

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	eZ8
Core Size	8-Bit
Speed	20MHz
Connectivity	-
Peripherals	Brown-out Detect/Reset, LED, POR, PWM, WDT
Number of I/O	23
Program Memory Size	12KB (12K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 3.6V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/zilog/z8f1232qj020sg

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Z8 Encore![®] F0830 Series Product Specification

Voltage Brown-Out Reset	
Watchdog Timer Reset	
External Reset Input	
External Reset Indicator	
On-Chip Debugger Initiated Reset	
Stop Mode Recovery	
Stop Mode Recovery using WDT Time-Out	
Stop Mode Recovery using GPIO Port Pin Transition	
Stop Mode Recovery Using the External RESET Pin	
Debug Pin Driven Low	
Reset Register Definitions	28
Low-Power Modes	30
STOP Mode	30
HALT Mode	31
Peripheral Level Power Control	31
Power Control Register Definitions	31
General Purpose Input/Output	33
GPIO Port Availability by Device	
Architecture	
GPIO Alternate Functions	
Direct LED Drive	
Shared Reset Pin	35
Crystal Oscillator Override	
5V Tolerance	
External Clock Setup	36
GPIO Interrupts	39
GPIO Control Register Definitions	39
Port A–D Address Registers	40
Port A–D Control Registers	41
Port A–D Data Direction Subregisters	41
Port A–D Alternate Function Subregisters	42
Port A–C Input Data Registers	49
Port A–D Output Data Register	50
LED Drive Enable Register	51
LED Drive Level High Register	51
LED Drive Level Low Register	52
Interrupt Controller	53
Interrupt Vector Listing	
Architecture	
Operation	

Z8 Encore![®] F0830 Series Product Specification

Table 29.	Port A–C Input Data Registers (PxIN)
Table 30.	Port A–D Output Data Register (PxOUT) 50
Table 31.	LED Drive Enable (LEDEN) 51
Table 32.	LED Drive Level High Register (LEDLVLH)
Table 33.	LED Drive Level Low Register (LEDLVLL)
Table 34.	Trap and Interrupt Vectors in Order of Priority
Table 35.	Interrupt Request 0 Register (IRQ0) 58
Table 36.	Interrupt Request 1 Register (IRQ1) 59
Table 37.	Interrupt Request 2 Register (IRQ2) 60
Table 38.	IRQ0 Enable and Priority Encoding
Table 39.	IRQ0 Enable Low Bit Register (IRQ0ENL)
Table 40.	IRQ0 Enable High Bit Register (IRQ0ENH)
Table 41.	IRQ1 Enable and Priority Encoding
Table 42.	IRQ1 Enable High Bit Register (IRQ1ENH)
Table 43.	IRQ2 Enable and Priority Encoding
Table 44.	IRQ1 Enable Low Bit Register (IRQ1ENL)
Table 45.	IRQ2 Enable Low Bit Register (IRQ2ENL)
Table 46.	IRQ2 Enable High Bit Register (IRQ2ENH)
Table 47.	Interrupt Edge Select Register (IRQES)
Table 48.	Shared Interrupt Select Register (IRQSS)
Table 49.	Interrupt Control Register (IRQCTL)
Table 50.	Timer 0–1 High Byte Register (TxH) 83
Table 51.	Timer 0–1 Low Byte Register (TxL)
Table 52.	Timer 0–1 Reload High Byte Register (TxRH)
Table 53.	Timer 0–1 Reload Low Byte Register (TxRL)
Table 54.	Timer 0–1 PWM High Byte Register (TxPWMH)
Table 55.	Timer 0–1 PWM Low Byte Register (TxPWML)
Table 56.	Timer 0–1 Control Register 0 (TxCTL0)
Table 57.	Timer 0–1 Control Register 1 (TxCTL1)
Table 58.	Watchdog Timer Approximate Time-Out Delays

Signal Mnemonic	I/O	Description
Oscillators		
X _{IN}	I	External crystal input. This is the input pin to the crystal oscillator. A crystal can be connected between it and the XOUT pin to form the oscillator. In addition, this pin is used with external RC networks or external clock drivers to provide the system clock.
X _{OUT}	0	External crystal output. This pin is the output of the crystal oscillator. A crystal can be connected between it and the XIN pin to form the oscillator.
Clock Input		
CLK _{IN}	Ι	Clock input signal. This pin may be used to input a TTL-level signal to be used as the system clock.
LED Drivers		
LED	0	Direct LED drive capability. All Port C pins have the capability to drive an LED without any other external components. These pins have programmable drive strengths set by the GPIO block.
On-Chip Debugger	•	
DBG	I/O	Debug. This signal is the control and data input and output to and from the On-Chip Debugger.
		Caution: The DBG pin is open-drain and requires an external pull-up resistor to ensure proper operation.
Reset		
RESET	I/O	RESET. Generates a reset when asserted (driven Low). Also serves as a reset indicator; the Z8 Encore! forces this pin low when in reset. This pin is open-drain and features an enabled internal pull-up resistor.
Power Supply		
V _{DD}	Ι	Digital power supply.
AV _{DD}	I	Analog power supply.
V _{SS}	I	Digital ground.
AV _{SS}	I	Analog ground.
		gnals are available only in the 28-pin packages with ADC. They are replaced by PB6 kages without ADC.

Table 4. Signal Descriptions (Continued)

29

Bit	7	6	5	4	3	2	1	0
Field	POR STOP WDT EXT Reserved							·
RESET	:	See Table 13	3	0	0	0	0	0
R/W	R	R	R	R	R	R	R	R
Address				FF	ОH			
Bit	Descriptio	Description						
[7] POR	Power-On Reset Indicator This bit is set to 1 if a Power-On Reset event occurs and is reset to 0, if a WDT time-out or Stop Mode Recovery occurs. Reading this register also reset this bit to 0.					out or Stop		
[6] STOP	Stop Mode Recovery Indicator This bit is set to 1 if a Stop Mode Recovery occurs. If the STOP and WDT bits are both set to 1, the Stop Mode Recovery occurs because of a WDT time-out. If the STOP bit is 1 and the WDT bit is 0, the Stop Mode Recovery is not caused by a WDT time-out. This bit is reset by a Power On Reset or a WDT time-out that occurred while not in STOP Mode. Reading this register also resets this bit.					nd the WDT by a Power-		
[5] WDT	Watchdog Timer Time-Out Indicator This bit is set to 1 if a WDT time-out occurs. A Power-On Reset resets this pin. A Stop Mode Recovery from a change in an input pin also resets this bit. Reading this register resets this bit. This read must occur before clearing the WDT interrupt.							
[4] EXT	External Reset Indicator If this bit is set to 1, a reset initiated by the external RESET pin occurred. A Power-On Reset or a Stop Mode Recovery from a change in an input pin resets this bit. Reading this register resets this bit.							
[3:0]	Reserved These regis	sters are res	erved and n	nust be prog	rammed to	0000.		

Table 13. POR Indicator Values

Reset or Stop Mode Recovery Event	POR	STOP	WDT	EXT
Power-On Reset	1	0	0	0
Reset using RESET pin assertion	0	0	0	1
Reset using Watchdog Timer time-out	0	0	1	0
Reset using the On-Chip Debugger (OCTCTL[1] set to 1)	1	0	0	0
Reset from STOP Mode using DBG pin driven Low	1	0	0	0
Stop Mode Recovery using GPIO pin transition	0	1	0	0
Stop Mode Recovery using WDT time-out	0	1	1	0

Port A–D Address Registers

The Port A–D Address registers select the GPIO port functionality accessible through the Port A–D Control registers. The Port A–D Address and Control registers combine to provide access to all GPIO port controls; see Tables 18 and 19.

R/W R/W R/W R/W R/W R/W R/W R/W	Bit	7	6	5	4	3	2	1	0
R/W R/W R/W R/W R/W R/W R/W R/W	Field		PADDR[7:0]						
	RESET		00H						
Address FD0H, FD4H, FD8H, FDCH	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
	Address	FD0H, FD4H, FD8H, FDCH							

Table 18. Port A–D GPIO Address Registers (PxADDR)

Bit	Description
[7:0]	Port Address
PADDR	The port address selects one of the subregisters accessible through the Port Control Register.

Table 19. Port Control Subregister Access

PADDR[7:0]	Port Control Subregister accessible using the Port A–D Control registers
00H	No function. Provides some protection against accidental port reconfiguration.
01H	Data Direction
02H	Alternate Function
03H	Output Control (open-drain)
04H	High Drive Enable
05H	Stop Mode Recovery Source Enable
06H	Pull-Up Enable
07H	Alternate Function Set 1
08H	Alternate Function Set 2
09H–FFH	No function

Interrupt Request 0 Register

The Interrupt Request 0 (IRQ0) Register, shown in Table 35 stores the interrupt requests for both vectored and polled interrupts. When a request is sent to the Interrupt Controller, the corresponding bit in the IRQ0 Register becomes 1. If interrupts are globally enabled (vectored interrupts), the Interrupt Controller passes an interrupt request to the eZ8 CPU. If interrupts are globally disabled (polled interrupts), the eZ8 CPU can read the Interrupt Request 0 Register to determine if any interrupt requests are pending.

Bit	7	6	5	4	3	2	1	0
Field	Reserved	T1I	TOI		Rese	erved		ADCI
RESET	0	0	0	0	0	0	0	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Address		FC0H						
Bit	Description	n						

Table 35. Interrupt Request 0 Register (IRQ0)

Bit	Description
[7]	Reserved
	This bit is reserved and must be programmed to 0.
[6]	Timer 1 Interrupt Request
T1I	0 = No interrupt request is pending for timer 1.
	1 = An interrupt request from timer 1 is awaiting service.
[5]	Timer 0 Interrupt Request
TOI	0 = No interrupt request is pending for timer 0.
	1 = An interrupt request from timer 0 is awaiting service.
[4:1]	Reserved
	These registers are reserved and must be programmed to 0000.
[0]	ADC Interrupt Request
ADCI	0 = No interrupt request is pending for the analog-to-digital converter.
	1 = An interrupt request from the analog-to-digital converter is awaiting service.

Interrupt Request 1 Register

The Interrupt Request 1 (IRQ1) Register, shown in Table 36, stores interrupt requests for both vectored and polled interrupts. When a request is sent to the Interrupt Controller, the corresponding bit in the IRQ1 Register becomes 1. If interrupts are globally enabled (vectored interrupts), the Interrupt Controller passes an interrupt request to the eZ8 CPU. If interrupts are globally disabled (polled interrupts), the eZ8 CPU can read the Interrupt Request 1 Register to determine if any interrupt requests are pending.

Bit	7	6	5	4	3	2	1	0	
Field	PA7I	PA6CI	PA5I	PA4I	PA3I	PA2I	PA1I	PA0I	
RESET	0	0	0	0	0	0	0	0	
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Address		FC3H							
Bit	Descriptio	n							

Table 36. Interrupt Request 1 Register (IRQ1)

Bit	Description						
[7]	Port A7						
PA7I	0 = No interrupt request is pending for GPIO Port A.						
	1 = An interrupt request from GPIO Port A.						
[6]	Port A6 or Comparator Interrupt Request						
PA6CI	0 = No interrupt request is pending for GPIO Port A or comparator.						
	1 = An interrupt request from GPIO Port A or comparator.						
[5]	Port A Pin <i>x</i> Interrupt Request						
PAxI	0 = No interrupt request is pending for GPIO Port A pin x.						
	1 = An interrupt request from GPIO Port A pin x is awaiting service.						

is enabled, the timer output pin changes state (from Low to High or from High to Low) at timer reload.

Observe the following steps for configuring a timer for COUNTER Mode and for initiating the count:

- 1. Write to the Timer Control Register to:
 - Disable the timer
 - Configure the timer for COUNTER Mode
 - Select either the rising edge or falling edge of the timer input signal for the count. This selection also sets the initial logic level (High or Low) for the timer output alternate function. However, the timer output function is not required to be enabled.
- 2. Write to the Timer High and Low Byte registers to set the starting count value. This only affects the first pass in COUNTER Mode. After the first timer reload in COUNTER Mode, counting always begins at the reset value 0001H. In COUNTER Mode, the Timer High and Low Byte registers must be written with the value 0001H.
- 3. Write to the Timer Reload High and Low Byte registers to set the reload value.
- 4. If appropriate, enable the timer interrupt and set the timer interrupt priority by writing to the relevant interrupt registers.
- 5. Configure the associated GPIO port pin for the timer input alternate function.
- 6. If using the timer output function, configure the associated GPIO port pin for the timer output alternate function.
- 7. Write to the Timer Control Register to enable the timer.

In COUNTER Mode, the number of timer input transitions is calculated with the following equation:

Counter Mode Timer Input Transitions = Current Count Value – Start Value

COMPARATOR COUNTER Mode

In COMPARATOR COUNTER Mode, the timer counts the input transitions from the analog comparator output. The TPOL bit in the Timer Control Register determines whether the count occurs on the rising edge or the falling edge of the comparator output signal. In COMPARATOR COUNTER Mode, the prescaler is disabled.

Bit	Description (Continued)
[2:0]	Timer Mode
TMODE	This field along with the TMODEHI bit in TxCTL0 register determines the operating mode of
	the timer. TMODEHI is the most significant bit of the timer mode selection value.
	0000 = ONE-SHOT Mode.
	0001 = CONTINUOUS Mode.
	0010 = COUNTER Mode.
	0011 = PWM SINGLE OUTPUT Mode.
	0100 = CAPTURE Mode.
	0101 = COMPARE Mode.
	0110 = GATED Mode.
	0111 = CAPTURE/COMPARE Mode.
	1000 = PWM DUAL OUTPUT Mode.
	1001 = CAPTURE RESTART Mode.
	1010 = COMPARATOR COUNTER Mode.

91

Watchdog Timer Refresh

Upon first enable, the Watchdog Timer is loaded with the value in the Watchdog Timer Reload registers. The Watchdog Timer counts down to 000000H unless a WDT instruction is executed by the eZ8 CPU. Execution of the WDT instruction causes the downcounter to be reloaded with the WDT reload value stored in the Watchdog Timer Reload registers. Counting resumes following the Reload operation.

When the Z8 Encore! F0830 Series devices are operating in DEBUG Mode (using the On-Chip Debugger), the Watchdog Timer must be continuously refreshed to prevent any WDT time-outs.

Watchdog Timer Time-Out Response

The Watchdog Timer times out when the counter reaches 000000H. A time-out of the Watchdog Timer generates either an interrupt or a system reset. The WDT_RES Flash option bit determines the time-out response of the Watchdog Timer. See *the* <u>Flash Option</u> <u>Bits</u> chapter on page 124 for information about programming the WDT_RES Flash option bit.

WDT Interrupt in Normal Operation

If configured to generate an interrupt when a time-out occurs, the Watchdog Timer issues an interrupt request to the Interrupt Controller and sets the WDT status bit in the Reset Status Register. If interrupts are enabled, the eZ8 CPU responds to the interrupt request by fetching the Watchdog Timer interrupt vector and executing code from the vector address. After time-out and interrupt generation, the Watchdog Timer counter resets to its maximum value of FFFFFH and continues counting. The Watchdog Timer counter will not automatically return to its reload value.

The Reset Status Register (see <u>Table 12</u> on page 29) must be read before clearing the WDT interrupt. This read clears the WDT time-out flag and prevents further WDT interrupts occurring immediately.

WDT Interrupt in STOP Mode

If configured to generate an interrupt when a time-out occurs and the Z8 Encore! F0830 Series devices are in STOP Mode, the Watchdog Timer automatically initiates a Stop Mode Recovery and generates an interrupt request. Both the WDT status bit and the STOP bit in the Watchdog Timer Control Register are set to 1 following a WDT time-out in STOP Mode. See *the* <u>Reset and Stop Mode Recovery</u> *chapter on page 21* for more information about Stop Mode Recovery operations.

If interrupts are enabled, following completion of the Stop Mode Recovery, the eZ8 CPU responds to the interrupt request by fetching the Watchdog Timer interrupt vector and executes the code from the vector address.

Table 62. Watchdog Timer Reload Low Byte Register (WDTL)

Bit	7	6	5	4	3	2	1	0	
Field	WDTL								
RESET	0	0	0	0	0	0	0	0	
R/W	R/W*	R/W*	R/W*	R/W*	R/W*	R/W*	R/W*	R/W*	
Address	FF3H								
Note: *A read returns the current WDT count value; a write sets the appropriate reload value.									
Bit	Bit Description								

DR	Description
[7:0]	WDT Reload Low
WDTL	Least significant byte (LSB), bits[7:0] of the 24-bit WDT reload value.

Flash Operation Timing Using the Flash Frequency Registers

Before performing either a Program or Erase operation on Flash memory, the user must first configure the Flash Frequency High and Low Byte registers. The Flash frequency registers allow programming and erasing of the Flash with system clock frequencies ranging from 10kHz to 20MHz.

The Flash Frequency High and Low Byte registers combine to form a 16-bit value, FFREQ, to control the timing for Flash Program and Erase operations. The 16-bit binary Flash frequency value must contain the system clock frequency (in kHz). This value is calculated using the following equation:

 $FFREQ[15:0] = \frac{System Clock Frequency (Hz)}{1000}$

Caution: Flash programming and erasure are not supported for system clock frequencies below 10kHz or above 20MHz. The Flash Frequency High and Low Byte registers must be loaded with the correct value to ensure operation of the Z8 Encore! F0830 Series devices.

Flash Code Protection Against External Access

The user code contained within Flash memory can be protected against external access by using the On-Chip Debugger. Programming the FRP Flash option bit prevents reading of the user code using the On-Chip Debugger. For more information, see the <u>Flash Option</u> <u>Bits</u> chapter on page 124 and the <u>On-Chip Debugger</u> chapter on page 139.

Flash Code Protection Against Accidental Program and Erasure

The Z8 Encore! F0830 Series provides several levels of protection against accidental program and erasure of the Flash memory contents. This protection is provided by a combination of the Flash option bits, the register locking mechanism, the page select redundancy and the sector level protection control of the Flash Controller.

Flash Code Protection Using the Flash Option Bits

The FHSWP and FWP Flash option bits combine to provide three levels of Flash program memory protection, as listed in Table 71. See the <u>Flash Option Bits</u> chapter on page 124 for more information.

Note: The bit values used in Table 87 are set at the factory; no calibration is required.

	Trigger Voltage
VBO_TRIM	Level
000	1.7
001	1.6
101	2.2
110	2.0
100	2.4
111	1.8

Table 88. VBO Trim Definition

On-chip Flash memory is only guaranteed to perform write operations when voltage supplies exceed 2.7 V. Write operations at voltages below 2.7 V will yield unpredictable results.

Table 89. Trim Option Bits at 0006H (TCLKFLT)

Bit	7	6	5	4	3	2	1	0	
Field	DivBy4	Reserved	DlyCtl1	DlyCtl2	DlyCtl3	Reserved	FilterSel1	FilterSel0	
RESET	0	1	0	0	0	1	0	0	
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Address	Information Page Memory 0026H								
Note: U = Unchanged by Reset. R/W = Read/Write.									

Bit	Description
[7]	Output Frequency Selection
DivBy4	0 = Output frequency is input frequency.
	1 = Output frequency is 1/4 of the input frequency.
[6]	Reserved
	This bit is reserved and must be programmed to 1.
[5:3]	Delay Control
DlyCtlx	3-bit selection for the pulse width that can be filtered. See Table 90 for Delay Control values at
	3.3V operation voltage.
[2]	Reserved
	This bit is reserved and must be programmed to 1.
Notes: x	indicates bit values 3–1; y indicates bit values 1–0.

>

- Watchdog Timer reset
- Asserting the RESET pin Low to initiate a reset
- Driving the DBG pin Low while the device is in STOP Mode initiates a system reset

OCD Data Format

The OCD interface uses the asynchronous data format defined for RS-232. Each character is transmitted as 1 start bit, 8 data bits (least-significant bit first) and 1 stop bit. See Figure 23.

 START	DO	D1	D2	D3	D4	D5	D6	D7	STOP
OTAR	00	ы	02	05	D4	00	DU	ы	0101

Figure 23. OCD Data Format

OCD Autobaud Detector/Generator

To run over a range of baud rates (data bits per second) with various system clock frequencies, the On-Chip Debugger contains an autobaud detector/generator. After a reset, the OCD is idle until it receives data. The OCD requires that the first character sent from the host is the character 80H. The character 80H has eight continuous bits low (one Start bit plus 7 data bits), framed between high bits. The autobaud detector measures this period and sets the OCD baud rate generator accordingly.

The autobaud detector/generator is clocked by the system clock. The minimum baud rate is the system clock frequency divided by 512. For optimal operation with asynchronous datastreams, the maximum recommended baud rate is the system clock frequency divided by 8. The maximum possible baud rate for asynchronous datastreams is the system clock frequency divided by 4, but this theoretical maximum is possible only for low noise designs with clean signals. Table 94 lists minimum and recommended maximum baud rates for sample crystal frequencies.

System Clock Frequency (MHz)	Recommended Maximum Baud Rate (kbps)	Recommended Standard PC Baud Rate (bps)	Minimum Baud Rate (kbps)
20.0	2500.0	1,843,200	39
1.0	125.0	115,200	1.95
0.032768 (32 KHz)	4.096	2400	0.064

Table 9	94. OCD	Baud-Rate	Limits

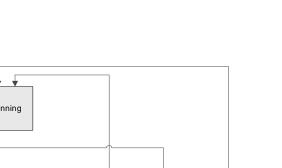


Figure 24. Oscillator Control Clock Switching Flow Chart

Crystal Oscillator

The products in the Z8 Encore! F0830 Series contain an on-chip crystal oscillator for use with external crystals with 32kHz to 20MHz frequencies. In addition, the oscillator supports external RC networks with oscillation frequencies up to 4MHz or ceramic resonators with frequencies up to 8MHz. The on-chip crystal oscillator can be used to generate the primary system clock for the internal eZ8 CPU and the majority of its on-chip peripherals. Alternatively, the X_{IN} input pin can also accept a CMOS-level clock input signal (32kHz–20MHz). If an external clock generator is used, the X_{OUT} pin must remain unconnected. The on-chip crystal oscillator also contains a clock filter function. To see the settings for this clock filter, see Table 90 on page 133. By default, however, this clock filter is disabled; therefore, no divide to the input clock (namely, the frequency of the signal on the X_{IN} input pin) can determine the frequency of the system clock when using the default settings.

Note: Although the X_{IN} pin can be used as an input for an external clock generator, the CLKIN pin is better suited for such use. See *the* System Clock Selection *section on page 151* for more information.

Operating Modes

The Z8 Encore! F0830 Series products support the following four OSCILLATOR Modes:

- Minimum power for use with very low frequency crystals (32kHz to 1MHz)
- Medium power for use with medium frequency crystals or ceramic resonators (0.5 MHz to 8MHz)
- Maximum power for use with high frequency crystals (8MHz to 20MHz)
- On-chip oscillator configured for use with external RC networks (<4MHz)

The OSCILLATOR Mode is selected using user-programmable Flash option bits. See the <u>Flash Option Bits</u> chapter on page 124 for more information.

Crystal Oscillator Operation

The XTLDIS Flash option bit controls whether the crystal oscillator is enabled during reset. The crystal may later be disabled after reset if a new oscillator has been selected as the system clock. If the crystal is manually enabled after reset through the OSCCTL Reg-

	V _{DD} = 2.7 to 3.6V T _A = 0°C to +70°C			V _{DD} = 2.7 to 3.6V T _A = -40°C to +105°C					
Parameter	Min	Тур	Max	Min	Тур	Max	Units	Notes	
NVDS Byte Read Time				71	-	258	μs	Withsystemclockat 20MHz	
NVDS Byte Pro- gram Time				126	-	136	μs	Withsystemclockat 20MHz	
Data Retention				10	_	_	years	25°C	
Endurance				100,000	-	-	cycles	Cumulative write cycles for entire memory	

Table 121. Nonvolatile Data Storage

Note: For every 200 writes, a maintenance operation is necessary. In this rare occurrence, the write can take up to 58 ms to complete.

Table 122. Analog-to-Digital Converter Electrical Characteristics and Timing

		V _{DD} = 2.7 to 3.6V T _A = 0°C to +70°C			V _{DD} = 2.7 to 3.6V T _A = -40°C to +105°C					
Symbol	Parameter	Min	Тур	Max	Min	Тур	Мах	Units	Conditions	
	Resolution				_	10	_	bits		
	Differential Nonlinearity (DNL) ¹				-1	-	+4	LSB		
	Integral Nonlinearity (INL) ¹				-5	_	+5	LSB		
	Gain Error					15		LSB		
	Offset Error				-15	_	15	LSB	PDIP package	
	-				-9	-	9	LSB	Other packages	
V _{REF}	On chip reference				1.9	2.0	2.1	V		
	Active Power Consumption					4		mA		
	Power Down Current						1	μA		

Note: ¹When the input voltage is lower than 20mV, the conversion error is out of spec.

193

>

ADC						
Part Number	Flash	RAM	NVDS		Description	
Z8F1233QH020EG	12KB	256	No	0	QFN 20-pin	
Z8F1232SJ020EG	12KB	256	No	8	SOIC 28-pin	
Z8F1232HJ020EG	12KB	256	No	8	SSOP 28-pin	
Z8F1232PJ020EG	12KB	256	No	8	PDIP 28-pin	
Z8F1232QJ020EG	12KB	256	No	8	QFN 28-pin	
Z8F1233SJ020EG	12KB	256	No	0	SOIC 28-pin	
Z8F1233HJ020EG	12KB	256	No	0	SSOP 28-pin	
Z8F1233PJ020EG	12KB	256	No	0	PDIP 28-pin	
Z8F1233QJ020EG	12KB	256	No	0	QFN 28-pin	
Z8 Encore! F0830 with	h 8KB Flash	I				
Standard Temperatur	e: 0°C to 70°	°C				
Z8F0830SH020SG	8KB	256	Yes	7	SOIC 20-pin	
Z8F0830HH020SG	8KB	256	Yes	7	SSOP 20-pin	
Z8F0830PH020SG	8KB	256	Yes	7	PDIP 20-pin	
Z8F0830QH020SG	8KB	256	Yes	7	QFN 20-pin	
Z8F0831SH020SG	8KB	256	Yes	0	SOIC 20-pin	
28F0831HH020SG	8KB	256	Yes	0	SSOP 20-pin	
Z8F0831PH020SG	8KB	256	Yes	0	PDIP 20-pin	
Z8F0831QH020SG	8KB	256	Yes	0	QFN 20-pin	
Z8F0830SJ020SG	8KB	256	Yes	8	SOIC 28-pin	
Z8F0830HJ020SG	8KB	256	Yes	8	SSOP 28-pin	
Z8F0830PJ020SG	8KB	256	Yes	8	PDIP 28-pin	
Z8F0830QJ020SG	8KB	256	Yes	8	QFN 28-pin	
Z8F0831SJ020SG	8KB	256	Yes	0	SOIC 28-pin	
Z8F0831HJ020SG	8KB	256	Yes	0	SSOP 28-pin	
Z8F0831PJ020SG	8KB	256	Yes	0	PDIP 28-pin	
Z8F0831QJ020SG	8KB	256	Yes	0	QFN 28-pin	
Extended Temperatur	re: -40°C to	105°C				
Z8F0830SH020EG	8KB	256	Yes	7	SOIC 20-pin	
Z8F0830HH020EG	8KB	256	Yes	7	SSOP 20-pin	
Z8F0830PH020EG	8KB	256	Yes	7	PDIP 20-pin	
Z8F0830QH020EG	8KB	256	Yes	7	QFN 20-pin	
Z8F0831SH020EG	8KB	256	Yes	0	SOIC 20-pin	

Table 128. Z8 Encore! XP F0830 Series Ordering Matrix

207

Table 129 lists the pin count by package.

	Pin Count				
Package	20	28			
PDIP	\checkmark				
QFN	\checkmark				
SOIC	\checkmark				
SSOP	\checkmark				

Table 129. Package and Pin Count Description

Analog-to-Digital Converter

For more information about these ADC registers, see the <u>ADC Control Register Defini-</u> tions section on page 101.

Hex Address: F70

Bit	7	6	5	4	3	2	1	0
Field	START	Reserved	REFEN	ADCEN	Reserved	ANAIN[2:0]		
RESET	0	0	0	0	0	0	0	0
R/W	R/W1	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Address	F70h							

Table 146. ADC Control Register 0 (ADCCTL0)

Bit	Description
[7] START	 ADC Start/Busy 0 = Writing to 0 has no effect; reading a 0 indicates that the ADC is available to begin a conversion. 1 = Writing to 1 starts a conversion; reading a 1 indicates that a conversion is currently in progress.
[6]	This bit is reserved and must be programmed to 0.
[5] REFEN	 Reference Enable 0 = Internal reference voltage is disabled allowing an external reference voltage to be used by the ADC. 1 = Internal reference voltage for the ADC is enabled. The internal reference voltage can be measured on the V_{REF} pin.
[4] ADCEN	ADC Enable 0 = ADC is disabled for low power operation. 1 = ADC is enabled for normal use.
[3]	This bit is reserved and must be programmed to 0.
[2:0] ANAIN	Analog Input Select000 = ANA0 input is selected for analog to digital conversion.001 = ANA1 input is selected for analog to digital conversion.010 = ANA2 input is selected for analog to digital conversion.011 = ANA3 input is selected for analog to digital conversion.100 = ANA4 input is selected for analog to digital conversion.101 = ANA5 input is selected for analog to digital conversion.101 = ANA5 input is selected for analog to digital conversion.111 = ANA6 input is selected for analog to digital conversion.111 = ANA7 input is selected for analog to digital conversion.