

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	eZ8
Core Size	8-Bit
Speed	20MHz
Connectivity	-
Peripherals	Brown-out Detect/Reset, LED, POR, PWM, WDT
Number of I/O	23
Program Memory Size	12KB (12K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 3.6V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SSOP (0.173", 4.40mm Width)
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/zilog/z8f1232hj020sg

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Program Memory

The eZ8 CPU supports 64KB of program memory address space. The Z8 Encore! F0830 Series devices contain 1KB to 12KB of on-chip Flash memory in the program memory address space, depending on the device. Reading from program memory addresses outside the available Flash memory address range returns FFH. Writing to these unimplemented program memory addresses produces no effect. Table 6 shows a program memory map for the Z8 Encore! F0830 Series products.

Program Memory Address (He	ex) Function
Z8F0830 and Z8F0831 Produc	sts
0000–0001	Flash Option Bits
0002–0003	Reset Vector
0004–003D	Interrupt Vectors*
003E-1FFF	Program Memory
Z8F0430 and Z8F0431 Produc	cts
0000–0001	Flash Option Bits
0002–0003	Reset Vector
0004–003D	Interrupt Vectors*
003E-0FFF	Program Memory
Z8F0130 and Z8F0131 Produc	cts
0000–0001	Flash Option Bits
0002–0003	Reset Vector
0004–003D	Interrupt Vectors*
003E-03FF	Program Memory
Z8F0230 and Z8F0231 Produc	cts
0000–0001	Flash Option Bits
0002–0003	Reset Vector
0004–003D	Interrupt Vectors*
003E-07FF	Program Memory
Note: *See Table 34 on page 54 for	or a list of interrupt vectors.

Table 6. Z8	Encore!	F0830	Series	Program	Memory	Maps
-------------	---------	-------	--------	---------	--------	------

	Reset Characteristics and Latency						
Reset Type	Control Registers	eZ8 CPU	Reset Latency (Delay)				
System Reset	Reset (as applicable)	Reset	About 66 Internal Precision Oscillator Cycles				
System Reset with Crystal Oscillator Enabled	Reset (as applicable)	Reset	About 5000 Internal Precision Oscillator Cycles				
Stop Mode Recovery	Unaffected, except WDT_CTL and OSC_CTL registers	Reset	About 66 Internal Precision Oscillator cycles				
Stop Mode Recovery with crystal oscillator enabled	Unaffected, except WDT_CTL and OSC_CTL registers	Reset	About 5000 Internal Precision Oscillator cycles				

Table 9. Reset and Stop Mode Recovery Characteristics and Latency

During a system RESET or Stop Mode Recovery, the Z8 Encore! F0830 Series device is held in reset for about 66 cycles of the Internal Precision Oscillator. If the crystal oscillator is enabled in the Flash option bits, the reset period is increased to about 5000 IPO cycles. When a reset occurs because of a low voltage condition or Power-On Reset, the reset delay is measured from the time that the supply voltage first exceeds the POR level (discussed later in this chapter). If the external pin reset remains asserted at the end of the reset period, the device remains in reset until the pin is deasserted.

At the beginning of reset, all GPIO pins are configured as inputs with pull-up resistor disabled, except PD0 which is shared with the reset pin. On reset, the Port D0 pin is configured as a bidirectional open-drain reset. This pin is internally driven low during port reset, after which the user code may reconfigure this pin as a general purpose output.

During reset, the eZ8 CPU and on-chip peripherals are idle; however, the on-chip crystal oscillator and Watchdog Timer Oscillator continues to run.

On reset, control registers within the register file that have a defined reset value are loaded with their reset values. Other control registers (including the Stack Pointer, Register Pointer and Flags) and general purpose RAM are undefined following the reset. The eZ8 CPU fetches the reset vector at program memory addresses 0002H and 0003H and loads that value into the program counter. Program execution begins at the reset vector address.

Because the control registers are reinitialized by a system reset, the system clock after reset is always the IPO. User software must reconfigure the oscillator control block, to enable and select the correct system clock source.

Port A–D High Drive Enable Subregisters

The Port A–D High Drive Enable Subregister, shown in Table 24, is accessed through the Port A–D Control Register by writing 04H to the Port A–D Address Register. Setting the bits in the Port A–D High Drive Enable subregisters to 1 configures the specified port pins for high-output current drive operation. The Port A–D High Drive Enable Subregister affects the pins directly and, as a result, alternate functions are also affected.

Table 24. Port A–D High Drive Enable Subregisters (PxHDE)

Bit	7	6	5	4	3	2	1	0
Field	PHDE7	PHDE6	PHDE5	PHDE4	PHDE3	PHDE2	PHDE1	PHDE0
RESET	0	0	0	0	0	0	0	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Address	If 04H in Port A–D Address Register, accessible through the Port A–D Control Register							

Bit Description

[7:0] Port High Drive Enable
 PHDEx 0 = The port pin is configured for standard output current drive.
 1 = The port pin is configured for high output current drive.

Note: x indicates the specific GPIO port pin number (7–0).

Port A–D Output Data Register

The Port A–D Output Data Register, shown in Table 30, controls the output data to the pins.

Bit	7	6	5	4	3	2	1	0
Field	POUT7	POUT6	POUT5	POUT4	POUT3	POUT2	POUT1	POUT0
RESET	0	0	0	0	0	0	0	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Address		FD3H, FD7H, FDBH, FDFH						

Table 30. Port A–D Output Data Register (PxOUT)

Bit Description

[7:0] Port Output Data

PxOUT These bits contain the data to be driven to the port pins. The values are only driven if the corresponding pin is configured as an output and the pin is not configured for Alternate function operation.

0 = Drive a logical 0 (Low).

1= Drive a logical 1 (High). High value is not driven if the drain has been disabled by setting the corresponding port output Control Register bit to 1.

Note: x indicates the specific GPIO port pin number (7–0).

Shared Interrupt Select Register

The shared interrupt select (IRQSS) register determines the source of the PADxS interrupts. See Table 48. The shared interrupt select register selects between Port A and alternate sources for the individual interrupts.

Because these shared interrupts are edge-triggered, it is possible to generate an interrupt just by switching from one shared source to another. For this reason, an interrupt must be disabled before switching between sources.

Bit	7	6	5	4	3	2	1	0
Field	Reserved	PA6CS		Reserved				
RESET	0	0	0	0	0	0	0	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Address	FCEH							

Table 48. Shared Interrupt Select Register (IRQSS)

Bit	Description
[7]	Reserved
	This bit is reserved and must be programmed to 0.
[6]	PA6/Comparator Selection
PA6CS	0 = PA6 is used for the interrupt caused by PA6CS interrupt request.
	1 = The comparator is used for the interrupt caused by PA6CS interrupt request.
[5:0]	Reserved
	These registers are reserved and must be programmed to 000000.

Table 62. Watchdog Timer Reload Low Byte Register (WDTL)

Bit	7	6	5	4	3	2	1	0	
Field		WDTL							
RESET	0	0	0	0	0	0	0	0	
R/W	R/W*	R/W*	R/W*	R/W*	R/W*	R/W*	R/W*	R/W*	
Address	FF3H								
Note: *A read returns the current WDT count value; a write sets the appropriate reload value.									
Bit	Descriptio	on							

BR	Decemption
[7:0]	WDT Reload Low
WDTL	Least significant byte (LSB), bits[7:0] of the 24-bit WDT reload value.

ADC Data High Byte Register

The ADC Data High Byte Register, listed in Table 64, contains the upper eight bits of the ADC output. Access to the ADC Data High Byte Register is read-only. Reading the ADC Data High Byte Register latches data in the ADC Low Bits Register.

Table 64. ADC Data High Byte Register (ADCD_H)

Bit	7	6	5	4	3	2	1	0	
Field		ADCDH							
RESET		Х							
R/W	R								
Address	F72H								

Bit	Description
[7:0]	ADC High Byte
ADCDH	00h–FFh = The last conversion output is held in the data registers until the next ADC conversion is completed.

ADC Data Low Bits Register

The ADC Data Low Bits Register, shown in Table 65, contains the lower bits of the ADC output. Access to the ADC Data Low Bits Register is read-only. Reading the ADC Data High Byte Register latches lower bits of the ADC in the ADC Data Low Bits Register.

Bit	7	6	5	4	3	2	1	0	
Field	ADCDL		Reserved						
RESET	Х		Х						
R/W	R		R						
Address	F73H								

Table 65.	ADC Data	Low Bits	Register	(ADCD_	<u>L)</u>
-----------	----------	----------	----------	--------	-----------

Bit	Description
[7:6] ADCDL	ADC Low Bits 00–11b = These bits are the two least-significant bits of the 10-bit ADC output. These bits are undefined after a reset. The low bits are latched into this register whenever the ADC Data High Byte Register is read.
[5:0]	Reserved These bits are reserved and must be programmed to 000000.

Flash information area is mapped into program memory and overlays the 128 bytes in the address range FE00H to FE7FH. When the information area access is enabled, all reads from these program memory addresses return the information area data rather than the program memory data. Access to the Flash information area is read-only.

The trim bits are handled differently than the other Zilog Flash option bits. The trim bits are the hybrid of the user option bits and the standard Zilog option bits. These trim bits must be user-accessible for reading at all times using external registers regardless of the state of bit 7 in the Flash Page Select Register. Writes to the trim space change the value of the Option Bit Holding Register but do not affect the Flash bits, which remain as read-only.

Program Memory	
Address (Hex)	Function
FE00–FE3F	Zilog option bits
FE40–FE53	Part number 20-character ASCII alphanumeric code Left justified and filled with FH
FE54–FE5F	Reserved
FE60–FE7F	Reserved

Table 70. Z8F083 Flash Memory Area Map

Operation

The Flash Controller programs and erases Flash memory. The Flash Controller provides the proper Flash controls and timing for byte programming, page erase and mass erase of Flash memory.

The Flash Controller contains several protection mechanisms to prevent accidental programming or erasure. These mechanism operate on the page, sector and full-memory levels.

The flowchart in Figure 19 display basic Flash Controller operation. The following subsections provide details about the various operations (Lock, Unlock, Byte Programming, Page Protect, Page Unprotect, Page Select Page Erase and Mass Erase) displayed in Figure 19.

Bit	Description (Continued)
[3] VBO_AO	 Voltage Brown-Out Protection Always On 0 = Voltage Brown-Out protection is disabled in STOP Mode to reduce total power consumption. 1 = Voltage Brown-Out protection is always enabled, even during STOP Mode. This setting is the default setting for unprogrammed (erased) Flash.
[2] FRP	 Flash Read Protect 0 = User program code is inaccessible. Limited control features are available through the On-Chip Debugger. 1 = User program code is accessible. All On-Chip Debugger commands are enabled. This is the default setting for unprogrammed (erased) Flash.
[1]	Reserved This bit is reserved and must be programmed to 1.
[0] FWP	 Flash Write Protect This option bit provides Flash program memory protection. 0 = Programming and erasure disabled for all Flash program memory. Programming, page erase and mass erase through user code is disabled. Mass erase is available using the On-Chip Debugger. 1 = Programming, page erase and mass erase are enabled for all Flash program memory.

Table 82. Flash Options Bits at Program Memory Address 0001H

Bit	7	6	5	4	3	2	1	0
Field	VBO_RES	Reserved XTLDIS Reserve		erved				
RESET	U	U	U	U	U	U	U	U
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Address	Program Memory 0001H							
Note: U = Unchanged by Reset. R/W = Read/Write.								

Bit	Description
[7] VBO_RES	Voltage Brown-Out reset 1 = VBO detection causes a system reset. This setting is the default setting for unpro- grammed (erased) Flash.
[6:5]	Reserved These bits are reserved and must be programmed to 11.

128

Byte Write

To write a byte to the NVDS array, the user code must first push the address, then the data byte onto the stack. The user code issues a CALL instruction to the address of the Byte Write routine ($0 \times 20B3$). At the return from the subroutine, the write status byte resides in working register R0. The bit fields of this status byte are defined in Table 91. Additionally, user code should pop the address and data bytes off the stack.

The write routine uses 16 bytes of stack space in addition to the two bytes of address and data pushed by the user code. Sufficient memory must be available for this stack usage.

Because of the Flash memory architecture, NVDS writes exhibit a nonuniform execution time. In general, a write takes $136\mu s$ (assuming a 20MHz system clock). For every 200 writes, however, a maintenance operation is necessary. In this rare occurrence, the write takes up to 58ms to complete. Slower system clock speeds result in proportionally higher execution times.

NVDS byte writes to invalid addresses (those exceeding the NVDS array size) have no effect. Illegal write operations have a 7μ s execution time.

Bit	7	6	5	4	3	2	1	0
Field			Reserved	FE	IGADDR	WE		
Default Value	0	0	0	0	0	0	0	0
Bit	Description							
[7:3]	Reserved These bits	Reserved These bits are reserved and must be programmed to 00000.						
[2] FE	Flash Error If a Flash error is detected, this bit is set to 1.							
[1] IGADDR	Illegal Address When an NVDS byte writes to invalid addresses occur (those exceeding the NVDS array size), this bit is set to 1.							
[0] WE	Write Error A failure occurs during data writes to Flash. When writing data into a certain address, a read- back operation is performed. If the read-back value is not the same as the value written, this bit							

Table 91. Write Status Byte

is set to 1.

```
DBG \leftarrow 0AH
DBG \leftarrow Program Memory Address[15:8]
DBG \leftarrow Program Memory Address[7:0]
DBG \leftarrow Size[15:8]
DBG \leftarrow Size[7:0]
DBG \leftarrow 1-65536 data bytes
```

Read Program Memory (0BH). The read program memory command, reads data from program memory. This command is equivalent to the LDC and LDCI instructions. Data can be read 1–65536 bytes at a time (65536 bytes can be read by setting size to 0). If the device is not in DEBUG Mode or if the Flash read protect option bit is enabled, this command returns FFH for the data.

```
DBG \leftarrow 0BH
DBG \leftarrow Program Memory Address[15:8]
DBG \leftarrow Program Memory Address[7:0]
DBG \leftarrow Size[15:8]
DBG \leftarrow Size[7:0]
DBG \rightarrow 1-65536 data bytes
```

Write Data Memory (0CH). The write data memory command, writes data to data memory. This command is equivalent to the LDE and LDEI instructions. Data can be written 1–65536 bytes at a time (65536 bytes can be written by setting size to 0). If the device is not in DEBUG Mode or if the flash read protect option bit is enabled, the data is discarded.

```
DBG \leftarrow 0CH
DBG \leftarrow Data Memory Address[15:8]
DBG \leftarrow Data Memory Address[7:0]
DBG \leftarrow Size[15:8]
DBG \leftarrow Size[7:0]
DBG \leftarrow 1-65536 data bytes
```

Read Data Memory (0DH). The read data memory command, reads from data memory. This command is equivalent to the LDE and LDEI instructions. Data can be read from 1 to 65536 bytes at a time (65536 bytes can be read by setting size to 0). If the device is not in DEBUG Mode, this command returns FFH for the data.

```
DBG \leftarrow 0DH
DBG \leftarrow Data Memory Address[15:8]
DBG \leftarrow Data Memory Address[7:0]
DBG \leftarrow Size[15:8]
DBG \leftarrow Size[7:0]
DBG \rightarrow 1-65536 data bytes
```

Read Program Memory CRC (0EH). The read program memory CRC command, computes and returns the cyclic redundancy check (CRC) of program memory using the 16-bit CRC-CCITT polynomial. If the device is not in DEBUG Mode, this command returns FFFFH for the CRC value. Unlike the other OCD read commands, there is a delay from issuing of the command until the OCD returns the data. The OCD reads program memory, calculates the CRC value and returns the result. The delay is a function of program mem-

Clock Source	Characteristics	Required Setup
Internal precision RC oscillator	 32.8 kHz or 5.53MHz ± 4% accuracy when trimmed No external components required 	Unlock and write to the Oscillator Con- trol Register (OSCCTL) to enable and select oscillator at either 5.53MHz or 32.8 kHz
External crystal/res- onator	 32 kHz to 20MHz Very high accuracy (dependent on crystal or resonator used) Requires external components 	 Configure Flash option bits for correct external OSCILLATOR Mode Unlock and write OSCCTL to enable crystal oscillator, wait for it to stabilize and select as system clock (if the XTLDIS option bit has been de-asserted, no waiting is required)
External RC oscilla- tor	 32 kHz to 4MHz Accuracy dependent on external components 	 Configure Flash option bits for correct external OSCILLATOR Mode Unlock and write OSCCTL to enable crystal oscillator and select as system clock
External clock drive	 0 to 20MHz Accuracy dependent on external clock source 	 Write GPIO registers to configure PB3 pin for external clock function Unlock and write OSCCTL to select external system clock Apply external clock signal to GPIO
Internal Watchdog Timer Oscillator	 10 kHz nominal ± 40% accuracy; no external components required Low power consumption 	 Enable WDT if not enabled and wait until WDT oscillator is operating. Unlock and write to the Oscillator Con- trol Register (OSCCTL) to enable and select oscillator

Table 98. Oscillator Configuration and Selection

Caution: Unintentional accesses to the Oscillator Control Register can actually stop the chip by switching to a nonfunctioning oscillator. To prevent this condition, the oscillator control block employs a register unlocking/locking scheme.

OSC Control Register Unlocking/Locking

To write the Oscillator Control Register, unlock it by making two writes to the OSCCTL Register with the values E7H followed by 18H. A third write to the OSCCTL Register changes the value of the actual register and returns the register to a Locked state. Any other sequence of Oscillator Control Register writes have no effect. The values written to unlock the register must be ordered correctly, but are not necessarily consecutive. It is possible to write to or read from other registers within the unlocking/locking operation.

157

Crystal Oscillator

The products in the Z8 Encore! F0830 Series contain an on-chip crystal oscillator for use with external crystals with 32 kHz to 20 MHz frequencies. In addition, the oscillator supports external RC networks with oscillation frequencies up to 4 MHz or ceramic resonators with frequencies up to 8 MHz. The on-chip crystal oscillator can be used to generate the primary system clock for the internal eZ8 CPU and the majority of its on-chip peripherals. Alternatively, the X_{IN} input pin can also accept a CMOS-level clock input signal (32 kHz–20 MHz). If an external clock generator is used, the X_{OUT} pin must remain unconnected. The on-chip crystal oscillator also contains a clock filter function. To see the settings for this clock filter, see <u>Table 90</u> on page 133. By default, however, this clock filter is disabled; therefore, no divide to the input clock (namely, the frequency of the signal on the X_{IN} input pin) can determine the frequency of the system clock when using the default settings.

Note: Although the X_{IN} pin can be used as an input for an external clock generator, the CLKIN pin is better suited for such use. See *the* System Clock Selection section on page 151 for more information.

Operating Modes

The Z8 Encore! F0830 Series products support the following four OSCILLATOR Modes:

- Minimum power for use with very low frequency crystals (32kHz to 1MHz)
- Medium power for use with medium frequency crystals or ceramic resonators (0.5 MHz to 8 MHz)
- Maximum power for use with high frequency crystals (8MHz to 20MHz)
- On-chip oscillator configured for use with external RC networks (<4MHz)

The OSCILLATOR Mode is selected using user-programmable Flash option bits. See the <u>Flash Option Bits</u> chapter on page 124 for more information.

Crystal Oscillator Operation

The XTLDIS Flash option bit controls whether the crystal oscillator is enabled during reset. The crystal may later be disabled after reset if a new oscillator has been selected as the system clock. If the crystal is manually enabled after reset through the OSCCTL Reg-

Z8 Encore![®] F0830 Series Product Specification

Figure 30. Second Op Code Map after 1FH

183

207

Table 129 lists the pin count by package.

	Pin Count				
Package	20	28			
PDIP	\checkmark	\checkmark			
QFN	\checkmark	\checkmark			
SOIC	\checkmark	\checkmark			
SSOP	\checkmark	\checkmark			

Table 129. Package and Pin Count Description

Analog-to-Digital Converter

For more information about these ADC registers, see the <u>ADC Control Register Defini-</u> tions section on page 101.

Hex Address: F70

Bit	7	6	5	4	3	2	1	0
Field	START	Reserved	REFEN	ADCEN	Reserved		ANAIN[2:0]	
RESET	0	0	0	0	0	0	0	0
R/W	R/W1	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Address	F70h							

Table 146. ADC Control Register 0 (ADCCTL0)

Bit	Description
[7] START	 ADC Start/Busy 0 = Writing to 0 has no effect; reading a 0 indicates that the ADC is available to begin a conversion. 1 = Writing to 1 starts a conversion; reading a 1 indicates that a conversion is currently in progress.
[6]	This bit is reserved and must be programmed to 0.
[5] REFEN	 Reference Enable 0 = Internal reference voltage is disabled allowing an external reference voltage to be used by the ADC. 1 = Internal reference voltage for the ADC is enabled. The internal reference voltage can be measured on the V_{REF} pin.
[4] ADCEN	ADC Enable 0 = ADC is disabled for low power operation. 1 = ADC is enabled for normal use.
[3]	This bit is reserved and must be programmed to 0.
[2:0] ANAIN	 Analog Input Select 000 = ANA0 input is selected for analog to digital conversion. 001 = ANA1 input is selected for analog to digital conversion. 010 = ANA2 input is selected for analog to digital conversion. 011 = ANA3 input is selected for analog to digital conversion. 100 = ANA4 input is selected for analog to digital conversion. 101 = ANA5 input is selected for analog to digital conversion. 101 = ANA6 input is selected for analog to digital conversion. 111 = ANA7 input is selected for analog to digital conversion.

Hex Address: FC5

Table 162. IF	RQ1 Enable	Low Bit R	Register (I	RQ1ENL)
---------------	------------	-----------	-------------	---------

Bit	7	6	5	4	3	2	1	0	
Field	PA7ENL	PA6CENL	PA5ENL	PA4ENL	PA3ENL	PA2ENL	PA1ENL	PA0ENL	
RESET	0	0	0	0	0	0	0	0	
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Address		FC5H							

Hex Address: FC6

Table 163. Interrupt Request 2 Register (IRQ2)

Bit	7	6	5	4	3	2	1	0	
Field		Rese	erved		PC3I	PC2I	PC1I	PC0I	
RESET	0	0	0	0	0	0	0	0	
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Address		FC6H							

Hex Address: FC7

Table 164. IRQ2 Enable High Bit Register (IRQ2ENH)

Bit	7	6	5	4	3	2	1	0	
Field		Rese	erved		C3ENH	C2ENH	C1ENH	C0ENH	
RESET	0	0	0	0	0	0	0	0	
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Address		FC7H							

Hex Address: FC8

Table 165. IRQ2 Enable Low Bit Register (IRQ2ENL)

Bit	7	6	5	4	3	2	1	0
Field		Rese	erved		C3ENL	C2ENL	C1ENL	C0ENL
RESET	0	0	0	0	0	0	0	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Address				FC	8H			

Hex Address: FD7

Bit	7	6	5	4	3	2	1	0
Field	POUT7	POUT6	POUT5	POUT4	POUT3	POUT2	POUT1	POUT0
RESET	0	0	0	0	0	0	0	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Address				FD	7H			

Table 176. Port B Output Data Register (PBOUT)

Hex Address: FD8

Table 177. Port C GPIO Address Register (PCADDR)

Bit	7	6	5	4	3	2	1	0	
Field				PADD	R[7:0]				
RESET		00H							
R/W	R/W	R/W R/W R/W R/W R/W R/W R/W							
Address		FD8H							

Hex Address: FD9

Table 178. Port C Control Registers (PCCTL)

Bit	7	6	5	4	3	2	1	0
Field				PC	TL			
RESET		00H						
R/W	R/W	R/W R/W R/W R/W R/W R/W R/W						
Address				FD	9H			

Hex Address: FDA

Table 179. Port C Input Data Registers (PCIN)

Bit	7	6	5	4	3	2	1	0	
Field	PIN7	PIN6	PIN5	PIN4	PIN3	PIN2	PIN1	PIN0	
RESET	Х	Х	Х	Х	Х	Х	Х	Х	
R/W	R	R	R	R	R	R	R	R	
Address		FDAH							

Trim Bit Control

For more information about the Trim Bit Control registers, see the <u>Flash Option Bit Con-</u> <u>trol Register Definitions</u> section on page 126.

Hex Address: FF6

Bit	7	6	5	4	3	2	1	0	
Field			TRMADF	R - Trim Bit A	ddress (00	H to 1FH)			
RESET	0	0	0	0	0	0	0	0	
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Address		FF6H							

Table 189. Trim Bit Address Register (TRMADR)

Hex Address: FF7

Table 190. Trim Bit Data Register (TRMDR)

Bit	7	6	5	4	3	2	1	0	
Field				TRMDR - T	rim Bit Data				
RESET	0	0	0	0	0	0	0	0	
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Address		FF7H							

Flash Memory Controller

For more information about the Flash Control registers, see the <u>Flash Control Register</u> <u>Definitions</u> section on page 118.

Hex Address: FF8

Bit	7	6	5	4	3	2	1	0
Field				FC	MD			
RESET	0	0	0	0	0	0	0	0
R/W	W	W	W	W	W	W	W	W
Address				FF	8H			

Table 191. Flash Control Register (FCTL)