

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	eZ8
Core Size	8-Bit
Speed	20MHz
Connectivity	-
Peripherals	Brown-out Detect/Reset, LED, POR, PWM, WDT
Number of I/O	25
Program Memory Size	4KB (4K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 3.6V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/zilog/z8f0431sj020eg

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

х

List of Figures

Figure 1.	Z8 Encore! F0830 Series Block Diagram
Figure 2.	Z8F0830 Series in 20-Pin SOIC, SSOP, PDIP Package
Figure 3.	Z8F0830 Series in 28-Pin SOIC, SSOP, PDIP Package
Figure 4.	Z8F0830 Series in 20-Pin QFN Package
Figure 5.	Z8F0830 Series in 28-Pin QFN Package 10
Figure 6.	Power-On Reset Operation
Figure 7.	Voltage Brown-Out Reset Operation
Figure 8.	GPIO Port Pin Block Diagram
Figure 9.	Interrupt Controller Block Diagram
Figure 10.	Timer Block Diagram 69
Figure 11.	Analog-to-Digital Converter Block Diagram
Figure 12.	ADC Timing Diagram
Figure 13.	ADC Convert Timing
Figure 14.	1K Flash with NVDS 108
Figure 15.	2K Flash with NVDS 109
Figure 16.	4K Flash with NVDS 109
Figure 17.	8K Flash with NVDS 110
Figure 18.	12K Flash without NVDS
Figure 19.	Flash Controller Operation Flow Chart
Figure 20.	On-Chip Debugger Block Diagram
Figure 21.	Interfacing the On-Chip Debugger's DBG Pin with an RS-232 Interface, #1 of 2
Figure 22.	Interfacing the On-Chip Debugger's DBG Pin with an RS-232 Interface, #2 of 2
Figure 23.	OCD Data Format
Figure 24.	Oscillator Control Clock Switching Flow Chart 156
Figure 25.	Recommended 20MHz Crystal Oscillator Configuration 158
Figure 26.	Connecting the On-Chip Oscillator to an External RC Network 159

Z8 Encore![®] F0830 Series Product Specification

Table 29.	Port A–C Input Data Registers (PxIN)
Table 30.	Port A–D Output Data Register (PxOUT) 50
Table 31.	LED Drive Enable (LEDEN) 51
Table 32.	LED Drive Level High Register (LEDLVLH)
Table 33.	LED Drive Level Low Register (LEDLVLL)
Table 34.	Trap and Interrupt Vectors in Order of Priority
Table 35.	Interrupt Request 0 Register (IRQ0)
Table 36.	Interrupt Request 1 Register (IRQ1) 59
Table 37.	Interrupt Request 2 Register (IRQ2) 60
Table 38.	IRQ0 Enable and Priority Encoding
Table 39.	IRQ0 Enable Low Bit Register (IRQ0ENL)
Table 40.	IRQ0 Enable High Bit Register (IRQ0ENH)
Table 41.	IRQ1 Enable and Priority Encoding
Table 42.	IRQ1 Enable High Bit Register (IRQ1ENH)
Table 43.	IRQ2 Enable and Priority Encoding
Table 44.	IRQ1 Enable Low Bit Register (IRQ1ENL)
Table 45.	IRQ2 Enable Low Bit Register (IRQ2ENL)
Table 46.	IRQ2 Enable High Bit Register (IRQ2ENH)
Table 47.	Interrupt Edge Select Register (IRQES)
Table 48.	Shared Interrupt Select Register (IRQSS)
Table 49.	Interrupt Control Register (IRQCTL)
Table 50.	Timer 0–1 High Byte Register (TxH) 83
Table 51.	Timer 0–1 Low Byte Register (TxL)
Table 52.	Timer 0–1 Reload High Byte Register (TxRH)
Table 53.	Timer 0–1 Reload Low Byte Register (TxRL)
Table 54.	Timer 0–1 PWM High Byte Register (TxPWMH)
Table 55.	Timer 0–1 PWM Low Byte Register (TxPWML)
Table 56.	Timer 0–1 Control Register 0 (TxCTL0) 87
Table 57.	Timer 0–1 Control Register 1 (TxCTL1)
Table 58.	Watchdog Timer Approximate Time-Out Delays

The eZ8 CPU fetches the reset vector at program memory addresses 0002H and 0003H and loads that value into the program counter. Program execution begins at the reset vector address. Following Stop Mode Recovery, the STOP bit in the Reset Status (RSTSTAT) Register is set to 1. Table 11 lists the Stop Mode Recovery sources and resulting actions. The following sections provide more details about each of the Stop Mode Recovery sources.

Operating Mode	Stop Mode Recovery Source	Action
STOP Mode	Watchdog Timer time-out when configured for Reset	Stop Mode Recovery
	Watchdog Timer time-out when configured for interrupt	Stop Mode Recovery followed by interrupt (if interrupts are enabled)
	Data transition on any GPIO port pin enabled as a Stop Mode Recovery source	Stop Mode Recovery
	Assertion of external RESET Pin	System reset
	Debug pin driven Low	System reset

Table 11. Stop Mode Recovery Sources and Resulting Action

Stop Mode Recovery using WDT Time-Out

If the Watchdog Timer times out during STOP Mode, the device undergoes a Stop Mode Recovery sequence. In the Reset Status (RSTSTAT) Register, the WDT and STOP bits are set to 1. If the Watchdog Timer is configured to generate an interrupt upon time-out and the Z8 Encore! F0830 Series device is configured to respond to interrupts, the eZ8 CPU services the WDT interrupt request following the normal Stop Mode Recovery sequence.

Stop Mode Recovery using GPIO Port Pin Transition

Each of the GPIO port pins may be configured as a Stop Mode Recovery input source. If any GPIO pin is enabled as a Stop Mode Recovery source, a change in the input pin value (from High to Low or from Low to High) initiates Stop Mode Recovery. In the Reset Status (RSTSTAT) Register, the STOP bit is set to 1.

Caution: In STOP Mode, the GPIO Port Input Data registers (PxIN) are disabled. These Port Input Data registers record the port transition only if the signal stays on the port pin through the end of the Stop Mode Recovery delay. As a result, short pulses on the port pin can initiate Stop Mode Recovery without being written to the Port Input Data Register or without initiating an interrupt (if enabled for that pin).

28

Stop Mode Recovery Using the External RESET Pin

When the Z8 Encore! F0830 Series device is in STOP Mode and the external RESET pin is driven low, a system reset occurs. Because of a glitch filter operating on the RESET pin, the low pulse must be greater than the minimum width specified about 12 ns or it is ignored. The EXT bit in the Reset Status (RSTSTAT) Register is set.

Debug Pin Driven Low

Debug reset is initiated when the On-Chip Debugger detects any of the following error conditions on the DBG pin:

- Serial break (a minimum of nine continuous bits Low)
- Framing error (received STOP bit is Low)
- Transmit collision (simultaneous OCD and host transmission detected by the OCD)

When the Z8F0830 Series device is operating in STOP Mode, the debug reset will cause a system reset. The On-Chip Debugger block is not reset, but the remainder of the chip's operations go through a normal system reset. The POR bit in the Reset Status (RSTSTAT) Register is set to 1.

Reset Register Definitions

The following sections define the Reset registers.

Reset Status Register

The Reset Status (RSTSTAT) Register, shown in Table 12, is a read-only register that indicates the source of the most recent Reset event, Stop Mode Recovery event or Watchdog Timer time-out event. Reading this register resets the upper four bits to 0.

This register shares its address with the Watchdog Timer Control Register, which is writeonly.

Port A–D Output Data Register

The Port A–D Output Data Register, shown in Table 30, controls the output data to the pins.

Bit	7	6	5	4	3	2	1	0
Field	POUT7	POUT6	POUT5	POUT4	POUT3	POUT2	POUT1	POUT0
RESET	0	0	0	0	0	0	0	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Address			F	D3H, FD7H,	FDBH, FDF	Ή		

Table 30. Port A–D Output Data Register (PxOUT)

Bit Description

[7:0] Port Output Data

PxOUT These bits contain the data to be driven to the port pins. The values are only driven if the corresponding pin is configured as an output and the pin is not configured for Alternate function operation.

0 = Drive a logical 0 (Low).

1= Drive a logical 1 (High). High value is not driven if the drain has been disabled by setting the corresponding port output Control Register bit to 1.

Note: x indicates the specific GPIO port pin number (7–0).

• Writing 1 to the IRQE bit in the Interrupt Control Register

Interrupts are globally disabled by any of the following actions:

- Execution of a DI (disable interrupt) instruction
- eZ8 CPU acknowledgement of an interrupt service request from the Interrupt Controller
- Writing a 0 to the IRQE bit in the Interrupt Control Register
- Reset
- Execution of a trap instruction
- Illegal instruction Trap
- Primary oscillator fail trap
- Watchdog Oscillator fail trap

Interrupt Vectors and Priority

The Interrupt Controller supports three levels of interrupt priority. Level 3 is the highest priority, level 2 is the second highest priority and level 1 is the lowest priority. If all of the interrupts are enabled with identical interrupt priority (all as level 2 interrupts, for example), the interrupt priority is assigned from highest to lowest as specified in <u>Table 34</u> on page 54. Level 3 interrupts are always assigned higher priority than level 2 interrupts and level 2 interrupts are assigned higher priority than level 1 interrupts. Within each interrupt priority level (level 1, level 2 or level 3), priority is assigned as specified in Table 34, above. Reset, Watchdog Timer interrupt (if enabled), primary oscillator fail trap, Watchdog Oscillator fail trap and illegal instruction trap always have highest (level 3) priority.

Interrupt Assertion

Interrupt sources assert their interrupt requests for only a single system clock period (single pulse). When the interrupt request is acknowledged by the eZ8 CPU, the corresponding bit in the interrupt request register is cleared. Writing 0 to the corresponding bit in the interrupt request register clears the interrupt request.

Caution: Zilog recommends not using a coding style that clears bits in the Interrupt Request registers. All incoming interrupts received between execution of the first LDX command and the final LDX command are lost. See Example 1, which follows.

Example 1. A poor coding style that can result in lost interrupt requests:

Interrupt Edge Select Register

The interrupt edge select (IRQES) register determines whether an interrupt is generated for the rising edge or falling edge on the selected GPIO Port A or Port D input pin. See Table 47.

Bit	7	6	5	4	3	2	1	0
Field	IES7	IES6	IES5	IES4	IES3	IES2	IES1	IES0
RESET	0	0	0	0	0	0	0	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Address	FCDH							

Table 47. Interrupt Edge Select Register (IRQES)

Bit Description [7] Interrupt Edge Select x IESx 0 = An interrupt request is generated on the falling edge of the PAx input or PDx. 1 = An interrupt request is generated on the rising edge of the PAx input or PDx. Note: x indicates register bits in the address range 7–0.

Interrupt Control Register

The Interrupt Control (IRQCTL) Register, shown in Table 49, contains the master enable bit for all interrupts.

Bit	7	6	5	4	3	2	1	0
Field	IRQE				Reserved			
RESET	0	0	0	0	0	0	0	0
R/W	R/W	R	R	R	R	R	R	R
Address		FCFH						

Table 49. Interrupt Control Register (IRQCTL)

Bit	Description
[7] IRQE	 Interrupt Request Enable This bit is set to 1 by executing an Enable Interrupts (EI) or Interrupt Return (IRET) instruction or by a direct register write of 1 to this bit. It is reset to 0 by executing a DI instruction, eZ8 CPU acknowledgement of an interrupt request, reset, or by a direct register write of a 0 to this bit. 0 = Interrupts are disabled. 1 = Interrupts are enabled.
[6:0]	Reserved These registers are reserved and must be programmed to 0000000.

Operation

The timers are 16-bit up-counters. Minimum time-out delay is set by loading the value 0001H into the Timer Reload High and Low Byte registers and setting the prescale value to 1. Maximum time-out delay is set by loading the value 0000H into the Timer Reload High and Low Byte registers and setting the prescale value to 128. If the Timer reaches FFFFH, the timer resets back to 0000H and continues counting.

Timer Operating Modes

The timers can be configured to operate in the following modes:

ONE-SHOT Mode

In ONE-SHOT Mode, the timer counts up to the 16-bit reload value stored in the Timer Reload High and Low Byte registers. The timer input is the system clock. Upon reaching the reload value, the timer generates an interrupt and the count value in the Timer High and Low Byte registers is reset to 0001H. The timer is automatically disabled and stops counting.

Additionally, if the timer output alternate function is enabled, the timer output pin changes state for one system clock cycle (from Low to High or from High to Low) upon timer

95

Watchdog Timer Control Register Definitions

This section defines the features of the following Watchdog Timer Control registers. Watchdog Timer Control Register (WDTCTL): see page 95

Watchdog Timer Reload Low Byte Register (WDTL): see page 97

Watchdog Timer Reload Upper Byte Register (WDTU): see page 96

Watchdog Timer Reload High Byte Register (WDTH): see page 96

Watchdog Timer Control Register

The Watchdog Timer Control (WDTCTL) Register is a write-only control register. Writing the unlock sequence: 55H, AAH to the WDTCTL Register address unlocks the three Watchdog Timer Reload Byte registers (WDTU, WDTH and WDTL) to allow changes to the time-out period. These write operations to the WDTCTL Register address have no effect on the bits in the WDTCTL Register. The locking mechanism prevents spurious writes to the reload registers.

This register address is shared with the read-only Reset Status Register.

Bit	7	6	5	4	3	2	1	0
Field				WDT	UNLK			
RESET	Х	Х	Х	Х	Х	Х	Х	Х
R/W	W	W	W	W	W	W	W	W
Address				FF	ОН			
<u> </u>	Derector	· · · ·						

Bit	Description
[7:0]	Watchdog Timer Unlock
WDTUNLK	The user software must write the correct unlocking sequence to this register before it is
	allowed to modify the contents of the Watchdog Timer Reload registers.

ADC Interrupt

The ADC can generate an interrupt request when a conversion has been completed. An interrupt request that is pending when the ADC is disabled is not cleared automatically.

Reference Buffer

The reference buffer, RBUF, supplies the reference voltage for the ADC. When enabled, the internal voltage reference generator supplies the ADC. When RBUF is disabled, the ADC must have the reference voltage supplied externally through the V_{REF} pin in 28-pin package. RBUF is controlled by the REFEN bit in the ADC Control Register.

Internal Voltage Reference Generator

The internal voltage reference generator provides the voltage VR2, for the RBUF. VR2 is 2V.

Calibration and Compensation

A user can perform calibration and store the values into Flash or the user code can perform a manual offset calibration. There is no provision for manual gain calibration.

ADC Control Register Definitions

The ADC Control registers are defined in this section.

Comparator

The Z8 Encore! F0830 Series devices feature a general purpose comparator that compares two analog input signals. A GPIO (CINP) pin provides the positive comparator input. The negative input (CINN) can be taken from either an external GPIO pin or from an internal reference. The output is available as an interrupt source or can be routed to an external pin using the GPIO multiplex. The comparator includes the following features:

- Positive input is connected to a GPIO pin
- Negative input can be connected to either a GPIO pin or a programmable internal reference
- Output can be either an interrupt source or an output to an external pin

Operation

One of the comparator inputs can be connected to an internal reference that is a user-selectable reference and is user-programmable with 200 mV resolution.

The comparator can be powered down to save supply current. For details, see the <u>Power</u> <u>Control Register 0</u> section on page 31.

Caution: As a result of the propagation delay of the comparator, Zilog does not recommend enabling the comparator without first disabling interrupts and waiting for the comparator output to settle. This delay prevents spurious interrupts after comparator enabling.

The following example shows how to safely enable the comparator:

```
di
ld cmp0,r0; load some new configuration
nop
nop ; wait for output to settle
clr irq0; clear any spurious interrupts pending
ei
```


Bit	Description (Continued)
[4] XTLDIS	 State of the Crystal Oscillator at Reset This bit enables only the crystal oscillator. Selecting the crystal oscillator as the system clock must be performed manually. 0 = The crystal oscillator is enabled during reset, resulting in longer reset timing. 1 = The crystal oscillator is disabled during reset, resulting in shorter reset timing.
[3:0]	Reserved These bits are reserved and must be programmed to 1111.

Trim Bit Address Space

All available trim bit addresses and their functions are listed in Tables 83 through 90.

Bit	Description (Continued)
[4] POFEN	 Primary Oscillator Failure Detection Enable 1 = Failure detection and recovery of primary oscillator is enabled. 0 = Failure detection and recovery of primary oscillator is disabled.
[3] WDFEN	Watchdog Timer Oscillator Failure Detection Enable 1 = Failure detection of Watchdog Timer Oscillator is enabled. 0 = Failure detection of Watchdog Timer Oscillator is disabled.
[2:0] SCKSEL	System Clock Oscillator Select 000 = Internal Precision Oscillator functions as system clock at 5.53MHz. 001 = Internal Precision Oscillator functions as system clock at 32 kHz. 010 = Crystal oscillator or external RC oscillator functions as system clock. 011 = Watchdog Timer Oscillator functions as system clock. 100 = External clock signal on PB3 functions as system clock. 101 = Reserved. 110 = Reserved. 111 = Reserved.

Packaging

Zilog's F0830 Series of MCUs includes the Z8F0130, Z8F0131, Z8F0230, Z8F0231, Z8F1232 and Z8F1233 devices, which are available in the following packages:

- 20-Pin Quad Flat No-Lead Package (QFN)
- 20-pin Small Outline Integrated Circuit Package (SOIC)
- 20-pin Plastic Dual-Inline Package (PDIP)
- 20-pin Small Shrink Outline Package (SSOP)
- 28-Pin Quad Flat No-Lead Package (QFN)
- 28-pin Small Outline Integrated Circuit Package (SOIC)
- 28-pin Plastic Dual-Inline Package (PDIP)
- 28-pin Small Shrink Outline Package (SSOP)

Current diagrams for each of these packages are published in Zilog's <u>Packaging Product</u> <u>Specification (PS0072)</u>, which is available free for download from the Zilog website.

Z8 Encore![®] F0830 Series Product Specification

Hex Addresses: F87–F8F

This address range is reserved.

Comparator 0

For more information about the Comparator Register, see the <u>Comparator Control Register Definitions</u> section on page 107.

Hex Address: F90

Bit	7	6	5	4	3	2	1	0
Field	Reserved	INNSEL	REFLVL				Reserved	
RESET	0	0	0	1	0	1	0	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Address	F90H							

Table 156. Comparator Control Register (CMP0)

Hex Addresses: F91–FBF

This address range is reserved.

Interrupt Controller

For more information about the Interrupt Control registers, see the <u>Interrupt Control Reg-</u> <u>ister Definitions</u> section on page 57.

Hex Address: FC0

Bit	7	6	5	4	3	2	1	0
Field	Reserved	T1I	TOI	Reserved	Reserved	Reserved	Reserved	ADCI
RESET	0	0	0	0	0	0	0	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Address	FC0H							

Table 157. Interrupt Request 0 Register (IRQ0)

Hex Address: FFB

Table 196. Flash Frequency Low Byte Register (FFREQL)

Bit	7	6	5	4	3	2	1	0
Field	FFREQL							
RESET	0							
R/W	R/W							
Address	FFBH							

Z8 Encore![®] F0830 Series Product Specification

read program memory CRC (0EH) 147 read register (09H) 146 read runtime counter (03H) 145 step instruction (10H) 148 stuff instruction (11H) 148 write data memory (0CH) 147 write OCD control register (04H) 145 write program counter (06H) 146 write program memory (0AH) 146 write register (08H) 146 on-chip debugger (OCD) 139 on-chip debugger signals 12 on-chip oscillator 157 one-shot mode 89 opcode map abbreviations 181 cell description 180 first 182 second after 1FH 183 operation 100 current measurement 99 voltage measurement timing diagram 100 Operational Description 21, 30, 33, 53, 68, 92, 98, 106, 108, 124, 134, 139, 151, 157, 161 OR 169 ordering information 200 ORX 169 oscillator signals 12

Ρ

p 164
Packaging 199
part selection guide 2
PC 165
peripheral AC and DC electrical characteristics 190
pin characteristics 13
Pin Descriptions 7
polarity 164
POP 168
pop using extended addressing 168
POPX 168
port availability, device 33
port input timing (GPIO) 195

port output timing, GPIO 196 power supply signals 12 power-on reset (POR) 23 program control instructions 169 program memory 15 PUSH 168 push using extended addressing 168 PUSHX 168 PWM mode 89, 90 PxADDR register 40, 222, 223, 224, 225 PxCTL register 41, 222, 223, 224, 225

R

R 165 r 164 RA register address 165 RCF 167, 168 register 165 flash control (FCTL) 119, 126, 127, 228 flash high and low byte (FFREQH and FRE-EQL) 123 flash page select (FPS) 121, 122 flash status (FSTAT) 120 GPIO port A-H address (PxADDR) 40, 222, 223, 224, 225 GPIO port A-H alternate function sub-registers 42 GPIO port A-H control address (PxCTL) 41, 222, 223, 224, 225 GPIO port A-H data direction sub-registers 41 OCD control 148 OCD status 150 watch-dog timer control (WDTCTL) 95, 107, 154, 217, 218, 226 watchdog timer control (WDTCTL) 29 watch-dog timer reload high byte (WDTH) 227 watchdog timer reload high byte (WDTH) 96 watch-dog timer reload low byte (WDTL) 227 watchdog timer reload low byte (WDTL) 97 watch-dog timer reload upper byte (WDTU) 227

236