E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	eZ8
Core Size	8-Bit
Speed	20MHz
Connectivity	-
Peripherals	Brown-out Detect/Reset, LED, POR, PWM, WDT
Number of I/O	17
Program Memory Size	12KB (12K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 3.6V
Data Converters	A/D 7x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SSOP (0.209", 5.30mm Width)
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/zilog/z8f1232hh020eg

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Z8 Encore![®] F0830 Series Product Specification

Table 89.	Trim Option Bits at 0006H (TCLKFLT) 132
Table 90.	ClkFlt Delay Control Definition
Table 91.	Write Status Byte 135
Table 92.	Read Status Byte
Table 93.	NVDS Read Time
Table 94.	OCD Baud-Rate Limits
Table 95.	On-Chip Debugger Command Summary 144
Table 96.	OCD Control Register (OCDCTL) 149
Table 97.	OCD Status Register (OCDSTAT) 150
Table 98.	Oscillator Configuration and Selection 152
Table 99.	Oscillator Control Register (OSCCTL) 154
Table 100.	Recommended Crystal Oscillator Specifications 158
Table 101.	Assembly Language Syntax Example 1 163
Table 102.	Assembly Language Syntax Example 2 164
Table 103.	Notational Shorthand
Table 104.	Additional Symbols 165
Table 105.	Arithmetic Instructions
Table 106.	Bit Manipulation Instructions 167
Table 107.	Block Transfer Instructions
Table 108.	CPU Control Instructions
Table 109.	Load Instructions
Table 110.	Rotate and Shift Instructions 169
Table 111.	Logical Instructions
Table 112.	Program Control Instructions 169
Table 113.	eZ8 CPU Instruction Summary 171
Table 114.	Op Code Map Abbreviations
Table 115.	Absolute Maximum Ratings
Table 116.	DC Characteristics
Table 117.	AC Characteristics
Table 118.	Power-On Reset and Voltage Brown-Out Electrical Characteristics and Tim- ing 190

Address Space

The eZ8 CPU can access the following three distinct address spaces:

- The register file addresses access for the general purpose registers and the eZ8 CPU, peripheral and general purpose I/O port control registers
- The program memory addresses access for all of the memory locations having executable code and/or data
- The data memory addresses access for all of the memory locations containing only the data

The following sections describe these three address spaces. For more information about the eZ8 CPU and its address space, refer to the <u>eZ8 CPU Core User Manual (UM0128)</u>, which is available for download at <u>www.zilog.com</u>.

Register File

The register file address space in the Z8 Encore! MCU is 4KB (4096 bytes). The register file consists of two sections: control registers and general-purpose registers. When instructions are executed, registers defined as *source* are read and registers defined as *destinations* are written. The architecture of the eZ8 CPU allows all general purpose registers to function as accumulators, address pointers, index registers, stack areas or scratch pad memory.

The upper 256 bytes of the 4KB register file address space are reserved for controlling the eZ8 CPU, on-chip peripherals and the I/O ports. These registers are located at addresses from F00H to FFFH. Some of the addresses within the 256B Control Register section are reserved (unavailable). Reading from a reserved register file address returns an undefined value. Writing to reserved register file addresses is not recommended and can produce unpredictable results.

The on-chip RAM always begins at address 000H in the register file address space. The Z8 Encore! F0830 Series devices contain up to 256B of on-chip RAM. Reading from register file addresses outside the available RAM addresses (and not within the Control Register address space), returns an undefined value. Writing to these register file addresses has no effect.

Figure 6. Power-On Reset Operation

Voltage Brown-Out Reset

The devices in the Z8 Encore! F0830 Series provide low Voltage Brown-Out (VBO) protection. The VBO circuit forces the device to the Reset state, when the supply voltage drops below the VBO threshold voltage (unsafe level). While the supply voltage remains below the Power-On Reset threshold voltage (V_{POR}), the VBO circuit holds the device in reset.

After the supply voltage exceeds the Power-On Reset threshold voltage, the device progresses through a full system reset sequence, as described in the POR section. Following Power-On Reset, the POR status bit in the Reset Status (RSTSTAT) Register is set to 1. Figure 7 displays the Voltage Brown-Out operation. See the <u>Electrical Characteristics</u> chapter on page 184 for the VBO and POR threshold voltages (V_{VBO} and V_{POR}).

The POR level is greater than the VBO level by the specified hysteresis value. This ensures that the device undergoes a POR after recovering from a VBO condition.

57

```
LDX r0, IRQ0
AND r0, MASK
LDX IRQ0, r0
```

To avoid missing interrupts, use the coding style in Example 2 to clear bits in the Interrupt Request 0 Register:

Example 2. A good coding style that avoids lost interrupt requests:

ANDX IRQ0, MASK

Software Interrupt Assertion

Program code can generate interrupts directly. Writing 1 to the correct bit in the interrupt request register triggers an interrupt (assuming that interrupt is enabled). When the interrupt request is acknowledged by the eZ8 CPU, the bit in the interrupt request register is automatically cleared to 0.

Caution: Zilog recommends not using a coding style to generate software interrupts by setting bits in the Interrupt Request registers. All incoming interrupts received between execution of the first LDX command and the final LDX command are lost. See Example 3, which follows.

Example 3. A poor coding style that can result in lost interrupt requests:

```
LDX r0, IRQ0
OR r0, MASK
LDX IRQ0, r0
```

To avoid missing interrupts, use the coding style in Example 4 to set bits in the Interrupt Request registers:

Example 4. A good coding style that avoids lost interrupt requests:

ORX IRQ0, MASK

Interrupt Control Register Definitions

The Interrupt Control registers enable individual interrupts, set interrupt priorities and indicate interrupt requests for all of the interrupts other than the Watchdog Timer interrupt, the primary oscillator fail trap and the Watchdog Oscillator fail trap interrupts.

is enabled, the timer output pin changes state (from Low to High or from High to Low) at timer reload.

Observe the following steps for configuring a timer for COUNTER Mode and for initiating the count:

- 1. Write to the Timer Control Register to:
 - Disable the timer
 - Configure the timer for COUNTER Mode
 - Select either the rising edge or falling edge of the timer input signal for the count. This selection also sets the initial logic level (High or Low) for the timer output alternate function. However, the timer output function is not required to be enabled.
- 2. Write to the Timer High and Low Byte registers to set the starting count value. This only affects the first pass in COUNTER Mode. After the first timer reload in COUNTER Mode, counting always begins at the reset value 0001H. In COUNTER Mode, the Timer High and Low Byte registers must be written with the value 0001H.
- 3. Write to the Timer Reload High and Low Byte registers to set the reload value.
- 4. If appropriate, enable the timer interrupt and set the timer interrupt priority by writing to the relevant interrupt registers.
- 5. Configure the associated GPIO port pin for the timer input alternate function.
- 6. If using the timer output function, configure the associated GPIO port pin for the timer output alternate function.
- 7. Write to the Timer Control Register to enable the timer.

In COUNTER Mode, the number of timer input transitions is calculated with the following equation:

Counter Mode Timer Input Transitions = Current Count Value – Start Value

COMPARATOR COUNTER Mode

In COMPARATOR COUNTER Mode, the timer counts the input transitions from the analog comparator output. The TPOL bit in the Timer Control Register determines whether the count occurs on the rising edge or the falling edge of the comparator output signal. In COMPARATOR COUNTER Mode, the prescaler is disabled.

Timer Control Register Definitions

This section defines the features of the following Timer Control registers. <u>Timer 0–1 High and Low Byte Registers</u>: see page 83

Timer Reload High and Low Byte Registers: see page 85

Timer 0-1 PWM High and Low Byte Registers: see page 86

Timer 0-1 Control Registers: see page 87

Timer 0–1 High and Low Byte Registers

The Timer 0–1 High and Low Byte (TxH and TxL) registers, shown in Tables 50 and 51, contain the current 16-bit timer count value. When the timer is enabled, a read from TxH causes the value in TxL to be stored in a temporary holding register. A read from TxL always returns this temporary register content when the timer is enabled; however, when the timer is disabled, a read from the TxL reads the TxL Register content directly.

Writing to the Timer High and Low Byte registers while the timer is enabled is not recommended. There are no temporary holding registers available for write operations; therefore, simultaneous 16-bit writes are not possible. If either the timer High or Low Byte registers are written during counting, the 8-bit written value is placed in the counter (High or Low byte) at the next clock edge. The counter continues counting from the new value.

Bit	7	6	5	4	3	2	1	0
Field				Т	Н			
RESET	0	0	0	0	0	0	0	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Address				F00H,	F08H			

Table 50. Timer 0–1 High Byte Register (TxH)

Table 51	. Timer ()–1 Low	Byte Re	egister (ГхL)

Bit	7	6	5	4	3	2	1	0
Field				Т	Ľ			
RESET	0	0	0	0	0	0	0	1
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Address		F01H, F09H						

Bit	Description (Continued)
[0]	Input Capture Event
INPCAP	This bit indicates whether the most recent timer interrupt is caused by a timer input capture event.
	 0 = Previous timer interrupt is not caused by timer input capture event. 1 = Previous timer interrupt is caused by timer input capture event.

Timer 0–1 Control Register 1

The Timer 0–1 Control (TxCTL1) registers enable/disable the timers, set the prescaler value, and determine the timer operating mode.

Table 57.	Timer 0–1	Control	Register 1	(TxCTL1)
14810 011		001101	nogiotoi i	(

Bit	7	6	5	4	3	2	1	0
Field	TEN	TPOL	PRES TMODE					
RESET	0	0	0	0	0	0	0	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Address		F07H, F0FH						

Bit	Description
[7] TEN	Timer Enable 0 = Timer is disabled. 1 = Timer enabled to count.

Bit Description (Continued)

[6] Timer Input/Output Polarity

TPOL Operation of this bit is a function of the current operating mode of the timer.

ONE-SHOT Mode

When the timer is disabled, the timer output signal is set to the value of this bit. When the timer is enabled, the timer output signal is complemented on timer reload.

CONTINUOUS Mode

When the timer is disabled, the timer output signal is set to the value of this bit. When the timer is enabled and reloaded, the timer output signal is complemented.

COUNTER Mode

If the timer is disabled, the timer output signal is set to the value of this bit. If the timer is enabled the timer output signal is complemented after timer reload.

- 0 = Count occurs on the rising edge of the timer input signal.
- 1 = Count occurs on the falling edge of the timer input signal.

PWM SINGLE OUTPUT Mode

- 0 = Timer output is forced Low (0), when the timer is disabled. The timer output is forced High (1) when the timer is enabled and the PWM count matches and the timer output is forced Low (0) when the timer is enabled and reloaded.
- 1 = Timer output is forced High (1), when the timer is disabled. The timer output is forced low(0), when the timer is enabled and the PWM count matches and forced High (1) when the timer is enabled and reloaded.

CAPTURE Mode

- 0 = Count is captured on the rising edge of the timer input signal.
- 1 = Count is captured on the falling edge of the timer input signal.

COMPARE Mode

When the timer is disabled, the timer output signal is set to the value of this bit. When the timer is enabled and reloaded, the timer output signal is complemented.

GATED Mode

- 0 = Timer counts when the timer input signal is High (1) and interrupts are generated on the falling edge of the timer input.
- 1 = Timer counts when the timer input signal is Low (0) and interrupts are generated on the rising edge of the timer input.

CAPTURE/COMPARE Mode

- 0 = Counting is started on the first rising edge of the timer input signal. The current count is captured on subsequent rising edges of the timer input signal.
- 1 = Counting is started on the first falling edge of the timer input signal. The current count is captured on subsequent falling edges of the timer input signal.

Comparator Control Register Definitions

The Comparator Control Register (CMP0) configures the comparator inputs and sets the value of the internal voltage reference. The GPIO pin is always used as positive comparator input.

Bit	7	6	5	Λ	3	2	1	0
			5	-	J	2		0
Field	Reserved	INNSEL	REFLVL Reserved					
RESET	0	0	0	1	0	1	0	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Address				F9	0H			
Bit	Descriptio	n						
[7]	Reserved This bit is re	eserved and	must be pro	ogrammed to	o 0.			
[6] INNSEL	Signal Select for Negative Input 0 = internal reference disabled, GPIO pin used as negative comparator input. 1 = internal reference enabled as negative comparator input.							
[5:2] REFLVL	Internal Reference Voltage LevelThis reference is independent of the ADC voltage reference. $0000 = 0.0V.$ $0001 = 0.2V.$ $0010 = 0.4V.$ $0011 = 0.6V.$ $0100 = 0.8V.$ $0101 = 1.0V$ (Default). $0110 = 1.2V.$ $0011 = 1.6V.$ $1000 = 1.6V.$ $1001 = 1.8V.$ $1010-1111 = Reserved.$							
[1:0]	Reserved These bits a	are reserved	d and must b	e programm	ned to 00.			

Table 68. Comparator Control Register (CMP0)

Bit	Description (Continued)
[4] XTLDIS	 State of the Crystal Oscillator at Reset This bit enables only the crystal oscillator. Selecting the crystal oscillator as the system clock must be performed manually. 0 = The crystal oscillator is enabled during reset, resulting in longer reset timing. 1 = The crystal oscillator is disabled during reset, resulting in shorter reset timing.
[3:0]	Reserved These bits are reserved and must be programmed to 1111.

Trim Bit Address Space

All available trim bit addresses and their functions are listed in Tables 83 through 90.

OCD Status Register

The OCD Status Register reports status information about the current state of the debugger and the system.

Bit	7	6	5	4	3	2	1	0
Field	DBG	HALT	FRPENB			Reserved		
RESET	0	0	0	0	0	0	0	0
R/W	R	R	R	R	R	R	R	R
Bit	Descriptio	n						

Bit	Description
[7] DBG	Debug Status 0 = NORMAL Mode. 1 = DEBUG Mode.
[6] HALT	HALT Mode 0 = Not in HALT Mode. 1 = In HALT Mode.
[5] FRPENB	Flash Read Protect Option Bit Enable 0 = FRP bit enabled, that allows disabling of many OCD commands. 1 = FRP bit has no effect.
[4:0]	Reserved These bits are reserved and must be programmed to 00000.

		امام ۸										
Assembly		Add Mc	ode	Op Code(s)			Fla	ags			Fetch	Instr.
Mnemonic	Symbolic Operation	dst	src	(Hex)	С	Ζ	S	V	D	Н	Cycles	Cycles
SRA dst	T V V	R		D0	*	*	*	0	-	_	2	2
	D7 D6 D5 D4 D3 D2 D1 D0 C	IR		D1	_						2	3
SRL dst	0 - ▶ D7 D6 D5 D4 D3 D2 D1 D0 ▶ C	R		1F C0	*	*	0	*	-	_	3	2
	dst	IR		1F C1	_						3	3
SRP src	RP ← src		IM	01	-	-	-	-	-	-	2	2
STOP	STOP Mode			6F	_	-	-	_	_	-	1	2
SUB dst, src	$dst \gets dst - src$	r	r	22	*	*	*	*	1	*	2	3
	-	r	lr	23	_						2	4
	-	R	R	24	_						3	3
	-	R	IR	25	_						3	4
	-	R	IM	26	_						3	3
	-	IR	IM	27	_						3	4
SUBX dst, src	$dst \gets dst - src$	ER	ER	28	*	*	*	*	1	*	4	3
	-	ER	IM	29	_						4	3
SWAP dst	$dst[7:4] \leftrightarrow dst[3:0]$	R		F0	Х	*	*	Х	_	_	2	2
	-	IR		F1	_						2	3
TCM dst, src	(NOT dst) AND src	r	r	62	_	*	*	0	_	_	2	3
	-	r	lr	63	_						2	4
	-	R	R	64	_						3	3
	-	R	IR	65	_						3	4
	-	R	IM	66	-						3	3
	-	IR	IM	67	_						3	4
TCMX dst, src	(NOT dst) AND src	ER	ER	68	-	*	*	0	_	_	4	3
	-	ER	IM	69	_						4	3

Table 113. eZ8 CPU Instruction Summary (Continued)

Note: Flags Notation:

* = Value is a function of the result of the operation.

- = Unaffected.

X = Undefined.

0 = Reset to 0.

1 = Set to 1.

Abbreviation	Description	Abbreviation	Description
b	Bit position	IRR	Indirect Register Pair
CC	Condition code	р	Polarity (0 or 1)
Х	8-bit signed index or displace- ment	r	4-bit Working Register
DA	Destination address	R	8-bit register
ER	Extended Addressing Register	r1, R1, Ir1, Irr1, IR1, rr1, RR1, IRR1, ER1	Destination address
IM	Immediate data value	r2, R2, Ir2, Irr2, IR2, rr2, RR2, IRR2, ER2	Source address
lr	Indirect Working Register	RA	Relative
IR	Indirect Register	rr	Working Register Pair
Irr	Indirect Working Register Pair	RR	Register Pair

Table 114. Op Code Map Abbreviations

Z8 Encore![®] F0830 Series Product Specification

Figure 30. Second Op Code Map after 1FH

183

Hex Address: F01

Table 131. Timer 0 Low Byte Register (T0L)

Bit	7	6	5	4	3	2	1	0		
Field				Т	Ľ					
RESET	0	0	0	0	0	0	0	1		
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Address		F01H								

Hex Address: F02

Table 132. Timer 0 Reload High Byte Register (T0RH)

Bit	7	6	5	4	3	2	1	0		
Field				TF	RH					
RESET	1	1	1	1	1	1	1	1		
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Address		F02H								

Hex Address: F03

Table 133. Timer 0 Reload Low Byte Register (T0RL)

Bit	7	6	5	4	3	2	1	0		
Field				TF	RL					
RESET	1	1	1	1	1	1	1	1		
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Address		F03H								

Hex Address: F04

Table 134. Timer 0 PWM High Byte Register (T0PWMH)

Bit	7	6	5	4	3	2	1	0		
Field				PW	ΜH					
RESET	0	0	0	0	0	0	0	0		
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Address		F04H								

Hex Address: FD7

Bit	7	6	5	4	3	2	1	0		
Field	POUT7	POUT6	POUT5	POUT4	POUT3	POUT2	POUT1	POUT0		
RESET	0	0	0	0	0	0	0	0		
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Address		FD7H								

Table 176. Port B Output Data Register (PBOUT)

Hex Address: FD8

Table 177. Port C GPIO Address Register (PCADDR)

Bit	7	6	5	4	3	2	1	0		
Field		PADDR[7:0]								
RESET		00H								
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Address		FD8H								

Hex Address: FD9

Table 178. Port C Control Registers (PCCTL)

Bit	7	6	5	4	3	2	1	0		
Field		PCTL								
RESET		00H								
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Address		FD9H								

Hex Address: FDA

Table 179. Port C Input Data Registers (PCIN)

Bit	7	6	5	4	3	2	1	0	
Field	PIN7	PIN6	PIN5	PIN4	PIN3	PIN2	PIN1	PIN0	
RESET	Х	Х	Х	Х	Х	Х	Х	Х	
R/W	R	R	R	R	R	R	R	R	
Address	FDAH								

Hex Address: FDF

Table 183.	Port D	Output	Data	Reaister	(PDOUT)
			_		(,

Bit	7	6	5	4	3	2	1	0
Field	POUT7	POUT6	POUT5	POUT4	POUT3	POUT2	POUT1	POUT0
RESET	0	0	0	0	0	0	0	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Address				FD	FH			

Hex Addresses: FE0–FEF

This address range is reserved.

Watchdog Timer

For more information about the Watchdog Timer registers, see the <u>Watchdog Timer Con-</u> trol Register Definitions section on page 95.

Hex Address: FF0

The Watchdog Timer Control Register address is shared with the read-only Reset Status Register.

Bit	7	6	5	4	3	2	1	0	
Field	WDTUNLK								
RESET	Х	Х	Х	Х	Х	Х	Х	Х	
R/W	W	W	W	W	W	W	W	W	
Address	FF0H								

Table 184	. Watchdog	Timer	Control	Register	(WDTCTL))
-----------	------------	-------	---------	----------	----------	---

Bit	7	6	5	4	3	2	1	0	
Field	POR	STOP	WDT	EXT	Reserved				
RESET	See <u>Table 12</u> on page 29			0	0	0	0	0	
R/W	R	R	R	R	R	R	R	R	
Address	FF0H								

Table 185. Reset Status Register (RSTSTAT)

Hex Address: FF1

Table 186. Watchdog Timer Reload Upper Byte Register (WDTU)

Bit	7	6	5	4	3	2	1	0	
Field	WDTU								
RESET	0	0	0	0	0	0	0	0	
R/W	R/W*	R/W*	R/W*	R/W*	R/W*	R/W*	R/W*	R/W*	
Address	FF1H								
Note: *Rea	Note: *Read returns the current WDT count value: write sets the appropriate reload value.								

Hex Address: FF2

Table 187. Watchdog Timer Reload High Byte Register (WDTH)

Bit	7	6	5	4	3	2	1	0		
Field	WDTH									
RESET	0	0	0	0	0	1	0	0		
R/W	R/W*	R/W*	R/W*	R/W*	R/W*	R/W*	R/W*	R/W*		
Address	FF2H									
Note: *Rea	Note: *Read returns the current WDT count value; write sets the appropriate reload value.									

Hex Address: FF3

Table 188. Watchdog Timer Reload Low Byte Register (WDTL)

Bit	7	6	5	4	3	2	1	0		
Field	WDTL									
RESET	0	0	0	0	0	0	0	0		
R/W	R/W*									
Address	FF3H									
Note: *Read returns the current WDT count value; write sets the appropriate reload value.										

Hex Addresses: FF4–FF5

This address range is reserved.

Z8 Encore![®] F0830 Series Product Specification

Index

Symbols

@ 165# 165% 165

Numerics

10-bit ADC 4

Α

absolute maximum ratings 184 AC characteristics 189 ADC 166 block diagram 99 overview 98 ADC Channel Register 1 (ADCCTL) 102 ADC Data High Byte Register (ADCDH) 103 ADC Data Low Bit Register (ADCDL) 103, 104, 105 **ADCX 166** ADD 166 add - extended addressing 166 add with carry 166 add with carry - extended addressing 166 additional symbols 165 address space 14 **ADDX 166** analog block/PWM signal synchronization 100 analog block/PWM signal zynchronization 100 analog signals 11 analog-to-digital converter overview 98 AND 169 **ANDX 169** architecture voltage measurements 98 arithmetic instructions 166 assembly language programming 162 assembly language syntax 163

В

B 165 b 164 **BCLR 167** binary number suffix 165 BIT 167 bit 164 clear 167 manipulation instructions 167 set 167 set or clear 167 swap 167 test and jump 169 test and jump if non-zero 169 test and jump if zero 169 bit jump and test if non-zero 166 bit swap 169 block diagram 3 block transfer instructions 167 **BRK 169 BSET 167** BSWAP 167. 169 **BTJ** 169 BTJNZ 166, 169 **BTJZ 169**

С

calibration and compensation, motor control measurements 101 CALL procedure 169 capture mode 89, 90 capture/compare mode 89 cc 164 CCF 168 characteristics, electrical 184 clear 168 CLR 168 COM 169 compare 89