

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	eZ8
Core Size	8-Bit
Speed	20MHz
Connectivity	-
Peripherals	Brown-out Detect/Reset, LED, POR, PWM, WDT
Number of I/O	23
Program Memory Size	8KB (8K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 3.6V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	·
Purchase URL	https://www.e-xfl.com/product-detail/zilog/z8f0830sj020sg

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Z8 Encore![®] F0830 Series Product Specification

ADC Control Register Definitions10ADC Control Register 010ADC Data High Byte Register10ADC Data Low Bits Register10Sample Settling Time Register10Sample Time Register10)2)3)3)4
Comparator10Operation10Comparator Control Register Definitions10)6
Flash Memory 10 Data Memory Address Space 11 Flash Information Area 11 Operation 11 Flash Operation Timing Using the Flash Frequency Registers 11	1 1 2
Flash Code Protection Against External Access	4
Flash Code Protection Against Accidental Program and Erasure11Byte Programming11Page Erase11Mass Erase11Flash Controller Bypass11Flash Controller Behavior in Debug Mode11NVDS Operational Requirements11Flash Control Register Definitions11Flash Control Register Definitions11Flash Status Register12Flash Status Register12Flash Page Select Register12Flash Sector Protect Register12Flash Frequency High and Low Byte Registers12	6 7 7 7 7 8 8 9 0 21
Flash Option Bits 12. Operation 12. Option Bit Configuration by Reset 12. Option Bit Types 12. Flash Option Bit Control Register Definitions 12. Flash Option Bit Control Register Definitions 12. Flash Option Bit Control Register Definitions 12. Trim Bit Address Register 12. Trim Bit Address Register 12. Flash Option Bit Address Space 12. Trim Bit Address Space 12. Nonvolatile Data Storage 13.	24 24 25 26 26 26 27 29
	7

Calibration and Compensation 101

vii

Overview

Zilog's Z8 Encore! MCU family of products are the first in a line of Zilog microcontroller products based on the 8-bit eZ8 CPU. The Z8 Encore! F0830 Series products expand on Zilog's extensive line of 8-bit microcontrollers. The Flash in-circuit programming capability allows for faster development time and program changes in the field. The new eZ8 CPU is upward-compatible with existing Z8 CPU instructions. The rich peripheral set of Z8 Encore! F0830 Series makes it suitable for a variety of applications including motor control, security systems, home appliances, personal electronic devices and sensors.

Features

The key features of Z8 Encore! F0830 Series MCU include:

- 20MHz eZ8 CPU
- Up to 12KB Flash memory with in-circuit programming capability
- Up to 256B register RAM
- 64B Nonvolatile Data Storage (NVDS)
- Up to 25 I/O pins depending upon package
- Internal Precision Oscillator (IPO)
- External crystal oscillator
- Two enhanced 16-bit timers with capture, compare and PWM capability
- Watchdog Timer (WDT) with dedicated internal RC oscillator
- Single-pin, On-Chip Debugger (OCD)
- Optional 8-channel, 10-bit Analog-to-Digital Converter (ADC)
- On-chip analog comparator
- Up to 17 interrupt sources
- Voltage Brown-Out (VBO) protection
- Power-On Reset (POR)
- 2.7V to 3.6V operating voltage
- Up to thirteen 5 V-tolerant input pins
- 20- and 28-pin packages
- 0°C to +70°C standard temperature range and -40°C to +105°C extended temperature operating ranges

Register Map

Table 8 provides an address map of the Z8 Encore! F0830 Series register file. Not all devices and package styles in the Z8 Encore! F0830 Series support the ADC or all of the GPIO ports. Consider registers for unimplemented peripherals as reserved.

Address (Hex)	Register Description	Mnemonic	Reset (Hex)	Page No.
General Purpos	e RAM			
000–0FF	General purpose register file RAM		XX	
100–EFF	Reserved	_	XX	
Timer 0				
F00	Timer 0 high byte	T0H	00	83
F01	Timer 0 low byte	TOL	01	83
F02	Timer 0 reload high byte	TORH	FF	85
F03	Timer 0 reload low byte	TORL	FF	85
F04	Timer 0 PWM high byte	T0PWMH	00	86
F05	Timer 0 PWM low byte	TOPWML	00	86
F06	Timer 0 control 0	T0CTL0	00	87
F07	Timer 0 control 1	T0CTL1	00	88
Timer 1				
F08	Timer 1 high byte	T1H	00	83
F09	Timer 1 low byte	T1L	01	83
F0A	Timer 1 reload high byte	T1RH	FF	85
F0B	Timer 1 reload low byte	T1RL	FF	85
F0C	Timer 1 PWM high byte	T1PWMH	00	86
F0D	Timer 1 PWM low byte	T1PWML	00	86
F0E	Timer 1 control 0	T1CTL0	00	87
F0F	Timer 1 control 1	T1CTL1	00	83
F10–F6F	Reserved	_	XX	
Analog-to-Digita	al Converter (ADC)			
F70	ADC control 0	ADCCTL0	00	102
F71	Reserved		XX	
F72	ADC data high byte	ADCD_H	XX	103

Table 8. Register File Address Map

Note: XX = Undefined.

	_		-	
Address (Hex)	Register Description	Mnemonic	Reset (Hex)	Page No.
Analog-to-Digita	al Converter (ADC, cont'd)			
F73	ADC data low bits	ADCD_L	XX	103
F74	ADC sample settling time	ADCSST	0F	104
F75	ADC sample time	ADCST	3F	105
F76	Reserved	—	XX	
F77–F7F	Reserved	—	XX	
Low Power Con	trol			
F80	Power control 0	PWRCTL0	88	32
F81	Reserved	_	XX	
LED Controller				
F82	LED drive enable	LEDEN	00	51
F83	LED drive level high	LEDLVLH	00	51
F84	LED drive level low	LEDLVLL	00	52
F85	Reserved	_	XX	
Oscillator Contr	ol			
F86	Oscillator control	OSCCTL	A0	154
F87–F8F	Reserved	—	XX	
Comparator 0				
F90	Comparator 0 control	CMP0	14	107
F91–FBF	Reserved	_	XX	
Interrupt Contro	bller			
FC0	Interrupt request 0	IRQ0	00	58
FC1	IRQ0 enable high bit	IRQ0ENH	00	61
FC2	IRQ0 enable low Bit	IRQ0ENL	00	61
FC3	Interrupt request 1	IRQ1	00	59
FC4	IRQ1 enable high bit	IRQ1ENH	00	62
FC5	IRQ1 enable low bit	IRQ1ENL	00	63
FC6	Interrupt request 2	IRQ2	00	60
FC7	IRQ2 enable high bit	IRQ2ENH	00	64
FC8	IRQ2 enable low bit	IRQ2ENL	00	64
FC9–FCC	Reserved	—	XX	
FCD	Interrupt edge select	IRQES	00	66

Table 8. Register File Address Map (Continued)

Note: XX = Undefined.

Port A–D Control Registers

The Port A–D Control registers, shown in Table 20, set the GPIO port operation. The value in the corresponding Port A–D Address Register determines which subregister is read from or written to by a Port A–D Control Register transaction.

Bit	7	6	5	4	3	2	1	0
Field		PCTL						
RESET	00H							
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Address	FD1H, FD5H, FD9H, FDDH							

Table 20	. Port A-D	Control	Registers	(PxCTL)
----------	------------	---------	-----------	---------

Bit	Description
[7:0]	Port Control
PCTL	The Port Control Register provides access to all subregisters that configure the GPIO port operation.

Port A–D Data Direction Subregisters

The Port A–D Data Direction Subregister, shown in Table 21, is accessed through the Port A–D Control Register by writing 01H to the Port A–D Address Register.

Bit	7	6	5	4	3	2	1	0
Field	DD7	DD6	DD5	DD4	DD3	DD2	DD1	DD0
RESET	1	1	1	1	1	1	1	1
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Address	If 01H ir	If 01H in Port A–D Address Register, accessible through the Port A–D Control Register						

Table 21. Port A–D Data Direction Subregisters (PxDD)

Description
Data Direction
 These bits control the direction of the associated port pin. Port Alternate Function operation overrides the Data Direction Register setting. 0 = Output. Data in the Port A–D Output Data Register is driven onto the port pin. 1 = Input. The port pin is sampled and the value written into the Port A–D Input Data Register The output driver is tristated.

Note: x indicates the specific GPIO port pin number (7–0).

Port A–D High Drive Enable Subregisters

The Port A–D High Drive Enable Subregister, shown in Table 24, is accessed through the Port A–D Control Register by writing 04H to the Port A–D Address Register. Setting the bits in the Port A–D High Drive Enable subregisters to 1 configures the specified port pins for high-output current drive operation. The Port A–D High Drive Enable Subregister affects the pins directly and, as a result, alternate functions are also affected.

Table 24. Port A–D High Drive Enable Subregisters (PxHDE)

Bit	7	6	5	4	3	2	1	0
Field	PHDE7	PHDE6	PHDE5	PHDE4	PHDE3	PHDE2	PHDE1	PHDE0
RESET	0	0	0	0	0	0	0	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Address	If 04H in Port A–D Address Register, accessible through the Port A–D Control Register							

Bit Description

[7:0] Port High Drive Enable
 PHDEx 0 = The port pin is configured for standard output current drive.
 1 = The port pin is configured for high output current drive.

Note: x indicates the specific GPIO port pin number (7–0).

Table 45. IRQ2 Enable High Bit Register (IRQ2ENH)

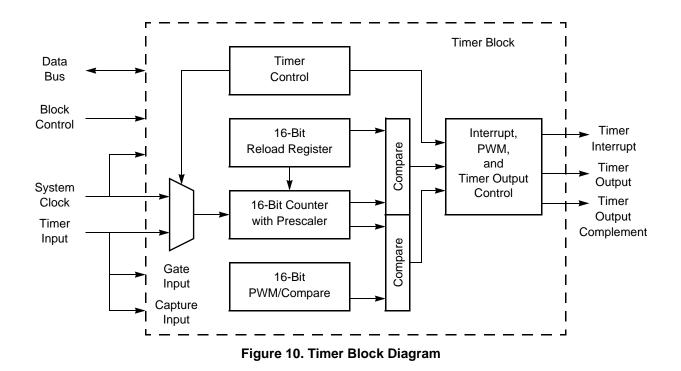
Bit	7	6	5	4	3	2	1	0
Field		Rese	erved		C3ENH	C2ENH	C1ENH	C0ENH
RESET	0	0	0	0	0	0	0	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Address	FC7H							

Bit	Description
[7:4]	Reserved These registers are reserved and must be programmed to 0000.
[3] C3ENH	Port C3 Interrupt Request Enable High Bit
[2] C2ENH	Port C2 Interrupt Request Enable High Bit
[1] C1ENH	Port C1 Interrupt Request Enable High Bit
[0] C0ENH	Port C0 Interrupt Request Enable High Bit

Table 46. IRQ2 Enable Low Bit Register (IRQ2ENL)

Bit	7	6	5	4	3	2	1	0		
Field		Rese	erved		C3ENL	C2ENL	C1ENL	C0ENL		
RESET	0	0	0	0	0	0	0	0		
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Address	FC8H									

Bit	Description
[7:4]	Reserved These registers are reserved and must be programmed to 0000.
[3] C3ENL	Port C3 Interrupt Request Enable Low Bit
[2] C2ENL	Port C2 Interrupt Request Enable Low Bit
[1] C1ENL	Port C1 Interrupt Request Enable Low Bit
[0] COENL	Port C0 Interrupt Request Enable Low Bit


Interrupt Control Register

The Interrupt Control (IRQCTL) Register, shown in Table 49, contains the master enable bit for all interrupts.

Bit	7	6	5	4	3	2	1	0		
Field	IRQE		Reserved							
RESET	0	0	0	0	0	0	0	0		
R/W	R/W	R	R	R	R	R	R	R		
Address		FCFH								

Table 49. Interrupt Control Register (IRQCTL)

Bit	Description
[7] IRQE	 Interrupt Request Enable This bit is set to 1 by executing an Enable Interrupts (EI) or Interrupt Return (IRET) instruction or by a direct register write of 1 to this bit. It is reset to 0 by executing a DI instruction, eZ8 CPU acknowledgement of an interrupt request, reset, or by a direct register write of a 0 to this bit. 0 = Interrupts are disabled. 1 = Interrupts are enabled.
[6:0]	Reserved These registers are reserved and must be programmed to 0000000.

Operation

The timers are 16-bit up-counters. Minimum time-out delay is set by loading the value 0001H into the Timer Reload High and Low Byte registers and setting the prescale value to 1. Maximum time-out delay is set by loading the value 0000H into the Timer Reload High and Low Byte registers and setting the prescale value to 128. If the Timer reaches FFFFH, the timer resets back to 0000H and continues counting.

Timer Operating Modes

The timers can be configured to operate in the following modes:

ONE-SHOT Mode

In ONE-SHOT Mode, the timer counts up to the 16-bit reload value stored in the Timer Reload High and Low Byte registers. The timer input is the system clock. Upon reaching the reload value, the timer generates an interrupt and the count value in the Timer High and Low Byte registers is reset to 0001H. The timer is automatically disabled and stops counting.

Additionally, if the timer output alternate function is enabled, the timer output pin changes state for one system clock cycle (from Low to High or from High to Low) upon timer

Bit	Description
[7:0]	Timer High and Low Bytes
TH, TL	These 2 bytes, {TH[7:0], TL[7:0]}, contain the current 16-bit timer count value.

Bit Description (Continued)

[6] Timer Input/Output Polarity

TPOL Operation of this bit is a function of the current operating mode of the timer.

ONE-SHOT Mode

When the timer is disabled, the timer output signal is set to the value of this bit. When the timer is enabled, the timer output signal is complemented on timer reload.

CONTINUOUS Mode

When the timer is disabled, the timer output signal is set to the value of this bit. When the timer is enabled and reloaded, the timer output signal is complemented.

COUNTER Mode

If the timer is disabled, the timer output signal is set to the value of this bit. If the timer is enabled the timer output signal is complemented after timer reload.

- 0 = Count occurs on the rising edge of the timer input signal.
- 1 = Count occurs on the falling edge of the timer input signal.

PWM SINGLE OUTPUT Mode

- 0 = Timer output is forced Low (0), when the timer is disabled. The timer output is forced High (1) when the timer is enabled and the PWM count matches and the timer output is forced Low (0) when the timer is enabled and reloaded.
- 1 = Timer output is forced High (1), when the timer is disabled. The timer output is forced low(0), when the timer is enabled and the PWM count matches and forced High (1) when the timer is enabled and reloaded.

CAPTURE Mode

- 0 = Count is captured on the rising edge of the timer input signal.
- 1 = Count is captured on the falling edge of the timer input signal.

COMPARE Mode

When the timer is disabled, the timer output signal is set to the value of this bit. When the timer is enabled and reloaded, the timer output signal is complemented.

GATED Mode

- 0 = Timer counts when the timer input signal is High (1) and interrupts are generated on the falling edge of the timer input.
- 1 = Timer counts when the timer input signal is Low (0) and interrupts are generated on the rising edge of the timer input.

CAPTURE/COMPARE Mode

- 0 = Counting is started on the first rising edge of the timer input signal. The current count is captured on subsequent rising edges of the timer input signal.
- 1 = Counting is started on the first falling edge of the timer input signal. The current count is captured on subsequent falling edges of the timer input signal.

Bit	Description (Continued)
[6] TPOL (cont'd)	 PWM DUAL OUTPUT Mode 0 = Timer output is forced Low (0) and timer output complement is forced High (1), when the timer is disabled. When enabled and the PWM count matches, the timer output is forced High (1) and forced Low (0) when enabled and reloaded. When enabled and the PWM count matches, the timer output complement is forced Low (0) and forced High (1) when enabled and reloaded. 1 = Timer output is forced High (1) and timer output complement is forced Low (0) when the timer is disabled. When enabled and the PWM count matches, the timer output is forced Low (0) when the timer is disabled. When enabled and the PWM count matches, the timer output is forced Low (0) and forced High (1) when enabled and reloaded. Use (0) and forced High (1) when enabled and reloaded. The PWMD field in the TxCTL0 register determines an optional added delay on the assertion (Low to High) transition of both timer output and timer output complement for deadband generation. CAPTURE RESTART Mode 0 = Count is captured on the rising edge of the timer input signal.
	 1 = Count is captured on the falling edge of the timer input signal. COMPARATOR COUNTER Mode When the timer is disabled, the timer output signal is set to the value of this bit. When the timer is enabled, the timer output signal is complemented on timer reload.
	Caution: When the timer output alternate function TxOUT on a GPIO port pin is enabled, TxOUT will change to whatever state the TPOL bit is in. The timer does not need to be enabled for that to happen. Additionally, the port data direction sub register is not needed to be set to output on TxOUT. Changing the TPOL bit when the timer is enabled and running does not immediately change the polarity TxOUT.
[5:3] PRES	Prescale Value The timer input clock is divided by 2 ^{PRES} , where PRES can be set from 0 to 7. The prescaler is reset each time the timer is disabled. This reset ensures proper clock division each time the timer is restarted. 000 = Divide by 1. 001 = Divide by 2. 010 = Divide by 4. 011 = Divide by 8. 100 = Divide by 16. 101 = Divide by 32. 110 = Divide by 64. 111 = Divide by 128.

Bit	Description (Continued)
[2:0]	Timer Mode
TMODE	This field along with the TMODEHI bit in TxCTL0 register determines the operating mode of
	the timer. TMODEHI is the most significant bit of the timer mode selection value.
	0000 = ONE-SHOT Mode.
	0001 = CONTINUOUS Mode.
	0010 = COUNTER Mode.
	0011 = PWM SINGLE OUTPUT Mode.
	0100 = CAPTURE Mode.
	0101 = COMPARE Mode.
	0110 = GATED Mode.
	0111 = CAPTURE/COMPARE Mode.
	1000 = PWM DUAL OUTPUT Mode.
	1001 = CAPTURE RESTART Mode.
	1010 = COMPARATOR COUNTER Mode.

Flash Memory

The products in the Z8 Encore! F0830 Series features either 1KB (1024 bytes with NVDS), 2KB (2048 bytes with NVDS), 4KB (4096 bytes with NVDS), 8KB (8192 bytes with NVDS) or 12KB (12288 bytes with no NVDS) of nonvolatile Flash memory with read/write/erase capability. Flash memory can be programmed and erased in-circuit by either user code or through the On-Chip Debugger.

The Flash memory array is arranged in pages with 512 bytes per page. The 512-byte page is the minimum Flash block size that can be erased. Each page is divided into eight rows of 64 bytes.

For program/data protection, Flash memory is also divided into sectors. In the Z8 Encore! F0830 Series, each sector maps to one page (for 1KB, 2KB and 4KB devices), two pages (8KB device) or three pages (12KB device).

The first two bytes of Flash program memory is used as Flash option bits. For more information, see *the* <u>Flash Option Bits</u> chapter on page 124.

Table 69 lists the Flash memory configuration for each device in the Z8 Encore! F0830 Series. Figures 14 through 18 display the memory arrangements for each Flash memory size.

Part Number	Flash Size KB (Bytes)	Flash Pages	Program Memory Addresses	Flash Sector Size (bytes)
Z8F123x	12 (12,288)	24	0000H–2FFFH	1536
Z8F083x	8 (8196)	16	0000H-1FFFH	1024
Z8F043x	4 (4096)	8	0000H–0FFFH	512
Z8F023x	2 (2048)	4	0000H–07FFH	512
Z8F013x	1 (1024)	2	0000H-03FFH	512

Figure 14. 1K Flash with NVDS

 ⁰³FFH
 03FFH
 03FFH

 0200H
 Sector 1
 Page 1
 0200H

 01FFH
 Sector 0
 Page 0
 01FFH

 0000H
 0000H
 0000H
 0000H

Bit	Description (Continued)
[4] POFEN	 Primary Oscillator Failure Detection Enable 1 = Failure detection and recovery of primary oscillator is enabled. 0 = Failure detection and recovery of primary oscillator is disabled.
[3] WDFEN	Watchdog Timer Oscillator Failure Detection Enable 1 = Failure detection of Watchdog Timer Oscillator is enabled. 0 = Failure detection of Watchdog Timer Oscillator is disabled.
[2:0] SCKSEL	System Clock Oscillator Select 000 = Internal Precision Oscillator functions as system clock at 5.53MHz. 001 = Internal Precision Oscillator functions as system clock at 32 kHz. 010 = Crystal oscillator or external RC oscillator functions as system clock. 011 = Watchdog Timer Oscillator functions as system clock. 100 = External clock signal on PB3 functions as system clock. 101 = Reserved. 110 = Reserved. 111 = Reserved.

AC Characteristics

The section provides information about the AC characteristics and timing. All AC timing information assumes a standard load of 50pF on all outputs.

		V _{DD} = 2.7 to 3.6V T _A = 0°C to +70°C		V _{DD} = 2.7 to 3.6V T _A = -40°C to +105°C				
Symbol	Parameter	Min	in Max Min Max U		Units	Conditions		
F _{SYSCLK}	System Clock Fre- quency			-	20.0	MHz	Read-only from Flash memory	
				0.03276 8	20.0	MHz	Program or erasure of the Flash memory	
F _{XTAL}	Crystal Oscillator Frequency			1.0	20.0	MHz	System clock frequen- cies below the crystal oscillator minimum require an external	
F _{IPO}	Internal Precision Oscillator Frequency			0.03276 8	5.5296	MHz	Oscillator is not adjust- able over the entire range. User may select Min or Max value only.	
F _{IPO}	Internal Precision Oscillator Frequency			5.31	5.75	MHz	High speed with trim- ming	
F _{IPO}	Internal Precision Oscillator Frequency			4.15	6.91	MHz	High speed without trimming	
F _{IPO}	Internal Precision Oscillator Frequency			30.7	33.3	KHz	Low speed with trim- ming	
F _{IPO}	Internal Precision Oscillator Frequency			24	40	KHz	Low speed without trimming	
T _{XIN}	System Clock Period			50	-	ns	T _{CLK} = 1/F _{sysclk}	
T _{XINH}	System Clock High Time			20	30	ns	T _{CLK} = 50 ns	
T _{XINL}	System Clock Low Time			20	30	ns	T _{CLK} = 50 ns	

Table 117. AC Characteristics

		T _A = 0°C to +70°C			T _A = -40°C to +105°C					
Symbol	Parameter	Min	Тур	Max	Min	Typ ¹	Max	Units	Conditions	
T _{POR}	Power-On Reset Digital Delay				TBD	13	TBD	μs	66 Internal Preci- sion Oscillator cycles	
T _{POR}	Power-On Reset Digital Delay				TBD	8	TBD	ms	5000 Internal Pre- cision Oscillator cycles	
T _{SMR}	Stop Mode Recovery with crystal oscillator disabled				TBD	13	TBD	μs	66 Internal Preci- sion Oscillator cycles	
T _{SMR}	Stop Mode Recovery with crystal oscillator enabled				TBD	8	TBD	ms	5000 Internal Pre- cision Oscillator cycles	
T _{VBO}	Voltage Brown-Out Pulse Rejection Period				_	10	_	μs	V _{DD} < V _{VBO} to gen erate a Reset.	
T _{RAMP}	Time for V_{DD} to transition from V_{SS} to V_{POR} to ensure valid Reset				0.10	_	100	ms		

Table 118. Power-On Reset and Voltage Brown-Out Electrical Characteristics and Timing

ance only and are not tested in production.

Ordering Information

Order your F0830 Series products from Zilog using the part numbers shown in Table 128. For more information about ordering, please consult your local Zilog sales office. The <u>Sales Location page</u> on the Zilog website lists all regional offices.

				ADC	-
Part Number	Flash	RAM	NVDS	-	Description
Z8 Encore! F0830 Ser	ries MCUs wi	ith 12KB F	lash		
Standard Temperatur	e: 0°C to 70°	°C			
Z8F1232SH020SG	12KB	256	No	7	SOIC 20-pin
Z8F1232HH020SG	12KB	256	No	7	SSOP 20-pin
Z8F1232PH020SG	12KB	256	No	7	PDIP 20-pin
Z8F1232QH020SG	12KB	256	No	7	QFN 20-pin
Z8F1233SH020SG	12KB	256	No	0	SOIC 20-pin
Z8F1233HH020SG	12KB	256	No	0	SSOP 20-pin
Z8F1233PH020SG	12KB	256	No	0	PDIP 20-pin
Z8F1233QH020SG	12KB	256	No	0	QFN 20-pin
Z8F1232SJ020SG	12KB	256	No	8	SOIC 28-pin
Z8F1232HJ020SG	12KB	256	No	8	SSOP 28-pin
Z8F1232PJ020SG	12KB	256	No	8	PDIP 28-pin
Z8F1232QJ020SG	12KB	256	No	8	QFN 28-pin
Z8F1233SJ020SG	12KB	256	No	0	SOIC 28-pin
Z8F1233HJ020SG	12KB	256	No	0	SSOP 28-pin
Z8F1233PJ020SG	12KB	256	No	0	PDIP 28-pin
Z8F1233QJ020SG	12KB	256	No	0	QFN 28-pin
Extended Temperatu	re: –40°C to	105°C			
Z8F1232SH020EG	12KB	256	No	7	SOIC 20-pin
Z8F1232HH020EG	12KB	256	No	7	SSOP 20-pin
Z8F1232PH020EG	12KB	256	No	7	PDIP 20-pin
Z8F1232QH020EG	12KB	256	No	7	QFN 20-pin
Z8F1233SH020EG	12KB	256	No	0	SOIC 20-pin
Z8F1233HH020EG	12KB	256	No	0	SSOP 20-pin
Z8F1233PH020EG	12KB	256	No	0	PDIP 20-pin

Table 128. Z8 Encore! XP F0830 Series Ordering Matrix

Hex Address: FD7

Bit	7	6	5	4	3	2	1	0		
Field	POUT7	POUT6	POUT5	POUT4	POUT3	POUT2	POUT1	POUT0		
RESET	0	0	0	0	0	0	0	0		
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Address		FD7H								

Table 176. Port B Output Data Register (PBOUT)

Hex Address: FD8

Table 177. Port C GPIO Address Register (PCADDR)

Bit	7	6	5	4	3	2	1	0	
Field	PADDR[7:0]								
RESET	00H								
R/W	R/W	R/W R/W R/W R/W R/W R/W R/W							
Address	FD8H								

Hex Address: FD9

Table 178. Port C Control Registers (PCCTL)

Bit	7	6	5	4	3	2	1	0	
Field	PCTL								
RESET	00H								
R/W	R/W	R/W R/W R/W R/W R/W R/W							
Address	FD9H								

Hex Address: FDA

Table 179. Port C Input Data Registers (PCIN)

Bit	7	6	5	4	3	2	1	0	
Field	PIN7	PIN6	PIN5	PIN4	PIN3	PIN2	PIN1	PIN0	
RESET	Х	Х	Х	Х	Х	Х	Х	Х	
R/W	R	R	R	R	R	R	R	R	
Address	FDAH								

Hex Address: FFB

Table 196. Flash Frequency Low Byte Register (FFREQL)

Bit	7	6	5	4	3	2	1	0		
Field	FFREQL									
RESET	0									
R/W	R/W									
Address				FF	BH					