) at the even program memory address and the least significant byte (LSB) at the odd program memory address.

Note: Some port interrupts are not available on the 20-pin and 28-pin packages. The ADC interrupt is unavailable on devices not containing an ADC.

Bit	7	6	5	4	3	2	1	0
Field	PA7ENL	PA6CENL	PA5ENL	PA4ENL	PA3ENL	PA2ENL	PA1ENL	PA0ENL
RESET	0	0	0	0	0	0	0	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Address		• •		FC	5H			
Bit	Description							
[7] PA7ENL	Port A E	Port A Bit[7] Interrupt Request Enable Low Bit						
[6] PA6CENL	Port A Bit[7] or Comparator Interrupt Request Enable Low Bit							
[5:0] PA <i>x</i> ENL								e interrupt
Note: x inc	licates registe	er bits in the a	ddress range	e 5–0.				

Table 43. IRQ1 Enable Low Bit Register (IRQ1ENL)

IRQ2 Enable High and Low Bit Registers

Table 44 describes the priority control for IRQ2. The IRQ2 Enable High and Low Bit registers, shown in Tables 45 and 46, form a priority-encoded enabling service for interrupts in the Interrupt Request 2 Register. Priority is generated by setting the bits in each register.

IRQ2ENH[x]	IRQ2ENL[x]	Priority	Description		
0	0	Disabled	Disabled		
0	1	Level 1	Low		
1	0	Level 2	Nominal		
1	1	Level 3	High		
Note: x indicates register bits in the address range 7–0.					

Table 44. IRQ2 Enable and Priority Encoding

Bit	Description (Continued)
[2:0]	Timer Mode
TMODE	This field along with the TMODEHI bit in TxCTL0 register determines the operating mode of
	the timer. TMODEHI is the most significant bit of the timer mode selection value.
	0000 = ONE-SHOT Mode.
	0001 = CONTINUOUS Mode.
	0010 = COUNTER Mode.
	0011 = PWM SINGLE OUTPUT Mode.
	0100 = CAPTURE Mode.
	0101 = COMPARE Mode.
	0110 = GATED Mode.
	0111 = CAPTURE/COMPARE Mode.
	1000 = PWM DUAL OUTPUT Mode.
	1001 = CAPTURE RESTART Mode.
	1010 = COMPARATOR COUNTER Mode.

91

Z8 Encore![®] F0830 Series Product Specification

1FFFH		 Page 15	1FFFH 1E00H
	Sector 7	Page 14	1DFFH 1C00H
1C00H 18FFH		 Page 13	1BFFH 1A00H
	Sector 6	 Page 12	19FFH 1800H
1800H 17FFH		 Page 11	17FFH 1600H
1400H	Sector 5	 Page 10	15FFH 1400H
13FFH		 Page 9	13FFH 1200H
	Sector 4	 Page 8	11FFH
1C00H 0FFFH	Sector 3	 Page 7	1C00H 0FFFH
0C00H	Seciol 3	Page 6	0E00H 0DFFH
0BFFH	On star 0	 Page 5	0C00H 0BFFH
0800H	Sector 2	 Page 4	0A00H 09FFH
07FFH	Sector 1	Page 3	0800H 07FFH
0400H	Sector	 Page 2	0600H 05FFH
03FFH	Sector 0	Page 1	0400H 03FFH
0000H		 Page 0	0200H 0100H
			0000H

Figure 17. 8K Flash with NVDS

110

Oscillator Control

The Z8 Encore! F0830 Series device uses five possible clocking schemes. Each one of these is user-selectable.

- On-chip precision trimmed RC oscillator
- On-chip oscillator using off-chip crystal or resonator
- On-chip oscillator using external RC network
- External clock drive
- On-chip low precision Watchdog Timer Oscillator

In addition, Z8 Encore! F0830 Series devices contain clock failure detection and recovery circuitry, allowing continued operation despite a failure of the primary oscillator.

Operation

This chapter discusses the logic used to select the system clock and handle primary oscillator failures. A description of the specific operation of each oscillator is outlined further in this document.

System Clock Selection

The oscillator control block selects from the available clocks. *Table 98* describes each clock source and its usage.

Bit	Description (Continued)
[4] POFEN	 Primary Oscillator Failure Detection Enable 1 = Failure detection and recovery of primary oscillator is enabled. 0 = Failure detection and recovery of primary oscillator is disabled.
[3] WDFEN	Watchdog Timer Oscillator Failure Detection Enable 1 = Failure detection of Watchdog Timer Oscillator is enabled. 0 = Failure detection of Watchdog Timer Oscillator is disabled.
[2:0] SCKSEL	System Clock Oscillator Select 000 = Internal Precision Oscillator functions as system clock at 5.53MHz. 001 = Internal Precision Oscillator functions as system clock at 32 kHz. 010 = Crystal oscillator or external RC oscillator functions as system clock. 011 = Watchdog Timer Oscillator functions as system clock. 100 = External clock signal on PB3 functions as system clock. 101 = Reserved. 110 = Reserved. 111 = Reserved.

ister, the user code must wait at least 5000 IPO cycles for the crystal to stabilize. After this period, the crystal oscillator may be selected as the system clock.

Figure 25 displays a recommended configuration for connection with an external fundamental-mode, parallel-resonant crystal operating at 20MHz. Recommended 20MHz crystal specifications are provided in Table 100. Resistor R₁ is optional and limits total power dissipation by the crystal. Printed circuit board layout must add no more than 4pF of stray capacitance to either the X_{IN} or X_{OUT} pins. If oscillation does not occur, reduce the values of capacitors C₁ and C₂ to decrease loading.

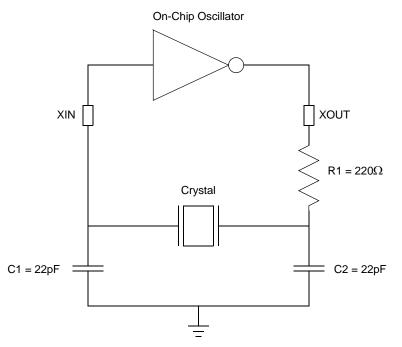


Figure 25. Recommended 20MHz Crystal Oscillator Configuration

Parameter	Value	Units	Comments
Frequency	20	MHz	
Resonance	Parallel		
Mode	Fundamental		
Series Resistance (R _S)	60	Ω	Maximum
Load Capacitance (CL)	30	pF	Maximum
Shunt Capacitance (C ₀)	7	pF	Maximum
Drive Level	1	mW	Maximum

Notation	Description	Operand	Range
R	Register	Reg	Reg. represents a number in the range of 00H to FFH
RA	Relative Address	Х	X represents an index in the range of $+127$ to -128 which is an offset relative to the address of the next instruction
rr	Working Register Pair	RRp	p = 0, 2, 4, 6, 8, 10, 12 or 14
RR	Register Pair	Reg	Reg. represents an even number in the range of 00H to FEH
Vector	Vector Address	Vector	Vector represents a number in the range of 00H to FFH
Х	Indexed	#Index	The register or register pair to be indexed is off- set by the signed Index value (#Index) in a +127 to -128 range.

Table 103. Notational Shorthand (Continued)

Table 104 contains additional symbols that are used throughout the instruction summary and instruction set description sections.

Symbol	Definition
dst	Destination Operand
src	Source Operand
@	Indirect Address Prefix
SP	Stack Pointer
PC	Program Counter
FLAGS	Flags Register
RP	Register Pointer
#	Immediate Operand Prefix
В	Binary Number Suffix
%	Hexadecimal Number Prefix
Н	Hexadecimal Number Suffix

Table 104. Additional Symbols

Assignment of a value is indicated by an arrow, as shown in the following example. $dst \leftarrow dst + src$

170

Table 112. Rotate and Shift Instructions (Continued)

RRdstRotate RightRRCdstRotate Right through CarrySRAdstShift Right ArithmeticSRLdstShift Right LogicalSWAPdstSwap Nibbles	Mnemonic	Operands	Instruction
SRA dst Shift Right Arithmetic SRL dst Shift Right Logical	RR	dst	Rotate Right
SRL dst Shift Right Logical	RRC	dst	Rotate Right through Carry
	SRA	dst	Shift Right Arithmetic
SWAP dst Swap Nibbles	SRL	dst	Shift Right Logical
	SWAP	dst	Swap Nibbles

Assembly			ress ode	Op Code(s)			Fla	ags			_ Fetch	Instr.
Mnemonic	Symbolic Operation	dst	src	(Hex)	С	Ζ	S	۷	D	Н		
AND dst, src	$dst \gets dst \; AND \; src$	r	r	52	_	*	*	0	_	_	2	3
		r	lr	53	_						2	4
		R	R	54							3	3
		R	IR	55	_						3	4
		R	IM	56	_						3	3
		IR	IM	57	_						3	4
ANDX dst, src	$dst \gets dst \ AND \ src$	ER	ER	58	_	*	*	0	_	_	4	3
		ER	IM	59	_						4	3
ATM	Block all interrupt and DMA requests during execution of the next 3 instructions			2F	-	_	_	_	_	_	1	2
BCLR bit, dst	dst[bit] ← 0	r		E2	_	*	*	0	_	_	2	2
BIT p, bit, dst	dst[bit] ← p	r		E2	_	*	*	0	_	_	2	2
BRK	Debugger Break			00	-	_	-	-	_	_	1	1
BSET bit, dst	dst[bit] ← 1	r		E2	-	*	*	0	-	-	2	2
BSWAP dst	dst[7:0] ← dst[0:7]	R		D5	Х	*	*	0	-	-	2	2
BTJ p, bit, src,	if src[bit] = p		r	F6	-	_	-	-	_	_	3	3
dst	$PC \leftarrow PC + X$		lr	F7	_						3	4
BTJNZ bit, src,			r	F6	-	-	-	-	-	-	3	3
dst	$PC \leftarrow PC + X$		lr	F7	_						3	4
BTJZ bit, src,	if src[bit] = 0		r	F6	_	-	_	_	-	-	3	3
dst	$PC \gets PC + X$		Ir	F7							3	4
CALL dst	$SP \leftarrow SP -\!\!\!\!\!-\!\!\!\!\!2$	IRR		D4	_	_	-	-	_	-	2	6
	@SP ← PC PC ← dst	DA		D6							3	3
CCF	$C \leftarrow \sim C$			EF	*	_	_	_	_		1	2

Table 113. eZ8 CPU Instruction Summary (Continued)

Note: Flags Notation:

* = Value is a function of the result of the operation.

- = Unaffected.

X = Undefined.

0 = Reset to 0.

1 = Set to 1.

Assembly			ress ode	Op Code(s)			Fla	ags			Fetch	Instr.
Mnemonic	Symbolic Operation	dst	src	(Hex)	С	Ζ	S	۷	D	Н		
LDX dst, src	$dst \gets src$	r	ER	84	_	_	_	_	-	-	3	2
		lr	ER	85	_						3	3
		R	IRR	86	_						3	4
		IR	IRR	87	_						3	5
		r	X(rr)	88	_						3	4
		X(rr)	r	89	_						3	4
		ER	r	94	_						3	2
		ER	lr	95	_						3	3
		IRR	R	96	_						3	4
		IRR	IR	97	_						3	5
		ER	ER	E8	_						4	2
		ER	IM	E9	_						4	2
LEA dst, X(src) dst ← src + X	r	X(r)	98	_	-	-	_	_	_	3	3
		rr	X(rr)	99							3	5
MULT dst	dst[15:0] ← dst[15:8] * dst[7:0]	RR		F4	-	-	_	-	-	-	2	8
NOP	No operation			0F	_	-	-	_	_	_	1	2
OR dst, src	$dst \gets dst \ OR \ src$	r	r	42	_	*	*	0	_	_	2	3
		r	lr	43	_						2	4
		R	R	44							3	3
		R	IR	45	_						3	4
		R	IM	46	-						3	3
		IR	IM	47	-						3	4
ORX dst, src	dst ← dst OR src	ER	ER	48	_	*	*	0	_	_	4	3
		ER	IM	49	-						4	3
POP dst	dst ← @SP	R		50	_	-	-	-	-	-	2	2
	$SP \leftarrow SP + 1$	IR		51							2	3

Table 113. eZ8 CPU Instruction Summary (Continued)

Note: Flags Notation:

* = Value is a function of the result of the operation.

- = Unaffected.

X = Undefined.

0 = Reset to 0.

1 =Set to 1.

Abbreviation	Description	Abbreviation	Description
b	Bit position	IRR	Indirect Register Pair
CC	Condition code	р	Polarity (0 or 1)
Х	8-bit signed index or displace- ment	r	4-bit Working Register
DA	Destination address	R	8-bit register
ER	Extended Addressing Register	r1, R1, Ir1, Irr1, IR1, rr1, RR1, IRR1, ER1	Destination address
IM	Immediate data value	r2, R2, Ir2, Irr2, IR2, rr2, RR2, IRR2, ER2	Source address
lr	Indirect Working Register	RA	Relative
IR	Indirect Register	rr	Working Register Pair
Irr	Indirect Working Register Pair	RR	Register Pair

Table 114. Op Code Map Abbreviations

		Power Co	onsumption
Category	Block	Typical	Maximum
Logic	CPU/Peripherals @ 20MHz	5mA	
Flash	Flash @20MHz		12mA
	ADC @20MHz	4mA	4.5mA
	IPO	350µA	400µA
	Comparator @10MHz	330µA	450µA
Analog	POR & VBO	120µA	150µA
	WDT Oscillator	2µA	ЗµА
	OSC @ 20MHz	600µA	900µA
	Clock Filter	120µA	150µA
Note: The va	lues in this table are subject to change	· · ·	

Table 127. Power Consumption Reference Table

Figure 36. Flash Current Diagram

Low Power Control

For more information about the Power Control Register, see the <u>Power Control Register</u> <u>Definitions</u> section on page 31.

Hex Address: F80

Bit	7	6	5	4	3	2	1	0		
Field		Reserved		VBO	Reserved	Reserved	COMP	Reserved		
RESET	1	0	0	0	1	0	0	0		
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Address		F80H								

Table 151. Power Control Register 0 (PWRCTL0)

Hex Address: F81

This address range is reserved.

LED Controller

For more information about the LED Drive registers, see the <u>GPIO Control Register Definitions</u> section on page 39.

Hex Address: F82

Bit	7	6	5	4	3	2	1	0				
Field		LEDEN[7:0]										
RESET	0	0	0	0	0	0	0	0				
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W				
Address		F82H										

Table 152. LED Drive Enable (LEDEN)

GPIO Port A

For more information about the GPIO registers, see the <u>GPIO Control Register Definitions</u> section on page 39.

Hex Address: FD0

Table 169. Port A GPIO Address Register (PAADDR)

Bit	7	6	5	4	3	2	1	0			
Field		PADDR[7:0]									
RESET		00H									
R/W	R/W	R/W R/W R/W R/W R/W R/W R/W									
Address		FD0H									

Hex Address: FD1

Table 170. Port A Control Registers (PACTL)

Bit	7	6	5	4	3	2	1	0			
Field		PCTL									
RESET		00H									
R/W	R/W	R/W R/W R/W R/W R/W R/W R/W									
Address		FD1H									

Hex Address: FD2

Table 171. Port A Input Data Registers (PAIN)

Bit	7	6	5	4	3	2	1	0			
Field	PIN7	PIN6	PIN5	PIN4	PIN3	PIN2	PIN1	PIN0			
RESET	Х	Х	Х	Х	Х	Х	Х	Х			
R/W	R	R	R	R	R	R	R	R			
Address		FD2H									

Hex Address: FDB

Bit	7	6	5	4	3	2	1	0
Field	POUT7	POUT6	POUT5	POUT4	POUT3	POUT2	POUT1	POUT0
RESET	0	0	0	0	0	0	0	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Address	FDBH							

Hex Address: FDC

Table 181. Port D GPIO Address Register (PDADDR)

Bit	7	6	5	4	3	2	1	0
Field	PADDR[7:0]							
RESET	00H							
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Address	FDCH							

Hex Address: FDD

Table 182. Port D Control Registers (PDCTL)

Bit	7	6	5	4	3	2	1	0
Field	PCTL							
RESET	00H							
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Address	FDDH							

Hex Address: FDE

This address range is reserved.

Z8 Encore![®] F0830 Series Product Specification

Index

Symbols

@ 165# 165% 165

Numerics

10-bit ADC 4

Α

absolute maximum ratings 184 AC characteristics 189 ADC 166 block diagram 99 overview 98 ADC Channel Register 1 (ADCCTL) 102 ADC Data High Byte Register (ADCDH) 103 ADC Data Low Bit Register (ADCDL) 103, 104, 105 **ADCX 166** ADD 166 add - extended addressing 166 add with carry 166 add with carry - extended addressing 166 additional symbols 165 address space 14 **ADDX 166** analog block/PWM signal synchronization 100 analog block/PWM signal zynchronization 100 analog signals 11 analog-to-digital converter overview 98 AND 169 **ANDX 169** architecture voltage measurements 98 arithmetic instructions 166 assembly language programming 162 assembly language syntax 163

В

B 165 b 164 **BCLR 167** binary number suffix 165 BIT 167 bit 164 clear 167 manipulation instructions 167 set 167 set or clear 167 swap 167 test and jump 169 test and jump if non-zero 169 test and jump if zero 169 bit jump and test if non-zero 166 bit swap 169 block diagram 3 block transfer instructions 167 **BRK 169 BSET 167** BSWAP 167. 169 **BTJ** 169 BTJNZ 166, 169 **BTJZ 169**

С

calibration and compensation, motor control measurements 101 CALL procedure 169 capture mode 89, 90 capture/compare mode 89 cc 164 CCF 168 characteristics, electrical 184 clear 168 CLR 168 COM 169 compare 89