E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	eZ8
Core Size	8-Bit
Speed	20MHz
Connectivity	-
Peripherals	Brown-out Detect/Reset, LED, POR, PWM, WDT
Number of I/O	17
Program Memory Size	8KB (8K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 3.6V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SOIC (0.295", 7.50mm Width)
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/zilog/z8f0831sh020eg

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Warning: DO NOT USE THIS PRODUCT IN LIFE SUPPORT SYSTEMS.

LIFE SUPPORT POLICY

ZILOG'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS PRIOR WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF ZILOG CORPORATION.

As used herein

Life support devices or systems are devices which (a) are intended for surgical implant into the body or (b) support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in a significant injury to the user. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system or to affect its safety or effectiveness.

Document Disclaimer

©2012 Zilog, Inc. All rights reserved. Information in this publication concerning the devices, applications or technology described is intended to suggest possible uses and may be superseded. ZILOG, INC. DOES NOT ASSUME LIABILITY FOR OR PROVIDE A REPRESENTATION OF ACCURACY OF THE INFORMATION, DEVICES or TECHNOLOGY DESCRIBED IN THIS DOCUMENT. ZILOG ALSO DOES NOT ASSUME LIABILITY FOR INTELLECTUAL PROPERTY INFRINGEMENT RELATED IN ANY MANNER TO USE OF INFORMATION, DEVICES or TECHNOLOGY DESCRIBED HEREIN OR OTHERWISE. The information contained within this document has been verified according to the general principles of electrical and mechanical engineering.

Z8, Z8 Encore! and Z8 Encore! XP are trademarks or registered trademarks of Zilog, Inc. All other product or service names are the property of their respective owners.

х

List of Figures

Figure 1.	Z8 Encore! F0830 Series Block Diagram
Figure 2.	Z8F0830 Series in 20-Pin SOIC, SSOP, PDIP Package
Figure 3.	Z8F0830 Series in 28-Pin SOIC, SSOP, PDIP Package
Figure 4.	Z8F0830 Series in 20-Pin QFN Package
Figure 5.	Z8F0830 Series in 28-Pin QFN Package 10
Figure 6.	Power-On Reset Operation
Figure 7.	Voltage Brown-Out Reset Operation
Figure 8.	GPIO Port Pin Block Diagram
Figure 9.	Interrupt Controller Block Diagram
Figure 10.	Timer Block Diagram 69
Figure 11.	Analog-to-Digital Converter Block Diagram
Figure 12.	ADC Timing Diagram
Figure 13.	ADC Convert Timing
Figure 14.	1K Flash with NVDS 108
Figure 15.	2K Flash with NVDS 109
Figure 16.	4K Flash with NVDS 109
Figure 17.	8K Flash with NVDS 110
Figure 18.	12K Flash without NVDS
Figure 19.	Flash Controller Operation Flow Chart
Figure 20.	On-Chip Debugger Block Diagram
Figure 21.	Interfacing the On-Chip Debugger's DBG Pin with an RS-232 Interface, #1 of 2
Figure 22.	Interfacing the On-Chip Debugger's DBG Pin with an RS-232 Interface, #2 of 2
Figure 23.	OCD Data Format
Figure 24.	Oscillator Control Clock Switching Flow Chart 156
Figure 25.	Recommended 20MHz Crystal Oscillator Configuration 158
Figure 26.	Connecting the On-Chip Oscillator to an External RC Network 159

Z8 Encore![®] F0830 Series Product Specification

Table 89.	Trim Option Bits at 0006H (TCLKFLT) 132
Table 90.	ClkFlt Delay Control Definition
Table 91.	Write Status Byte 135
Table 92.	Read Status Byte
Table 93.	NVDS Read Time
Table 94.	OCD Baud-Rate Limits
Table 95.	On-Chip Debugger Command Summary 144
Table 96.	OCD Control Register (OCDCTL) 149
Table 97.	OCD Status Register (OCDSTAT) 150
Table 98.	Oscillator Configuration and Selection 152
Table 99.	Oscillator Control Register (OSCCTL) 154
Table 100.	Recommended Crystal Oscillator Specifications 158
Table 101.	Assembly Language Syntax Example 1 163
Table 102.	Assembly Language Syntax Example 2 164
Table 103.	Notational Shorthand
Table 104.	Additional Symbols 165
Table 105.	Arithmetic Instructions
Table 106.	Bit Manipulation Instructions 167
Table 107.	Block Transfer Instructions
Table 108.	CPU Control Instructions
Table 109.	Load Instructions
Table 110.	Rotate and Shift Instructions
Table 111.	Logical Instructions
Table 112.	Program Control Instructions 169
Table 113.	eZ8 CPU Instruction Summary 171
Table 114.	Op Code Map Abbreviations
Table 115.	Absolute Maximum Ratings
Table 116.	DC Characteristics
Table 117.	AC Characteristics
Table 118.	Power-On Reset and Voltage Brown-Out Electrical Characteristics and Tim- ing 190

Signal Descriptions

Table 4 describes the Z8 Encore! F0830 Series signals. See the <u>Pin Configurations</u> section on page 7 to determine the signals available for each specific package style.

Signal Mnemonic	I/O	Description
General-Purpose I/C) Ports	A–D
PA[7:0]	I/O	Port A. These pins are used for general purpose I/O.
PB[7:0]	I/O	Port B. These pins are used for general purpose I/O. PB6 and PB7 are available only in those devices without an ADC.
PC[7:0]	I/O	Port C. These pins are used for general purpose I/O.
PD[0]	I/O	Port D. This pin is used for general purpose output only.
Note: PB6 and PB7 ar placed by AV _{DD}	e only av and AV _S	vailable in 28-pin packages without ADC. In 28-pin packages with ADC, they are re-
Timers		
T0OUT/T1OUT	0	Timer output 0–1. These signals are the output from the timers.
T0OUT/T1OUT	0	Timer complement output 0–1. These signals are output from the timers in PWM DUAL OUTPUT Mode.
T0IN/T1IN	I	Timer Input 0–1. These signals are used as the capture, gating and counter inputs. The T0IN signal is multiplexed T0OUT signals.
Comparator		
CINP/CINN	I	Comparator inputs. These signals are the positive and negative inputs to the comparator.
COUT	0	Comparator output. This is the output of the comparator.
Analog		
ANA[7:0]	I	Analog port. These signals are used as inputs to the analog-to-digital converter (ADC).
V _{REF}	I/O	Analog-to-digital converter reference voltage input.
		Note: When configuring ADC using external V_{REF} PB5 is used as V_{REF} in 28-pin package.
Note: The AV _{DD} and A and PB7 on 28-p	V _{SS} sigr bin packa	nals are available only in the 28-pin packages with ADC. They are replaced by PB6 ages without ADC.

Table 4. Signal Descriptions

29

Table 12. Reset Status Register (RSTSTA	.T)
---	------------

Bit	7	6	5	4	3	2	1	0
Field	POR	STOP	WDT EXT Reserved					
RESET	5	See Table 13	3	0	0	0	0	0
R/W	R	R	R	R	R	R	R	R
Address				FF	0H			
Bit	Description	n						
[7] POR	Power-On Reset Indicator This bit is set to 1 if a Power-On Reset event occurs and is reset to 0, if a WDT time-out or Stop Mode Recovery occurs. Reading this register also reset this bit to 0.							
[6] STOP	Stop Mode Recovery Indicator This bit is set to 1 if a Stop Mode Recovery occurs. If the STOP and WDT bits are both set to 1, the Stop Mode Recovery occurs because of a WDT time-out. If the STOP bit is 1 and the WDT bit is 0, the Stop Mode Recovery is not caused by a WDT time-out. This bit is reset by a Power-On Reset or a WDT time-out that occurred while not in STOP Mode. Reading this register also resets this bit.							
[5] WDT	Watchdog Timer Time-Out Indicator This bit is set to 1 if a WDT time-out occurs. A Power-On Reset resets this pin. A Stop Mode Recovery from a change in an input pin also resets this bit. Reading this register resets this bit. This read must occur before clearing the WDT interrupt.							
[4] EXT	External Reset Indicator If this bit is set to 1, a reset initiated by the external RESET pin occurred. A Power-On Reset or a Stop Mode Recovery from a change in an input pin resets this bit. Reading this register resets this bit.					n Reset or gister		
[3:0]	Reserved These regis	sters are res	erved and n	nust be prog	rammed to (0000.		

Table 13. POR Indicator Values

Reset or Stop Mode Recovery Event	POR	STOP	WDT	EXT
Power-On Reset	1	0	0	0
Reset using RESET pin assertion	0	0	0	1
Reset using Watchdog Timer time-out	0	0	1	0
Reset using the On-Chip Debugger (OCTCTL[1] set to 1)	1	0	0	0
Reset from STOP Mode using DBG pin driven Low	1	0	0	0
Stop Mode Recovery using GPIO pin transition	0	1	0	0
Stop Mode Recovery using WDT time-out	0	1	1	0

Low-Power Modes

The Z8 Encore! F0830 Series products contain power saving features. The highest level of power reduction is provided by the STOP Mode. The next level of power reduction is provided by the HALT Mode.

Further power savings can be implemented by disabling the individual peripheral blocks while in NORMAL Mode.

The user must not enable the pull-up register bits for unused GPIO pins, since these ports are default output to VSS. Unused GPIOs include those missing on 20-pin packages, as well as those missing on the ADC-enabled 28-pin packages.

STOP Mode

Executing the eZ8 CPU's STOP instruction places the device into STOP Mode. In STOP Mode, the operating characteristics are:

- Primary crystal oscillator and Internal Precision Oscillator are stopped; XIN and XOUT (if previously enabled) are disabled and PA0/PA1 revert to the states programmed by the GPIO registers
- System clock is stopped
- eZ8 CPU is stopped
- Program counter (PC) stops incrementing
- Watchdog Timer's internal RC oscillator continues to operate if enabled by the Oscillator Control Register
- If enabled, the Watchdog Timer logic continues to operate
- If enabled for operation in STOP Mode by the associated Flash option bit, the Voltage Brown-Out protection circuit continues to operate
- All other on-chip peripherals are idle

To minimize the current in STOP Mode, all GPIO pins that are configured as digital inputs must be driven to V_{DD} when the pull-up register bit is enabled or to one of power rail (V_{DD} or GND) when the pull-up register bit is disabled. The device can be brought out of STOP Mode using Stop Mode Recovery. For more information about Stop Mode Recovery, see *the* <u>Reset and Stop Mode Recovery</u> *chapter on page 21*.

Port A–D Alternate Function Set 2 Subregisters

The Port A–D Alternate Function Set 2 Subregister, shown in Table 28, is accessed through the Port A–D Control Register by writing 08H to the Port A–D Address Register. The Alternate Function Set 2 subregisters select the alternate function available at a port pin. Alternate functions selected by setting or clearing bits in this register are defined in Table 16 in the <u>GPIO Alternate Functions</u> section on page 34.

Note: Alternate function selection on the port pins must also be enabled, as described in the <u>Port</u> <u>A–D Alternate Function Subregisters</u> section on page 42.

Bit	7	6	5	4	3	2	1	0
Field	PAFS27	PAFS26	PAFS25	PAFS24	PAFS23	PAFS22	PAFS21	PAFS20
RESET	0	0	0	0	0	0	0	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Address	If 08H ir	n Port A–D A	Address Reg	gister, acces	sible throug	h the Port A	–D Control F	Register

Table 28. Port A–D Alternate Function Set 2 Subregisters (PxAFS2)

Bit Description

[7:0] Port Alternate Function Set 2

PAFS2x 0 = The Port Alternate function is selected, as defined in Table 16 in the <u>GPIO Alternate Func-</u> tions section on page 34.

> 1 = The Port Alternate function is selected, as defined in Table 16 in the <u>GPIO Alternate Func-</u> tions section on page 34.

Note: x indicates the specific GPIO port pin number (7–0).

LED Drive Level Low Register

The LED Drive Level Low Register, shown in Table 33, contains two control bits for each Port C pin. These two bits select one of four programmable current drive levels for each Port C pin. Each pin is individually programmable.

Bit	7	6	5	4	3	2	1	0
Field				LEDLV	'LL[7:0]			
RESET	0	0	0	0	0	0	0	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Address				F8	4H			

Table 33. LED Drive Level Low Register (LEDLVLL)

Bit	Description
[7:0]	LED Level Low Bits
LEDLVLL	{LEDLVLH, LEDLVLL} select one of four programmable current drive levels for each Port C pin.
	00 = 3mA.
	01 = 7 mA.
	10 = 13mA.
	11 = 20mA.

Table 39. IRQ0 Enable High Bit Register (IRQ0ENH)

Bit	7	6	5	4	3	2	1	0
Field	Reserved	T1ENH	T0ENH		Rese	erved		ADCENH
RESET	0	0	0	0	0	0	0	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Address		FC1H						

Bit	Description
[7]	Reserved
	This bit is reserved and must be programmed to 0.
[6] T1ENH	Timer 1 Interrupt Request Enable High Bit
[5] T0ENH	Timer 0 Interrupt Request Enable High Bit
[4:1]	Reserved
	These registers are reserved and must be programmed to 0000.
[0] ADCENH	ADC Interrupt Request Enable High Bit

Table 40. IRQ0 Enable Low Bit Register (IRQ0ENL)

Bit	7	6	5	4	3	2	1	0
Field	Reserved	T1ENL	T0ENL		Rese	erved		ADCENL
RESET	0	0	0	0	0	0	0	0
R/W	R	R/W	R/W	R/W	R/W	R	R	R/W
Address				FC	2H			•

Bit	Description
[7]	Reserved
	This bit is reserved and must be programmed to 0.
[6] T1ENL	Timer 1 Interrupt Request Enable Low Bit
[5] T0ENL	Timer 0 Interrupt Request Enable Low Bit
[4:1]	Reserved
	These registers are reserved and must be programmed to 0000.
[0] ADCENL	ADC Interrupt Request Enable Low Bit

PWM SINGLE OUTPUT Mode

In PWM SINGLE OUTPUT Mode, the timer outputs a pulse width modulated (PWM) output signal through a GPIO port pin. The timer input is the system clock. The timer first counts up to 16-bit PWM match value stored in the timer PWM High and Low Byte registers. When the timer count value matches the PWM value, the timer output toggles. The timer continues counting until it reaches the reload value stored in the Timer Reload High and Low Byte registers. Upon reaching the reload value, the timer generates an interrupt, the count value in the Timer High and Low Byte registers is reset to 0001H and counting resumes.

If the TPOL bit in the Timer Control Register is set to 1, the timer output signal begins as a High (1) and transitions to a Low (0) when the timer value matches the PWM value. The timer output signal returns to a High (1) after the timer reaches the reload value and is reset to 0001H.

If the TPOL bit in the Timer Control Register is set to 0, the timer output signal begins as a Low (0) and transitions to a High (1) when the timer value matches the PWM value. The timer output signal returns to a Low (0) after the timer reaches the reload value and is reset to 0001H.

Observe the following steps for configuring a timer for PWM SINGLE OUTPUT Mode and for initiating PWM operation:

- 1. Write to the Timer Control Register to:
 - Disable the timer
 - Configure the timer for PWM Mode
 - Set the prescale value
 - Set the initial logic level (High or Low) and PWM High/Low transition for the timer output alternate function
- 2. Write to the Timer High and Low Byte registers to set the starting count value (typically 0001H). This value only affects the first pass in PWM Mode. After the first timer reset in PWM Mode, counting always begins at the reset value of 0001H.
- 3. Write to the PWM High and Low Byte registers to set the PWM value.
- 4. Write to the Timer Reload High and Low Byte registers to set the reload value (PWM period). The reload value must be greater than the PWM value.
- 5. If appropriate, enable the timer interrupt and set the timer interrupt priority by writing to the relevant interrupt registers.
- 6. Configure the associated GPIO port pin for the timer output alternate function.
- 7. Write to the Timer Control Register to enable the timer and initiate counting.

The PWM period is represented by the following equation:

- 3. Write to the Timer Reload High and Low Byte registers to set the reload value.
- 4. Clear the timer PWM High and Low Byte registers to 0000H. This allows user software to determine if interrupts are generated by either a capture event or a reload. If the PWM High and Low Byte registers still contain 0000H after the interrupt, the interrupt were generated by a reload.
- 5. Enable the timer interrupt, if appropriate and set the timer interrupt priority by writing to the relevant interrupt registers. By default, the timer interrupt is generated for both input capture and Reload events. The user can configure the timer interrupt to be generated only at the input capture event or the reload event by setting the TICONFIG field of the TxCTL1 Register.
- 6. Configure the associated GPIO port pin for the timer input alternate function.
- 7. Write to the Timer Control Register to enable the timer and initiate counting.

In CAPTURE Mode, the elapsed time between the timer start and the capture event can be calculated using the following equation:

Capture Elapsed Time (s) = $\frac{(Capture Value - Start Value) \times Prescale}{System Clock Frequency (Hz)}$

COMPARE Mode

In COMPARE Mode, the timer counts up to 16-bit maximum compare value stored in the Timer Reload High and Low Byte registers. The timer input is the system clock. Upon reaching the compare value, the timer generates an interrupt and counting continues (the timer value is not reset to 0001H). Additionally, if the timer output alternate function is enabled, the timer output pin changes state (from Low to High or from High to Low) upon compare.

If the timer reaches FFFFH, the timer resets to 0000H and continues counting.

Observe the following steps for configuring a timer for COMPARE Mode and for initiating the count:

- 1. Write to the Timer Control Register to:
 - Disable the timer
 - Configure the timer for COMPARE Mode
 - Set the prescale value
 - Set the initial logic level (High or Low) for the timer output alternate function
- 2. Write to the Timer High and Low Byte registers to set the starting count value.
- 3. Write to the Timer Reload High and Low Byte registers to set the compare value.

Comparator Control Register Definitions

The Comparator Control Register (CMP0) configures the comparator inputs and sets the value of the internal voltage reference. The GPIO pin is always used as positive comparator input.

Bit	7	6	5	4	3	2	1	0	
Field	Reserved	INNSEL		REFLVL Reserver					
RESET	0	0	0	1	0	1	0	0	
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Address		I		F9	0H	I			
Bit	Descriptio	Description							
[7]	Reserved This bit is re	Reserved This bit is reserved and must be programmed to 0.							
[6] INNSEL	Signal Select for Negative Input 0 = internal reference disabled, GPIO pin used as negative comparator input. 1 = internal reference enabled as negative comparator input.								
[5:2] REFLVL	1 = internal reference enabled as negative comparator input.Internal Reference Voltage LevelThis reference is independent of the ADC voltage reference. $0000 = 0.0V.$ $0001 = 0.2V.$ $0010 = 0.4V.$ $0011 = 0.6V.$ $0101 = 1.0V$ (Default). $0110 = 1.2V.$ $0111 = 1.4V.$ $1000 = 1.6V.$ $1001 = 1.8V.$ $1010 = 1.8V.$								
[1:0]	Reserved These bits a	are reserved	l and must b	e programn	ned to 00.				

Table 68. Comparator Control Register (CMP0)

Flash Status Register

The Flash Status Register indicates the current state of the Flash Controller. This register can be read at any time. The read-only Flash Status Register shares its register file address with the write-only Flash Control Register.

Bit	7	6	5	4	3	2	1	0
Field	Reserved		FSTAT					
RESET	0	0	0	0	0	0	0	0
R/W	R	R	R	R	R	R	R	R
Address		FF8H						

Table 73. Flash Status Register (FSTAT)

Bit	Description						
[7:6]	Reserved						
	These bits are reserved and must be programmed to 00.						
[5:0]	Flash Controller Status						
FSTAT	000000 = Flash Controller locked.						
	000001 = First unlock command received (73H written).						
	000010 = Second unlock command received (8CH written).						
	000011 = Flash Controller unlocked.						
	000100 = Sector protect register selected.						
	001xxx = Program operation in progress.						
	010xxx = Page Erase operation in progress.						
	100xxx = Mass Erase operation in progress.						

Note: The bit values used in Table 85 are set at the factory; no calibration is required.

Table 86. Trim Option Bits at 0002H (TIPO)

Bit	7	6	5	4	3	2	1	0
Field		IPO_TRIM						
RESET		U						
R/W				R/	W			
Address		Information Page Memory 0022H						
Note: U =	Unchanged b	by Reset. R/W	/ = Read/Writ	e.				

Bit	Description
[7:0]	Internal Precision Oscillator Trim Byte
IPO_TRIM	Contains trimming bits for the Internal Precision Oscillator.

Note: The bit values used in Table 86 are set at the factory; no calibration is required.

Table 87. Trim Option Bits at 0003H (TVBO)

Bit	7	6	5	4	3	2	1	0	
Field	Reserved				Reserved	VBO_TRIM			
RESET	U				U	1	0	0	
R/W	R/W				R/W	R/W			
Address		Information Page Memory 0023H							
Note: U =	e: U = Unchanged by Reset. R/W = Read/Write.								

Bit	Description
[7:3]	Reserved These bits are reserved and must be programmed to 11111.
[2] VBO_TRIM	VBO Trim Values Contains factory-trimmed values for the oscillator and the VBO.

>

Caution: It is possible to disable the clock failure detection circuitry as well as all functioning clock sources. In this case, the Z8 Encore! F0830 Series device ceases functioning and can only be recovered by power-on-reset.

Oscillator Control Register Definitions

The following section provides the bit definitions for the Oscillator Control Register.

Oscillator Control Register

The Oscillator Control Register (OSCCTL) enables/disables the various oscillator circuits, enables/disables the failure detection/recovery circuitry and selects the primary oscillator, which becomes the system clock.

The Oscillator Control Register must be unlocked before writing. Writing the two step sequence E7H followed by 18H to the Oscillator Control Register unlocks it. The register is locked at successful completion of a register write to the OSCCTL.

Figure 24 displays the oscillator control clock switching flow. See <u>Table 117</u> on page 189 to review the waiting times of various oscillator circuits.

Bit	7	6	5	4	3	2	1	0
Field	INTEN	XTLEN	WDTEN	POFEN	WDFEN		SCKSEL	
RESET	1	0	1	0	0	0	0	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Address				F8	6H			

Table 99.	. Oscillator	Control	Register	(OSCCTL)
-----------	--------------	---------	----------	----------

Bit	Description
[7]	Internal Precision Oscillator Enable
INTEN	1 = Internal Precision Oscillator is enabled.
	0 = Internal Precision Oscillator is disabled.
[6]	Crystal Oscillator Enable
XTLEN	This setting overrides the GPIO register control for PA0 and PA1.
	1 = Crystal oscillator is enabled.
	0 = Crystal oscillator is disabled.
[5]	Watchdog Timer Oscillator Enable
WDTEN	1 = Watchdog Timer Oscillator is enabled.
	0 = Watchdog Timer Oscillator is disabled.

Oscillator Operation with an External RC Network

Figure 26 displays a recommended configuration for connection with an external resistorcapacitor (RC) network.

Figure 26. Connecting the On-Chip Oscillator to an External RC Network

An external resistance value of $45 \text{ k}\Omega$ is recommended for oscillator operation with an external RC network. The minimum resistance value to ensure operation is $40 \text{ k}\Omega$. The typical oscillator frequency can be estimated from the values of the resistor (R in k Ω) and capacitor (C in pF) elements using the following equation:

Oscillator Frequency (kHz) = $\frac{1 \times 10^{6}}{(0.4 \times R \times C) + (4 \times C)}$

Figure 27 displays the typical (3.3V and 25°C) oscillator frequency as a function of the capacitor (C in pF) employed in the RC network assuming a 45 k Ω external resistor. For very small values of C, the parasitic capacitance of the oscillator X_{IN} pin and the printed circuit board should be included in the estimation of the oscillator frequency.

It is possible to operate the RC oscillator using only the parasitic capacitance of the package and printed circuit board. To minimize sensitivity to external parasitics, external capacitance values in excess of 20pF are recommended. 159

Example 2

In general, when an instruction format requires an 8-bit register address, the address can specify any register location in the range 0–255 or, using escaped mode addressing, a working register R0–R15. If the contents of register 43H and working register R8 are added and the result is stored in 43H, the assembly syntax and resulting object code is:

Table 102. Assembly Language Syntax Example 2

Assembly Language Code	ADD	43Н,	R8	(ADD dst, s	src)
Object Code	04	E8	43	(OPC src, o	dst)

See the device specific product specification to determine the exact register file range available. The register file size varies, depending on the device type.

eZ8 CPU Instruction Notation

In the eZ8 CPU instruction summary and description sections, the operands, condition codes, status flags and address modes are represented by the notational shorthand listed in Table 103.

Notation	Description	Operand	Range
b	Bit	b	b represents a value from 0 to 7 (000B to 111B).
СС	Condition Code	_	See condition codes overview in the eZ8 CPU User Manual.
DA	Direct Address	Addrs	Addrs. represents a number in the range of 0000H to FFFFH
ER	Extended Addressing Register	Reg	Reg. represents a number in the range of 000H to FFFH
IM	Immediate Data	#Data	Data is a number between 00H to FFH
lr	Indirect Working Register	@Rn	n = 0 –15
IR	Indirect Register	@Reg	Reg. represents a number in the range of 00H to FFH
Irr	Indirect Working Register Pair	@RRp	p = 0, 2, 4, 6, 8, 10, 12 or 14
IRR	Indirect Register Pair	@Reg	Reg. represents an even number in the range 00H to FEH
р	Polarity	р	Polarity is a single bit binary value of either 0B or 1B.
r	Working Register	Rn	n = 0 - 15

Table 103. Notational Shorthand

					• •							
Assembly		Add Mo	lress ode	Op Code(s)			Fla	ags			Fetch	Instr.
Mnemonic	Symbolic Operation	dst	src	(Hex)	С	Ζ	S	۷	D	Н	Cycles	Cycles
POPX dst	dst $\leftarrow @SP$ SP \leftarrow SP + 1	ER		D8	-	-	_	_	_	_	3	2
PUSH src	$SP \leftarrow SP - 1$	R		70	_	_	_	_	_	_	2	2
	$@SP \leftarrow src$	IR		71	_						2	3
		IM		IF70	-						3	2
PUSHX src	$SP \leftarrow SP - 1$ @SP \leftarrow src	ER		C8	-	-	-	_	_	_	3	2
RCF	C ← 0			CF	0	-	_	_	_	_	1	2
RET	$\begin{array}{l} PC \leftarrow @SP \\ SP \leftarrow SP + 2 \end{array}$			AF	-	-	_	-	_	_	1	4
RL dst		R		90	*	*	*	*	_	_	2	2
	C	IR		91	-						2	3
RLC dst		R		10	*	*	*	*	-	_	2	2
	C	IR		11	_						2	3
RR dst		R		E0	*	*	*	*	_	_	2	2
	► D7 D6 D5 D4 D3 D2 D1 D0 ► C	IR		E1							2	3
RRC dst		R		C0	*	*	*	*	_	_	2	2
	► D7 D6 D5 D4 D3 D2 D1 D0 ► C	IR		C1	_						2	3
SBC dst, src	$dst \gets dst - src - C$	r	r	32	*	*	*	*	1	*	2	3
		r	lr	33							2	4
		R	R	34	_						3	3
		R	IR	35	_						3	4
		R	IM	36	_						3	3
		IR	IM	37							3	4
SBCX dst, src	$dst \gets dst - src - C$	ER	ER	38	*	*	*	*	1	*	4	3
		ER	IM	39							4	3
SCF	C ← 1			DF	1	_	_	_	_	_	1	2

Table 113. eZ8 CPU Instruction Summary (Continued)

Note: Flags Notation:

* = Value is a function of the result of the operation.

- = Unaffected.

X = Undefined.

0 = Reset to 0.

1 = Set to 1.

177

		V _{DD} T _A =	= 2.7 to 0°C to +	3.6 V ⊦70°C	V _{DD} = 2.7 to 3.6V T _A = -40°C to +105°C				
Symbol	Parameter	Min	Тур	Max	Min	Тур	Max	Units	Conditions
Z _{IN}	Input Impedance				10			MΩ	
V _{IN}	Input Voltage Range				0		2.0	V	Internal refer- ence
					0		0.9*VD D		External refer- ence
	Conversion Time				11.9			μs	20MHz (ADC Clock)
	Input Bandwidth					500		KHz	
	Wake Up Time					0.02		ms	Internal refer- ence
						10			External refer- ence
	Input Clock Duty				45	50	55		
	Maximum Input Clock Frequency						20	MHz	
Note: ¹ W	hen the input voltage is	lower that	an 20mV.	the conv	/ersion er	ror is out	t of spec.		

Table 122. Analog-to-Digital Converter Electrical Characteristics and Timing (Continued)

		V _{DD} T _A =	= 2.7 to 0°C to +	3.6V ⊦70°C	V _{DD} = 2.7 to 3.6V T _A = -40°C to +105°C				
Symbol	Parameter	Min	Тур	Max	Min	Тур	Мах	Units	Conditions
V _{OS}	Input DC Offset					5		mV	
V _{CREF}	Programmable Internal Reference Voltage Range				0		1.8	V	User-program- mable in 200 mV step
V _{CREF}	Programmable internal reference voltage				0.92	1.0	1.08	V	Default (CMP0[REFLVL] =5H)
T _{PROP}	Propagation delay					100		ns	
V _{HYS}	Input hysteresis					8		mV	

194

207

Table 129 lists the pin count by package.

	Pin C	Count
Package	20	28
PDIP	\checkmark	\checkmark
QFN	\checkmark	\checkmark
SOIC	\checkmark	\checkmark
SSOP	\checkmark	\checkmark

Table 129. Package and Pin Count Description