

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	eZ8
Core Size	8-Bit
Speed	20MHz
Connectivity	-
Peripherals	Brown-out Detect/Reset, LED, POR, PWM, WDT
Number of I/O	23
Program Memory Size	12KB (12K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 3.6V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/zilog/z8f1232sj020sg

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Z8 Encore![®] F0830 Series Product Specification

Table 59.	Watchdog Timer Control Register (WDTCTL)
Table 60.	Watchdog Timer Reload Upper Byte Register (WDTU)
Table 61.	Watchdog Timer Reload High Byte Register (WDTH)
Table 62.	Watchdog Timer Reload Low Byte Register (WDTL)
Table 63.	ADC Control Register 0 (ADCCTL0) 102
Table 64.	ADC Data High Byte Register (ADCD_H) 103
Table 65.	ADC Data Low Bits Register (ADCD_L) 103
Table 66.	Sample Settling Time (ADCSST) 104
Table 67.	Sample Time (ADCST) 105
Table 68.	Comparator Control Register (CMP0) 107
Table 69.	Z8 Encore! F0830 Series Flash Memory Configuration 108
Table 70.	Z8F083 Flash Memory Area Map 112
Table 71.	Flash Code Protection using the Flash Option Bits 115
Table 72.	Flash Control Register (FCTL) 119
Table 73.	Flash Status Register (FSTAT) 120
Table 74.	Flash Page Select Register (FPS) 121
Table 75.	Flash Sector Protect Register (FPROT) 122
Table 76.	Flash Frequency High Byte Register (FFREQH) 123
Table 77.	Flash Frequency Low Byte Register (FFREQL) 123
Table 78.	Trim Bit Address Register (TRMADR) 126
Table 79.	Trim Bit Address Map 126
Table 80.	Trim Bit Data Register (TRMDR) 127
Table 81.	Flash Option Bits at Program Memory Address 0000H 127
Table 82.	Flash Options Bits at Program Memory Address 0001H 128
Table 83.	Trim Option Bits at 0000H (ADCREF) 130
Table 84.	Trim Option Bits at 0001H (TADC_COMP) 130
Table 85.	Trim Bit Address Space
Table 86.	Trim Option Bits at 0002H (TIPO) 131
Table 87.	Trim Option Bits at 0003H (TVBO) 131
Table 88.	VBO Trim Definition

Nonvolatile Data Storage

The Nonvolatile Data Storage (NVDS) function uses a hybrid hardware/software scheme to implement a byte-programmable data memory and is capable of storing about 100,000 write cycles.

Internal Precision Oscillator

The Internal Precision Oscillator (IPO) function, with an accuracy of $\pm 4\%$ full voltage/ temperature range, is a trimmable clock source that requires no external components.

External Crystal Oscillator

The crystal oscillator circuit provides highly accurate clock frequencies using an external crystal, ceramic resonator or RC network.

10-Bit Analog-to-Digital Converter

The optional Analog-to-Digital Converter (ADC) converts an analog input signal to a 10bit binary number. The ADC accepts inputs from eight different analog input pins.

Analog Comparator

The analog comparator compares the signal at an input pin with either an internal programmable reference voltage or with a signal at the second input pin. The comparator output is used either to drive a logic output pin or to generate an interrupt.

Timers

Two enhanced 16-bit reloadable timers can be used for timing/counting events or for motor control operations. These timers provide a 16-bit programmable reload counter and operate in ONE-SHOT, CONTINUOUS, GATED, CAPTURE, CAPTURE RESTART, COMPARE, CAPTURE and COMPARE, PWM SINGLE OUTPUT and PWM DUAL OUTPUT Modes.

Interrupt Controller

The Z8 Encore! F0830 Series products support seventeen interrupt sources with sixteen interrupt vectors: up to five internal peripheral interrupts and up to twelve GPIO interrupts. These interrupts have three levels of programmable interrupt priority.

	_		-	
Address (Hex)	Register Description	Mnemonic	Reset (Hex)	Page No.
Analog-to-Digita	al Converter (ADC, cont'd)			
F73	ADC data low bits	ADCD_L	XX	103
F74	ADC sample settling time	ADCSST	0F	104
F75	ADC sample time	ADCST	3F	105
F76	Reserved	—	XX	
F77–F7F	Reserved	—	XX	
Low Power Con	trol			
F80	Power control 0	PWRCTL0	88	32
F81	Reserved	_	XX	
LED Controller				
F82	LED drive enable	LEDEN	00	51
F83	LED drive level high	LEDLVLH	00	51
F84	LED drive level low	LEDLVLL	00	52
F85	Reserved	_	XX	
Oscillator Contr	ol			
F86	Oscillator control	OSCCTL	A0	154
F87–F8F	Reserved	—	XX	
Comparator 0				
F90	Comparator 0 control	CMP0	14	107
F91–FBF	Reserved	_	XX	
Interrupt Contro	bller			
FC0	Interrupt request 0	IRQ0	00	58
FC1	IRQ0 enable high bit	IRQ0ENH	00	61
FC2	IRQ0 enable low Bit	IRQ0ENL	00	61
FC3	Interrupt request 1	IRQ1	00	59
FC4	IRQ1 enable high bit	IRQ1ENH	00	62
FC5	IRQ1 enable low bit	IRQ1ENL	00	63
FC6	Interrupt request 2	IRQ2	00	60
FC7	IRQ2 enable high bit	IRQ2ENH	00	64
FC8	IRQ2 enable low bit	IRQ2ENL	00	64
FC9–FCC	Reserved	—	XX	
FCD	Interrupt edge select	IRQES	00	66

Table 8. Register File Address Map (Continued)

Note: XX = Undefined.

General Purpose Input/Output

The Z8 Encore! F0830 Series products support a maximum of 25 port pins (Ports A–D) for General Purpose Input/Output (GPIO) operations. Each port contains control and data registers. The GPIO control registers determine data direction, open-drain, output drive current, programmable pull-ups, Stop Mode Recovery functionality and alternate pin functions. Each port pin is individually programmable. In addition, the Port C pins are capable of direct LED drive at programmable drive strengths.

GPIO Port Availability by Device

Table 15 lists the port pins available with each device and package type.

		10-Bit					
Devices	Package	ADC	Port A	Port B	Port C	Port D	Total I/O
Z8F1232, Z8F0830, Z8F0430, Z8F0230, Z8F0130	20-pin	Yes	[7:0]	[3:0]	[3:0]	[0]	17
Z8F1233, Z8F0831 Z8F0431, Z8F0231 Z8F0131	20-pin	No	[7:0]	[3:0]	[3:0]	[0]	17
Z8F1232, Z8F0830, Z8F0430, Z8F0230, Z8F0130	28-pin	Yes	[7:0]	[5:0]	[7:0]	[0]	23
Z8F1233, Z8F0831 Z8F0431, Z8F0231 Z8F0131	28-pin	No	[7:0]	[7:0]	[7:0]	[0]	25

Table 15. Port Availability by Device and Package Type

Port A–D Alternate Function Set 2 Subregisters

The Port A–D Alternate Function Set 2 Subregister, shown in Table 28, is accessed through the Port A–D Control Register by writing 08H to the Port A–D Address Register. The Alternate Function Set 2 subregisters select the alternate function available at a port pin. Alternate functions selected by setting or clearing bits in this register are defined in Table 16 in the <u>GPIO Alternate Functions</u> section on page 34.

Note: Alternate function selection on the port pins must also be enabled, as described in the <u>Port</u> <u>A–D Alternate Function Subregisters</u> section on page 42.

Bit	7	6	5	4	3	2	1	0
Field	PAFS27	PAFS26	PAFS25	PAFS24	PAFS23	PAFS22	PAFS21	PAFS20
RESET	0	0	0	0	0	0	0	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Address	If 08H ir	If 08H in Port A–D Address Register, accessible through the Port A–D Control Register						

Table 28. Port A–D Alternate Function Set 2 Subregisters (PxAFS2)

Bit Description

[7:0] Port Alternate Function Set 2

PAFS2x 0 = The Port Alternate function is selected, as defined in Table 16 in the <u>GPIO Alternate Func-</u> tions section on page 34.

> 1 = The Port Alternate function is selected, as defined in Table 16 in the <u>GPIO Alternate Func-</u> tions section on page 34.

Note: x indicates the specific GPIO port pin number (7–0).

LED Drive Level Low Register

The LED Drive Level Low Register, shown in Table 33, contains two control bits for each Port C pin. These two bits select one of four programmable current drive levels for each Port C pin. Each pin is individually programmable.

Bit	7	6	5	4	3	2	1	0
Field		LEDLVLL[7:0]						
RESET	0	0	0	0	0	0	0	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Address	F84H							

Table 33. LED Drive Level Low Register (LEDLVLL)

Bit	Description
[7:0]	LED Level Low Bits
LEDLVLL	{LEDLVLH, LEDLVLL} select one of four programmable current drive levels for each Port C pin.
	00 = 3mA.
	01 = 7mA.
	10 = 13mA.
	11 = 20mA.

Interrupt Edge Select Register

The interrupt edge select (IRQES) register determines whether an interrupt is generated for the rising edge or falling edge on the selected GPIO Port A or Port D input pin. See Table 47.

			5	4	3	2	1	0
Field	ES7	IES6	IES5	IES4	IES3	IES2	IES1	IES0
RESET	0	0	0	0	0	0	0	0
R/W F	R/W							
Address	FCDH							

Table 47. Interrupt Edge Select Register (IRQES)

Bit Description [7] Interrupt Edge Select x IESx 0 = An interrupt request is generated on the falling edge of the PAx input or PDx. 1 = An interrupt request is generated on the rising edge of the PAx input or PDx. Note: x indicates register bits in the address range 7–0.

- 3. Write to the Timer Reload High and Low Byte registers to set the reload value.
- 4. Clear the timer PWM High and Low Byte registers to 0000H. This allows user software to determine if interrupts are generated by either a capture event or a reload. If the PWM High and Low Byte registers still contain 0000H after the interrupt, the interrupt were generated by a reload.
- 5. Enable the timer interrupt, if appropriate and set the timer interrupt priority by writing to the relevant interrupt registers. By default, the timer interrupt is generated for both input capture and Reload events. The user can configure the timer interrupt to be generated only at the input capture event or the reload event by setting the TICONFIG field of the TxCTL1 Register.
- 6. Configure the associated GPIO port pin for the timer input alternate function.
- 7. Write to the Timer Control Register to enable the timer and initiate counting.

In CAPTURE Mode, the elapsed time between the timer start and the capture event can be calculated using the following equation:

Capture Elapsed Time (s) = $\frac{(Capture Value - Start Value) \times Prescale}{System Clock Frequency (Hz)}$

COMPARE Mode

In COMPARE Mode, the timer counts up to 16-bit maximum compare value stored in the Timer Reload High and Low Byte registers. The timer input is the system clock. Upon reaching the compare value, the timer generates an interrupt and counting continues (the timer value is not reset to 0001H). Additionally, if the timer output alternate function is enabled, the timer output pin changes state (from Low to High or from High to Low) upon compare.

If the timer reaches FFFFH, the timer resets to 0000H and continues counting.

Observe the following steps for configuring a timer for COMPARE Mode and for initiating the count:

- 1. Write to the Timer Control Register to:
 - Disable the timer
 - Configure the timer for COMPARE Mode
 - Set the prescale value
 - Set the initial logic level (High or Low) for the timer output alternate function
- 2. Write to the Timer High and Low Byte registers to set the starting count value.
- 3. Write to the Timer Reload High and Low Byte registers to set the compare value.

Timer Reload High and Low Byte Registers

The Timer 0–1 Reload High and Low Byte (TxRH and TxRL) registers, shown in Tables 52 and 53, store a 16-bit reload value, {TRH[7:0], TRL[7:0]}. Values written to the Timer Reload High Byte Register are stored in a temporary holding register. When a write to the Timer Reload Low Byte Register occurs, the temporary holding register value is written to the Timer High Byte Register. This operation allows simultaneous updates of the 16-bit timer reload value. In COMPARE Mode, the Timer Reload High and Low Byte registers store the 16-bit compare value.

Bit	7	6	5	4	3	2	1	0
Field		TRH						
RESET	1	1	1	1	1	1	1	1
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Address		F02H, F0AH						

Table 52. Timer 0–1 Reload High Byte Register (TxRH)

Table 53. Timer 0–1 Reload Low Byte Register (TxRL)

Bit	7	6	5	4	3	2	1	0
Field	TRL							
RESET	1	1	1	1	1	1	1	1
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Address	F03H, F0BH							

Bit	Description
[7:0]	Timer Reload Register High and Low
TRH, TRL	These two bytes form the 16-bit reload value, {TRH[7:0], TRL[7:0]}. This value sets the max- imum count value, which initiates a timer reload to 0001H. In COMPARE Mode, these two bytes form the 16-bit compare value.

Bit	Description (Continued)
[0]	Input Capture Event
INPCAP	This bit indicates whether the most recent timer interrupt is caused by a timer input capture event.
	 0 = Previous timer interrupt is not caused by timer input capture event. 1 = Previous timer interrupt is caused by timer input capture event.

Timer 0–1 Control Register 1

The Timer 0–1 Control (TxCTL1) registers enable/disable the timers, set the prescaler value, and determine the timer operating mode.

Bit	7	6	5	4	3	2	1	0	
Field	TEN	TPOL		PRES		TMODE			
RESET	0	0	0	0	0	0 0 0			
R/W	R/W	R/W	R/W	R/W	R/W	R/W R/W R/W			
Address				F07H,	F0FH				

Bit	Description
[7]	Timer Enable
TEN	0 = Timer is disabled. 1 = Timer enabled to count.

bits can only be set to 1. Thus, sectors can be protected, but not unprotected, via register write operations. Writing a value other than 5EH to the Flash Control Register deselects the Flash Sector Protect Register and reenables access to the Page Select Register. Observe the following procedure to setup the Flash Sector Protect Register from user code:

- 1. Write 00H to the Flash Control Register to reset the Flash Controller.
- 2. Write 5EH to the Flash Control Register to select the Flash Sector Protect Register.
- 3. Read and/or write the Flash Sector Protect Register which is now at Register File address FF9H.
- 4. Write 00H to the Flash Control Register to return the Flash Controller to its reset state.

The Sector Protect Register is initialized to 0 on reset, putting each sector into an unprotected state. When a bit in the Sector Protect Register is written to 1, the corresponding sector can no longer be written or erased. After setting a bit in the Sector Protect Register, the bit cannot be cleared by the user.

Byte Programming

Flash memory is enabled for byte programming after unlocking the Flash Controller and successfully enabling either mass erase or page erase. When the Flash Controller is unlocked and mass erase is successfully enabled, all of the program memory locations are available for byte programming. In contrast, when the Flash Controller is unlocked and page erase is successfully enabled, only the locations of the selected page are available for byte programming. An erased Flash byte contains all 1's (FFH). The programming operation can only be used to change bits from 1 to 0. To change a Flash bit (or multiple bits) from 0 to 1 requires execution of either the page erase or mass erase commands.

Byte programming can be accomplished using the On-Chip Debugger's write memory command or eZ8 CPU execution of the LDC or LDCI instructions. Refer to the <u>eZ8 CPU</u> <u>Core User Manual (UM0128)</u>, which is available for download on <u>www.zilog.com</u>, for the description of the LDC and LDCI instructions. While the Flash Controller programs the Flash memory, the eZ8 CPU idles, but the system clock and on-chip peripherals continue to operate. To exit programming mode and lock the Flash, write any value to the Flash Control Register, except the mass erase or page erase commands.

Caution: The byte at each address within Flash memory cannot be programmed (any bits written to 0) more than twice before an erase cycle occurs.

Flash Status Register

The Flash Status Register indicates the current state of the Flash Controller. This register can be read at any time. The read-only Flash Status Register shares its register file address with the write-only Flash Control Register.

Bit	7	6	5	4	3	2	1	0			
Field	Rese	erved	FSTAT								
RESET	0	0	0	0	0	0	0	0			
R/W	R	R	R	R	R	R	R	R			
Address		FF8H									

Table 73. Flash Status Register (FSTAT)

Bit	Description								
[7:6]	Reserved								
	These bits are reserved and must be programmed to 00.								
[5:0]	Flash Controller Status								
FSTAT	000000 = Flash Controller locked.								
	000001 = First unlock command received (73H written).								
	000010 = Second unlock command received (8CH written).								
	000011 = Flash Controller unlocked.								
	000100 = Sector protect register selected.								
	001xxx = Program operation in progress.								
	010xxx = Page Erase operation in progress.								
	100xxx = Mass Erase operation in progress.								

Note: The bit values used in Table 85 are set at the factory; no calibration is required.

Table 86. Trim Option Bits at 0002H (TIPO)

Bit	7	6	5	4	3	2	1	0			
Field	IPO_TRIM										
RESET		U									
R/W				R/	W						
Address			Infor	mation Page	e Memory 00)22H					
Note: U =	Unchanged b	by Reset. R/W	/ = Read/Writ	e.							

Bit	Description
[7:0]	Internal Precision Oscillator Trim Byte
IPO_TRIM	Contains trimming bits for the Internal Precision Oscillator.

Note: The bit values used in Table 86 are set at the factory; no calibration is required.

Table 87. Trim Option Bits at 0003H (TVBO)

Bit	7	6	5	4	3	2	0			
Field		Rese	erved		Reserved	d VBO_TRIM				
RESET		ι	J		U	1	0			
R/W		R/	W		R/W	R/W				
Address			Infor	mation Page	e Memory 00)23H				
Note: U =	Unchanged b	by Reset. R/W	/ = Read/Writ	e.						

Bit	Description
[7:3]	Reserved These bits are reserved and must be programmed to 11111.
[2]	VBO Trim Values
VBO_TRIM	Contains factory-trimmed values for the oscillator and the VBO.

>

Byte Write

To write a byte to the NVDS array, the user code must first push the address, then the data byte onto the stack. The user code issues a CALL instruction to the address of the Byte Write routine ($0 \times 20B3$). At the return from the subroutine, the write status byte resides in working register R0. The bit fields of this status byte are defined in Table 91. Additionally, user code should pop the address and data bytes off the stack.

The write routine uses 16 bytes of stack space in addition to the two bytes of address and data pushed by the user code. Sufficient memory must be available for this stack usage.

Because of the Flash memory architecture, NVDS writes exhibit a nonuniform execution time. In general, a write takes $136\mu s$ (assuming a 20MHz system clock). For every 200 writes, however, a maintenance operation is necessary. In this rare occurrence, the write takes up to 58ms to complete. Slower system clock speeds result in proportionally higher execution times.

NVDS byte writes to invalid addresses (those exceeding the NVDS array size) have no effect. Illegal write operations have a 7μ s execution time.

Bit	7	6	5	4	3	2	1	0				
Field	Reserved FE IGADDR \											
Default Value	0 0 0 0 0 0 0											
Bit	Description											
[7:3]	Reserved These bits are reserved and must be programmed to 00000.											
[2] FE	Flash Erro If a Flash e	-	ted, this bit i	s set to 1.								
[1] IGADDR	Illegal Address											
[0] WE	Write Error A failure occurs during data writes to Flash. When writing data into a certain address, a read- back operation is performed. If the read-back value is not the same as the value written, this bit											

Table 91. Write Status Byte

is set to 1.

	V _{DD} = 2.7 to 3.6V T _A = 0°C to +70°C				= 2.7 to 0°C to +				
Parameter	Min	Тур	Max	Min	Тур	Max	Units	Notes	
NVDS Byte Read Time				71	-	258	μs	Withsystemclockat 20MHz	
NVDS Byte Pro- gram Time				126	-	136	μs	Withsystemclockat 20MHz	
Data Retention				10	_	_	years	25°C	
Endurance				100,000	-	-	cycles	Cumulative write cycles for entire memory	

Table 121. Nonvolatile Data Storage

Note: For every 200 writes, a maintenance operation is necessary. In this rare occurrence, the write can take up to 58 ms to complete.

Table 122. Analog-to-Digital Converter Electrical Characteristics and Timing

		V _{DD} = 2.7 to 3.6V T _A = 0°C to +70°C			V _{DD} = 2.7 to 3.6V T _A = -40°C to +105°C					
Symbol	Parameter	Min	Тур	Max	Min	Тур	Мах	Units	Conditions	
	Resolution				_	10	_	bits		
	Differential Nonlinearity (DNL) ¹				-1	-	+4	LSB		
	Integral Nonlinearity (INL) ¹				-5	_	+5	LSB		
	Gain Error					15		LSB		
	Offset Error				-15	_	15	LSB	PDIP package	
	-				-9	-	9	LSB	Other packages	
V _{REF}	On chip reference				1.9	2.0	2.1	V		
	Active Power Consumption					4		mA		
	Power Down Current						1	μA		

Note: ¹When the input voltage is lower than 20mV, the conversion error is out of spec.

193

>

				-	-
Part Number	Flash	RAM	NVDS	ADC Channels	Description
Extended Temperatur	re: -40°C to	105°C			
Z8F0230SH020EG	2KB	256	Yes	7	SOIC 20-pin
Z8F0230HH020EG	2KB	256	Yes	7	SSOP 20-pin
Z8F0230PH020EG	2KB	256	Yes	7	PDIP 20-pin
Z8F0230QH020EG	2KB	256	Yes	7	QFN 20-pin
Z8F0231SH020EG	2KB	256	Yes	0	SOIC 20-pin
Z8F0231HH020EG	2KB	256	Yes	0	SSOP 20-pin
Z8F0231PH020EG	2KB	256	Yes	0	PDIP 20-pin
Z8F0231QH020EG	2KB	256	Yes	0	QFN 20-pin
Z8F0230SJ020EG	2KB	256	Yes	8	SOIC 28-pin
Z8F0230HJ020EG	2KB	256	Yes	8	SSOP 28-pin
Z8F0230PJ020EG	2KB	256	Yes	8	PDIP 28-pin
Z8F0230QJ020EG	2KB	256	Yes	8	QFN 28-pin
Z8F0231SJ020EG	2KB	256	Yes	0	SOIC 28-pin
Z8F0231HJ020EG	2KB	256	Yes	0	SSOP 28-pin
Z8F0231PJ020EG	2KB	256	Yes	0	PDIP 28-pin
Z8F0231QJ020EG	2KB	256	Yes	0	QFN 28-pin
Z8 Encore! F0830 with	h 1KB Flash				
Standard Temperatur	e: 0°C to 70	°C			
Z8F0130SH020SG	1KB	256	Yes	7	SOIC 20-pin
Z8F0130HH020SG	1KB	256	Yes	7	SSOP 20-pin
Z8F0130PH020SG	1KB	256	Yes	7	PDIP 20-pin
Z8F0130QH020SG	1KB	256	Yes	7	QFN 20-pin
Z8F0131SH020SG	1KB	256	Yes	0	SOIC 20-pin
Z8F0131HH020SG	1KB	256	Yes	0	SSOP 20-pin
Z8F0131PH020SG	1KB	256	Yes	0	PDIP 20-pin
Z8F0131QH020SG	1KB	256	Yes	0	QFN 20-pin
Z8F0130SJ020SG	1KB	256	Yes	8	SOIC 28-pin
Z8F0130HJ020SG	1KB	256	Yes	8	SSOP 28-pin
Z8F0130PJ020SG	1KB	256	Yes	8	PDIP 28-pin
Z8F0130QJ020SG	1KB	256	Yes	8	QFN 28-pin
Z8F0131SJ020SG	1KB	256	Yes	0	SOIC 28-pin
Z8F0131HJ020SG	1KB	256	Yes	0	SSOP 28-pin

Table 128. Z8 Encore! XP F0830 Series Ordering Matrix

Hex Address: FD3

Bit	7	6	5	4	3	2	1	0		
Field	POUT7	POUT6	POUT5	POUT4	POUT3	POUT2	POUT1	POUT0		
RESET	0	0	0	0	0	0	0	0		
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Address		FD3H								

Table 172. Port A Output Data Register (PAOUT)

Hex Address: FD4

Table 173. Port B GPIO Address Register (PBADDR)

Bit	7	6	5	4	3	2	1	0		
Field		PADDR[7:0]								
RESET		00H								
R/W	R/W	R/W R/W R/W R/W R/W R/W R/W								
Address		FD4H								

Hex Address: FD5

Table 174. Port B Control Registers (PBCTL)

Bit	7	6	5	4	3	2	1	0		
Field		PCTL								
RESET		00H								
R/W	R/W	R/W R/W R/W R/W R/W R/W R/W								
Address		FD5H								

Hex Address: FD6

Table 175. Port B Input Data Registers (PBIN)

Bit	7	6	5	4	3	2	1	0		
Field	PIN7	PIN6	PIN5	PIN4	PIN3	PIN2	PIN1	PIN0		
RESET	Х	Х	Х	Х	Х	Х	Х	Х		
R/W	R	R	R	R	R	R	R	R		
Address		FD6H								

Hex Address: FD7

Bit	7	6	5	4	3	2	1	0		
Field	POUT7	POUT6	POUT5	POUT4	POUT3	POUT2	POUT1	POUT0		
RESET	0	0	0	0	0	0	0	0		
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Address		FD7H								

Table 176. Port B Output Data Register (PBOUT)

Hex Address: FD8

Table 177. Port C GPIO Address Register (PCADDR)

Bit	7	6	5	4	3	2	1	0		
Field		PADDR[7:0]								
RESET		00H								
R/W	R/W	R/W R/W R/W R/W R/W R/W R/W								
Address		FD8H								

Hex Address: FD9

Table 178. Port C Control Registers (PCCTL)

Bit	7	6	5	4	3	2	1	0		
Field		PCTL								
RESET		00H								
R/W	R/W	R/W R/W R/W R/W R/W R/W R/W								
Address		FD9H								

Hex Address: FDA

Table 179. Port C Input Data Registers (PCIN)

Bit	7	6	5	4	3	2	1	0		
Field	PIN7	PIN6	PIN5	PIN4	PIN3	PIN2	PIN1	PIN0		
RESET	Х	Х	Х	Х	Х	Х	Х	Х		
R/W	R	R	R	R	R	R	R	R		
Address		FDAH								

Hex Address: FDB

Bit	7	6	5	4	3	2	1	0		
Field	POUT7	POUT6	POUT5	POUT4	POUT3	POUT2	POUT1	POUT0		
RESET	0	0	0	0	0	0	0	0		
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Address		FDBH								

Hex Address: FDC

Table 181. Port D GPIO Address Register (PDADDR)

Bit	7	6	5	4	3	2	1	0		
Field		PADDR[7:0]								
RESET		00H								
R/W	R/W	R/W R/W R/W R/W R/W R/W R/W								
Address		FDCH								

Hex Address: FDD

Table 182. Port D Control Registers (PDCTL)

Bit	7	6	5	4	3	2	1	0
Field	PCTL							
RESET	00H							
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Address	FDDH							

Hex Address: FDE

This address range is reserved.

Z8 Encore![®] F0830 Series Product Specification

read program memory CRC (0EH) 147 read register (09H) 146 read runtime counter (03H) 145 step instruction (10H) 148 stuff instruction (11H) 148 write data memory (0CH) 147 write OCD control register (04H) 145 write program counter (06H) 146 write program memory (0AH) 146 write register (08H) 146 on-chip debugger (OCD) 139 on-chip debugger signals 12 on-chip oscillator 157 one-shot mode 89 opcode map abbreviations 181 cell description 180 first 182 second after 1FH 183 operation 100 current measurement 99 voltage measurement timing diagram 100 Operational Description 21, 30, 33, 53, 68, 92, 98, 106, 108, 124, 134, 139, 151, 157, 161 OR 169 ordering information 200 ORX 169 oscillator signals 12

Ρ

p 164
Packaging 199
part selection guide 2
PC 165
peripheral AC and DC electrical characteristics 190
pin characteristics 13
Pin Descriptions 7
polarity 164
POP 168
pop using extended addressing 168
POPX 168
port availability, device 33
port input timing (GPIO) 195

port output timing, GPIO 196 power supply signals 12 power-on reset (POR) 23 program control instructions 169 program memory 15 PUSH 168 push using extended addressing 168 PUSHX 168 PWM mode 89, 90 PxADDR register 40, 222, 223, 224, 225 PxCTL register 41, 222, 223, 224, 225

R

R 165 r 164 RA register address 165 RCF 167, 168 register 165 flash control (FCTL) 119, 126, 127, 228 flash high and low byte (FFREQH and FRE-EQL) 123 flash page select (FPS) 121, 122 flash status (FSTAT) 120 GPIO port A-H address (PxADDR) 40, 222, 223, 224, 225 GPIO port A-H alternate function sub-registers 42 GPIO port A-H control address (PxCTL) 41, 222, 223, 224, 225 GPIO port A-H data direction sub-registers 41 OCD control 148 OCD status 150 watch-dog timer control (WDTCTL) 95, 107, 154, 217, 218, 226 watchdog timer control (WDTCTL) 29 watch-dog timer reload high byte (WDTH) 227 watchdog timer reload high byte (WDTH) 96 watch-dog timer reload low byte (WDTL) 227 watchdog timer reload low byte (WDTL) 97 watch-dog timer reload upper byte (WDTU) 227

236