E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	eZ8
Core Size	8-Bit
Speed	20MHz
Connectivity	-
Peripherals	Brown-out Detect/Reset, LED, POR, PWM, WDT
Number of I/O	17
Program Memory Size	12KB (12K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 3.6V
Data Converters	A/D 7x10b
Oscillator Type	Internal
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SOIC (0.295", 7.50mm Width)
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/zilog/z8f1232sh020sg

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Z8 Encore![®] F0830 Series Product Specification

Table 89.	Trim Option Bits at 0006H (TCLKFLT) 132
Table 90.	ClkFlt Delay Control Definition
Table 91.	Write Status Byte 135
Table 92.	Read Status Byte
Table 93.	NVDS Read Time
Table 94.	OCD Baud-Rate Limits
Table 95.	On-Chip Debugger Command Summary 144
Table 96.	OCD Control Register (OCDCTL) 149
Table 97.	OCD Status Register (OCDSTAT) 150
Table 98.	Oscillator Configuration and Selection 152
Table 99.	Oscillator Control Register (OSCCTL) 154
Table 100.	Recommended Crystal Oscillator Specifications 158
Table 101.	Assembly Language Syntax Example 1 163
Table 102.	Assembly Language Syntax Example 2 164
Table 103.	Notational Shorthand
Table 104.	Additional Symbols 165
Table 105.	Arithmetic Instructions
Table 106.	Bit Manipulation Instructions 167
Table 107.	Block Transfer Instructions
Table 108.	CPU Control Instructions
Table 109.	Load Instructions
Table 110.	Rotate and Shift Instructions
Table 111.	Logical Instructions
Table 112.	Program Control Instructions 169
Table 113.	eZ8 CPU Instruction Summary 171
Table 114.	Op Code Map Abbreviations
Table 115.	Absolute Maximum Ratings
Table 116.	DC Characteristics
Table 117.	AC Characteristics
Table 118.	Power-On Reset and Voltage Brown-Out Electrical Characteristics and Tim- ing 190

Z8 Encore![®] F0830 Series Product Specification

Table 179.	Port C Input Data Registers (PCIN) 224
Table 180.	Port C Output Data Register (PCOUT) 225
Table 181.	Port D GPIO Address Register (PDADDR) 225
Table 182.	Port D Control Registers (PDCTL) 225
Table 183.	Port D Output Data Register (PDOUT) 226
Table 184.	Watchdog Timer Control Register (WDTCTL)
Table 185.	Reset Status Register (RSTSTAT) 226
Table 186.	Watchdog Timer Reload Upper Byte Register (WDTU) 227
Table 187.	Watchdog Timer Reload High Byte Register (WDTH) 227
Table 188.	Watchdog Timer Reload Low Byte Register (WDTL) 227
Table 189.	Trim Bit Address Register (TRMADR) 228
Table 190.	Trim Bit Data Register (TRMDR) 228
Table 191.	Flash Control Register (FCTL) 228
Table 192.	Flash Status Register (FSTAT) 229
Table 193.	Flash Page Select Register (FPS) 229
Table 194.	Flash Sector Protect Register (FPROT) 229
Table 195.	Flash Frequency High Byte Register (FFREQH) 229
Table 196.	Flash Frequency Low Byte Register (FFREQL)

Reset Controller

The Z8 Encore! F0830 Series products are reset using any one of the following: the RESET pin, Power-On Reset, Watchdog Timer (WDT) time-out, STOP Mode exit or Voltage Brown-Out (VBO) warning signal. The RESET pin is bidirectional; i.e., it functions as a reset source as well as a reset indicator.

On-Chip Debugger

The Z8 Encore! F0830 Series products feature an integrated On-Chip Debugger (OCD). The OCD provides a rich set of debugging capabilities, such as reading and writing registers, programming Flash memory, setting breakpoints and executing code. The OCD uses one single-pin interface for communication with an external host.

Acronyms and Expansions

This document references a number of acronyms; each is expanded in Table 2 for the reader's understanding.

Acronyms	Expansions
ADC	Analog-to-Digital Converter
NVDS	Nonvolatile Data Storage
WDT	Watchdog Timer
GPIO	General-Purpose Input/Output
OCD	On-Chip Debugger
POR	Power-On Reset
VBO	Voltage Brown-Out
IPO	Internal Precision Oscillator
PDIP	Plastic Dual Inline Package
SOIC	Small Outline Integrated Circuit
SSOP	Small Shrink Outline Package
QFN	Quad Flat No Lead
IRQ	Interrupt request
ISR	Interrupt service routine
MSB	Most significant byte
LSB	Least significant byte
PWM	Pulse Width Modulation
SAR	Successive Approximation Regis-

Table 2. Acronyms and Expansions

Address Space

The eZ8 CPU can access the following three distinct address spaces:

- The register file addresses access for the general purpose registers and the eZ8 CPU, peripheral and general purpose I/O port control registers
- The program memory addresses access for all of the memory locations having executable code and/or data
- The data memory addresses access for all of the memory locations containing only the data

The following sections describe these three address spaces. For more information about the eZ8 CPU and its address space, refer to the <u>eZ8 CPU Core User Manual (UM0128)</u>, which is available for download at <u>www.zilog.com</u>.

Register File

The register file address space in the Z8 Encore! MCU is 4KB (4096 bytes). The register file consists of two sections: control registers and general-purpose registers. When instructions are executed, registers defined as *source* are read and registers defined as *destinations* are written. The architecture of the eZ8 CPU allows all general purpose registers to function as accumulators, address pointers, index registers, stack areas or scratch pad memory.

The upper 256 bytes of the 4KB register file address space are reserved for controlling the eZ8 CPU, on-chip peripherals and the I/O ports. These registers are located at addresses from F00H to FFFH. Some of the addresses within the 256B Control Register section are reserved (unavailable). Reading from a reserved register file address returns an undefined value. Writing to reserved register file addresses is not recommended and can produce unpredictable results.

The on-chip RAM always begins at address 000H in the register file address space. The Z8 Encore! F0830 Series devices contain up to 256B of on-chip RAM. Reading from register file addresses outside the available RAM addresses (and not within the Control Register address space), returns an undefined value. Writing to these register file addresses has no effect.

Port A–D Control Registers

The Port A–D Control registers, shown in Table 20, set the GPIO port operation. The value in the corresponding Port A–D Address Register determines which subregister is read from or written to by a Port A–D Control Register transaction.

Bit	7	6	5	4	3	2	1	0
Field	PCTL							
RESET	00H							
R/W	R/W	R/W R/W R/W R/W R/W R/W R/W						
Address	FD1H, FD5H, FD9H, FDDH							

Table 20	. Port A–D	Control	Registers	(PxCTL)
----------	------------	---------	-----------	---------

Bit	Description
[7:0]	Port Control
PCTL	The Port Control Register provides access to all subregisters that configure the GPIO port operation.

Port A–D Data Direction Subregisters

The Port A–D Data Direction Subregister, shown in Table 21, is accessed through the Port A–D Control Register by writing 01H to the Port A–D Address Register.

Bit	7	6	5	4	3	2	1	0	
Field	DD7	DD6	DD5	DD4	DD3	DD2	DD1	DD0	
RESET	1	1	1	1	1	1	1	1	
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Address	lf 01H ii	If 01H in Port A–D Address Register, accessible through the Port A–D Control Register							

Table 21. Port A–D Data Direction Subregisters (PxDD)

Bit	Description
[7:0]	Data Direction
DDx	 These bits control the direction of the associated port pin. Port Alternate Function operation overrides the Data Direction Register setting. 0 = Output. Data in the Port A–D Output Data Register is driven onto the port pin. 1 = Input. The port pin is sampled and the value written into the Port A–D Input Data Register. The output driver is tristated.

Note: x indicates the specific GPIO port pin number (7–0).

Port A–D Pull-up Enable Subregisters

The Port A–D Pull-Up Enable Subregister is accessed through the Port A–D Control Register by writing 06H to the Port A–D Address Register. See Table 26. Setting the bits in the Port A–D Pull-Up Enable subregisters enables a weak internal resistive pull-up on the specified port pins.

	1	6	5	4	3	2	1	0
Field	PPUE7	PPUE6	PPUE5	PPUE4	PPUE3	PPUE2	PPUE1	PPUE0
RESET	0	0	0	0	0	0	0	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Address	If 06H in Port A–D Address Register, accessible through the Port A–D Control Register							

Table 26. Port A–D Pull-Up Enable Subregisters (PxPUE)

Bit	Description
[7:0]	Port Pull-Up Enable
P <i>x</i> PUE	0 = The weak pull-up on the port pin is disabled.
	1 = The weak pull-up on the port pin is enabled.
Note: x ii	ndicates the specific GPIO port pin number (7–0).

Z8 Encore![®] F0830 Series Product Specification

Architecture

Figure 9 displays the Interrupt Controller block diagram.

Figure 9. Interrupt Controller Block Diagram

Operation

This section describes the operational aspects of the following functions.

Master Interrupt Enable: see page 55

Interrupt Vectors and Priority: see page 56

Interrupt Assertion: see page 56

Software Interrupt Assertion: see page 57

Master Interrupt Enable

The master interrupt enable bit (IRQE) in the Interrupt Control Register globally enables and disables the interrupts.

Interrupts are globally enabled by any of the following actions:

- Execution of an EI (enable interrupt) instruction
- Execution of an IRET (return from interrupt) instruction

Interrupt Request 2 Register

The Interrupt Request 2 (IRQ2) Register, shown in Table 37, stores interrupt requests for both vectored and polled interrupts. When a request is sent to the Interrupt Controller, the corresponding bit in the IRQ2 Register becomes 1. If interrupts are globally enabled (vectored interrupts), the Interrupt Controller passes an interrupt request to the eZ8 CPU. If interrupts are globally disabled (polled interrupts), the eZ8 CPU can read the Interrupt Request 2 Register to determine if any interrupt requests are pending.

Bit	7	6	5	4	3	2	1	0
Field		Rese	erved		PC3I	PC2I	PC1I	PC0I
RESET	0	0	0	0	0	0	0	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Address				FC	6H			
Bit	Descriptio	n						
[7:4]	Reserved							
	These regis	sters are res	erved and n	nust be prog	rammed to	0000.		
[3]	Port C Pin	x Interrupt	Request					
PCxI	0 = No inter	rrupt reques	t is pending	for GPIO Po	ort C pin <i>x</i> .			
	1 = An inter	rupt reques	t from GPIO	Port C pin 2	r is awaiting	service.		
Note: x inc	lote: x indicates the specific GPIO port pin number (3–0).							

Table 37. Interrupt Request 2 Register (IRQ2)

IRQ0 Enable High and Low Bit Registers

Table 38 lists the priority control values for IRQ0. The IRQ0 Enable High and Low Bit registers, shown in Tables 39 and 40, form a priority-encoded enabling service for interrupts in the Interrupt Request 0 Register. Priority is generated by setting the bits in each register.

IRQ0I	ENH[<i>x</i>]	IRQ0ENL[x]	Priority	Description				
	0	0	Disabled	Disabled				
	0	1	Level 1	Low				
	1	0	Level 2	Nominal				
	1	1	Level 3	High				
Note: x indicates the register bits in the range 7–0.								

Table 38. IRQ0 Enable and Priority Encoding

reload. For the timer output to make a state change at a ONE-SHOT time-out (rather than a single cycle pulse), first set the TPOL bit in the Timer Control Register to the start value before enabling ONE-SHOT Mode. After starting the timer, set TPOL to the opposite bit value.

Observe the following steps for configuring a timer for ONE-SHOT Mode and for initiating the count:

- 1. Write to the Timer Control Register to:
 - Disable the timer
 - Configure the timer for ONE-SHOT Mode
 - Set the prescale value
 - Set the initial output level (High or Low) if using the timer output Alternate function
- 2. Write to the Timer High and Low Byte registers to set the starting count value.
- 3. Write to the Timer Reload High and Low Byte registers to set the reload value.
- 4. If appropriate, enable the timer interrupt and set the timer interrupt priority by writing to the relevant interrupt registers.
- 5. If using the timer output function, configure the associated GPIO port pin for the timer output alternate function.
- 6. Write to the Timer Control Register to enable the timer and initiate counting.

In ONE-SHOT Mode, the system clock always provides the timer input. The timer period is calculated with the following equation:

One-Shot Mode Time-Out Period (s) = $\frac{(\text{Reload Value} - \text{Start Value}) \times \text{Prescale}}{\text{System Clock Frequency (Hz)}}$

CONTINUOUS Mode

In CONTINUOUS Mode, the timer counts up to the 16-bit reload value stored in the Timer Reload High and Low Byte registers. The timer input is the system clock. Upon reaching the reload value, the timer generates an interrupt, the count value in the Timer High and Low Byte registers is reset to 0001H and the counting resumes. Additionally, if the timer output alternate function is enabled, the timer output pin changes state (from Low to High or from High to Low) at timer reload.

Observe the following steps for configuring a timer for CONTINUOUS Mode and for initiating the count:

1. Write to the Timer Control Register to:

- Disable the timer
- Configure the timer for CONTINUOUS Mode
- Set the prescale value
- If using the timer output Alternate function, set the initial output level (High or Low)
- 2. Write to the Timer High and Low Byte registers to set the starting count value (usually 0001H). This action only affects the first pass in CONTINUOUS Mode. After the first timer reload in CONTINUOUS Mode, counting always begins at the reset value of 0001H.
- 3. Write to the Timer Reload High and Low Byte registers to set the reload value.
- 4. Enable the timer interrupt (if appropriate) and set the timer interrupt priority by writing to the relevant interrupt registers.
- 5. Configure the associated GPIO port pin (if using the timer output function) for the timer output alternate function.
- 6. Write to the Timer Control Register to enable the timer and initiate counting.

In CONTINUOUS Mode, the system clock always provides the timer input. The timer period is calculated with the following equation:

Continuous Mode Time-Out Period (s) = $\frac{\text{Reload Value} \times \text{Prescale}}{\text{System Clock Frequency (Hz)}}$

If an initial starting value other than 0001H is loaded into the Timer High and Low Byte registers, use the ONE-SHOT Mode equation to determine the first time-out period.

COUNTER Mode

In COUNTER Mode, the timer counts input transitions from a GPIO port pin. The timer input is taken from the GPIO port pin: timer input alternate function. The TPOL bit in the Timer Control Register determines whether the count occurs on the rising edge or the falling edge of the timer input signal. In COUNTER Mode, the prescaler is disabled.

Caution: The input frequency of the timer input signal must not exceed one-fourth the system clock frequency.

Upon reaching the reload value stored in the Timer Reload High and Low Byte registers, the timer generates an interrupt, the count value in the Timer High and Low Byte registers is reset to 0001H and counting resumes. Additionally, if the timer output alternate function

tion and reload events. The user can configure the timer interrupt to be generated only at the input deassertion event or the reload event by setting the TICONFIG field of the TxCTL1 Register.

- 5. Configure the associated GPIO port pin for the timer input alternate function.
- 6. Write to the Timer Control Register to enable the timer.
- 7. Assert the timer input signal to initiate the counting.

CAPTURE/COMPARE Mode

In CAPTURE/COMPARE Mode, the timer begins counting on the first external timer input transition. The acceptable transition (rising edge or falling edge) is set by the TPOL bit in the Timer Control Register. The timer input is the system clock.

Every subsequent acceptable transition (after the first) of the timer input signal, captures the current count value. The capture value is written to the timer PWM High and Low Byte registers. When the capture event occurs, an interrupt is generated, the count value in the Timer High and Low Byte registers is reset to 0001H and the counting resumes. The INPCAP bit in the TxCTL1 Register is set to indicate that the timer interrupt is caused by an input capture event.

If no capture event occurs, the timer counts up to the 16-bit compare value stored in the Timer Reload High and Low Byte registers. Upon reaching the compare value, the timer generates an interrupt, the count value in the Timer High and Low Byte registers is reset to 0001H and counting resumes. The INPCAP bit in the TxCTL1 Register is cleared to indicate that the timer interrupt has not been caused by an input capture event.

Observe the following steps for configuring a timer for CAPTURE/COMPARE Mode and for initiating the count:

- 1. Write to the Timer Control Register to:
 - Disable the timer
 - Configure the timer for CAPTURE/COMPARE Mode.
 - Set the prescale value.
 - Set the capture edge (rising or falling) for the timer input.
- 2. Write to the Timer High and Low Byte registers to set the starting count value (typically 0001H).
- 3. Write to the Timer Reload High and Low Byte registers to set the compare value.
- 4. Enable the timer interrupt and set the timer interrupt priority by writing to the relevant interrupt registers.By default, the timer interrupt are generated for both input capture and Reload events. The user can configure the timer interrupt to be generated only at the input capture event or the reload event by setting TICONFIG field of the TxCTL1 Register.
- 5. Configure the associated GPIO port pin for the timer input alternate function.

Sample Time Register

The Sample Time Register, shown in Table 67, is used to program the length of active time for a sample after a conversion has begun by setting the START bit in the ADC Control Register. The number of system clock cycles required for the sample time varies from system to system, depending on the clock period used. The system designer should program this register to contain the number of system clocks required to meet a $1 \mu s$ minimum sample time.

Bit	7	6	5	4	3	2	1	0			
Field	Rese	erved		ST							
RESET	()	1	1 1 1 1 1							
R/W	R/	W		R/W							
Address			F75H								

Table 67.	Sample	Time	(ADCST)
-----------	--------	------	---------

Bit	Description
[7:6]	Reserved These bits are reserved and must be programmed to 00.
[5:0] ST	0h–Fh = Sample-hold time in number of system clock periods to meet 1 μ s minimum.

Because the minimum read time is much less than the write time, however, actual speed benefits are not always realized.

2. Use as few unique addresses as possible to optimize the impact of refreshing.

Clock Source	Characteristics	Required Setup
Internal precision RC oscillator	 32.8 kHz or 5.53MHz ± 4% accuracy when trimmed No external components required 	Unlock and write to the Oscillator Con- trol Register (OSCCTL) to enable and select oscillator at either 5.53MHz or 32.8 kHz
External crystal/res- onator	 32 kHz to 20MHz Very high accuracy (dependent on crystal or resonator used) Requires external components 	 Configure Flash option bits for correct external OSCILLATOR Mode Unlock and write OSCCTL to enable crystal oscillator, wait for it to stabilize and select as system clock (if the XTLDIS option bit has been de-asserted, no waiting is required)
External RC oscilla- tor	 32 kHz to 4MHz Accuracy dependent on external components 	 Configure Flash option bits for correct external OSCILLATOR Mode Unlock and write OSCCTL to enable crystal oscillator and select as system clock
External clock drive	 0 to 20MHz Accuracy dependent on external clock source 	 Write GPIO registers to configure PB3 pin for external clock function Unlock and write OSCCTL to select external system clock Apply external clock signal to GPIO
Internal Watchdog Timer Oscillator	 10 kHz nominal ± 40% accuracy; no external components required Low power consumption 	 Enable WDT if not enabled and wait until WDT oscillator is operating. Unlock and write to the Oscillator Con- trol Register (OSCCTL) to enable and select oscillator

Table 98. Oscillator Configuration and Selection

Caution: Unintentional accesses to the Oscillator Control Register can actually stop the chip by switching to a nonfunctioning oscillator. To prevent this condition, the oscillator control block employs a register unlocking/locking scheme.

OSC Control Register Unlocking/Locking

To write the Oscillator Control Register, unlock it by making two writes to the OSCCTL Register with the values E7H followed by 18H. A third write to the OSCCTL Register changes the value of the actual register and returns the register to a Locked state. Any other sequence of Oscillator Control Register writes have no effect. The values written to unlock the register must be ordered correctly, but are not necessarily consecutive. It is possible to write to or read from other registers within the unlocking/locking operation.

Bit	Description (Continued)
[4] POFEN	 Primary Oscillator Failure Detection Enable 1 = Failure detection and recovery of primary oscillator is enabled. 0 = Failure detection and recovery of primary oscillator is disabled.
[3] WDFEN	Watchdog Timer Oscillator Failure Detection Enable 1 = Failure detection of Watchdog Timer Oscillator is enabled. 0 = Failure detection of Watchdog Timer Oscillator is disabled.
[2:0] SCKSEL	System Clock Oscillator Select 000 = Internal Precision Oscillator functions as system clock at 5.53MHz. 001 = Internal Precision Oscillator functions as system clock at 32 kHz. 010 = Crystal oscillator or external RC oscillator functions as system clock. 011 = Watchdog Timer Oscillator functions as system clock. 100 = External clock signal on PB3 functions as system clock. 101 = Reserved. 110 = Reserved. 111 = Reserved.

									-			
Assembly		Add Mc	ress ode	Op Code(s)			Fla	ags			Fetch	Instr.
Mnemonic	Symbolic Operation	dst	src	(Hex)	С	Ζ	S	۷	D	Н	Cycles	Cycles
CLR dst	dst ← 00H	R		B0	-	_	_	_	-	_	2	2
		IR		B1	_						2	3
COM dst	dst ← ~dst	R		60	_	*	*	0	-	-	2	2
		IR		61	_						2	3
CP dst, src	dst - src	r	r	A2	*	*	*	*	_	_	2	3
		r	lr	A3	_						2	4
		R	R	A4	-						3	3
		R	IR	A5	_						3	4
		R	IM	A6	_						3	3
		IR	IM	A7	_						3	4
CPC dst, src	dst - src - C	r	r	1F A2	*	*	*	*	_	_	3	3
		r	lr	1F A3							3	4
		R	R	1F A4	_						4	3
		R	IR	1F A5							4	4
		R	IM	1F A6							4	3
		IR	IM	1F A7							4	4
CPCX dst, src	dst - src - C	ER	ER	1F A8	*	*	*	*	_	_	5	3
		ER	IM	1F A9							5	3
CPX dst, src	dst - src	ER	ER	A8	*	*	*	*	_	_	4	3
		ER	IM	A9							4	3
DA dst	dst ← DA(dst)	R		40	*	*	*	Х	_	_	2	2
		IR		41	_						2	3
DEC dst	dst ← dst - 1	R		30	_	*	*	*	_	_	2	2
		IR		31							2	3
DECW dst	dst ← dst - 1	RR		80	_	*	*	*	-	-	2	5
		IRR		81	-						2	6
DI	$IRQCTL[7] \leftarrow 0$			8F	_	_	-	-	_	-	1	2

Table 113. eZ8 CPU Instruction Summary (Continued)

Note: Flags Notation:

* = Value is a function of the result of the operation.

- = Unaffected.

X = Undefined.

0 = Reset to 0.

1 =Set to 1.

	V _{DD} = 2.7 to 3.6V T _A = 0°C to +70°C			V _{DD} T _A = -4	= 2.7 to 40°C to -	3.6V +105°C		
Parameter	Min	Тур	Max	Min	Тур	Max	Units	Notes
Flash Byte Read Time				50	-	-	ns	
Flash Byte Program Time				20	-	_	μs	
Flash Page Erase Time				50	-	-	ms	
Flash Mass Erase Time				50	-	-	ms	
Writes to Single Address Before Next Erase				-	-	2		
Flash Row Program Time				_	_	8	ms	Cumulative pro- gram time for single row cannot exceed limit before next erase. This parame- ter is only an issue when bypassing the Flash Controller.
Data Retention				10	_	_	years	25°C
Endurance				10,000	-	-	cycles	Program/erase cycles

Table 119. Flash Memory Electrical Characteristics and Timing

Table 120. Watchdog Timer Electrical Characteristics and Timing

		$V_{DD} = 2.7 \text{ to } 3.6 \text{ V}$ $V_{DD} = 2.7 \text{ to } 3.6 \text{ V}$ $T_{A} = 0^{\circ}\text{C to } +70^{\circ}\text{C}$ $T_{A} = 0^{\circ}\text{C to } +70^{\circ}\text{C}$								
Symbol	Parameter	Min	Тур	Max	Min	Тур	Max	Units	Conditions	
	Active power consumption					2	3	μA		
F _{WDT}	WDT oscillator frequency				2.5	5	7.5	kHz		

Hex Address: FD7

Bit	7	6	5	4	3	2	1	0				
Field	POUT7	POUT6	POUT5	POUT4	POUT3	POUT2	POUT1	POUT0				
RESET	0	0	0	0	0	0	0	0				
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W				
Address		FD7H										

Table 176. Port B Output Data Register (PBOUT)

Hex Address: FD8

Table 177. Port C GPIO Address Register (PCADDR)

Bit	7	6	5	4	3	2	1	0			
Field	PADDR[7:0]										
RESET		00H									
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
Address	FD8H										

Hex Address: FD9

Table 178. Port C Control Registers (PCCTL)

Bit	7	6	5	4	3	2	1	0			
Field		PCTL									
RESET		00H									
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
Address	FD9H										

Hex Address: FDA

Table 179. Port C Input Data Registers (PCIN)

Bit	7	6	5	4	3	2	1	0
Field	PIN7	PIN6	PIN5	PIN4	PIN3	PIN2	PIN1	PIN0
RESET	Х	Х	Х	Х	Х	Х	Х	Х
R/W	R	R	R	R	R	R	R	R
Address	FDAH							

Hex Address: FF1

Table 186. Watchdog Timer Reload Upper Byte Register (WDTU)

Bit	7	6	5	4	3	2	1	0
Field	WDTU							
RESET	0	0	0	0	0	0	0	0
R/W	R/W*							
Address	FF1H							
Note: *Read returns the current WDT count value; write sets the appropriate reload value.								

Hex Address: FF2

Table 187. Watchdog Timer Reload High Byte Register (WDTH)

Bit	7	6	5	4	3	2	1	0
Field	WDTH							
RESET	0	0	0	0	0	1	0	0
R/W	R/W*							
Address	FF2H							
Note: *Read returns the current WDT count value; write sets the appropriate reload value.								

Hex Address: FF3

Table 188. Watchdog Timer Reload Low Byte Register (WDTL)

Bit	7	6	5	4	3	2	1	0
Field	WDTL							
RESET	0	0	0	0	0	0	0	0
R/W	R/W*							
Address	FF3H							
Note: *Read returns the current WDT count value; write sets the appropriate reload value.								

Hex Addresses: FF4–FF5

This address range is reserved.