

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	eZ8
Core Size	8-Bit
Speed	20MHz
Connectivity	-
Peripherals	Brown-out Detect/Reset, LED, POR, PWM, WDT
Number of I/O	25
Program Memory Size	12KB (12K x 8)
Program Memory Type	FLASH
EEPROM Size	
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 3.6V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Through Hole
Package / Case	28-DIP (0.600", 15.24mm)
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/zilog/z8f1233pj020sg

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

List of Tables

Table 1.	Z8 Encore! F0830 Series Family Part Selection Guide 2
Table 2.	Acronyms and Expansions
Table 3.	Z8 Encore! F0830 Series Package Options 7
Table 4.	Signal Descriptions
Table 5.	Pin Characteristics (20- and 28-pin Devices) 13
Table 6.	Z8 Encore! F0830 Series Program Memory Maps 15
Table 7.	Z8 Encore! F0830 Series Flash Memory Information Area Map 16
Table 8.	Register File Address Map 17
Table 9.	Reset and Stop Mode Recovery Characteristics and Latency 22
Table 10.	Reset Sources and Resulting Reset Type
Table 11.	Stop Mode Recovery Sources and Resulting Action 27
Table 12.	POR Indicator Values
Table 13.	Reset Status Register (RSTSTAT)
Table 14.	Power Control Register 0 (PWRCTL0)
Table 15.	Port Availability by Device and Package Type
Table 16.	Port Alternate Function Mapping
Table 17.	GPIO Port Registers and Subregisters
Table 18.	Port A-D GPIO Address Registers (PxADDR) 40
Table 19.	Port Control Subregister Access
Table 20.	Port A–D Control Registers (PxCTL)
Table 21.	Port A–D Data Direction Subregisters (PxDD) 41
Table 22.	Port A–D Alternate Function Subregisters (PxAF)
Table 23.	Port A–D Output Control Subregisters (PxOC)
Table 24.	Port A–D High Drive Enable Subregisters (PxHDE)
Table 25.	Port A–D Stop Mode Recovery Source Enable Subregisters (PxSMRE) 45
Table 26.	Port A–D Pull-Up Enable Subregisters (PxPUE)
Table 27.	Port A–D Alternate Function Set 1 Subregisters (PxAFS1) 47
Table 28.	Port A–D Alternate Function Set 2 Subregisters (PxAFS2)

Block Diagram

Figure 1 displays a block diagram of the Z8 Encore! F0830 Series architecture.

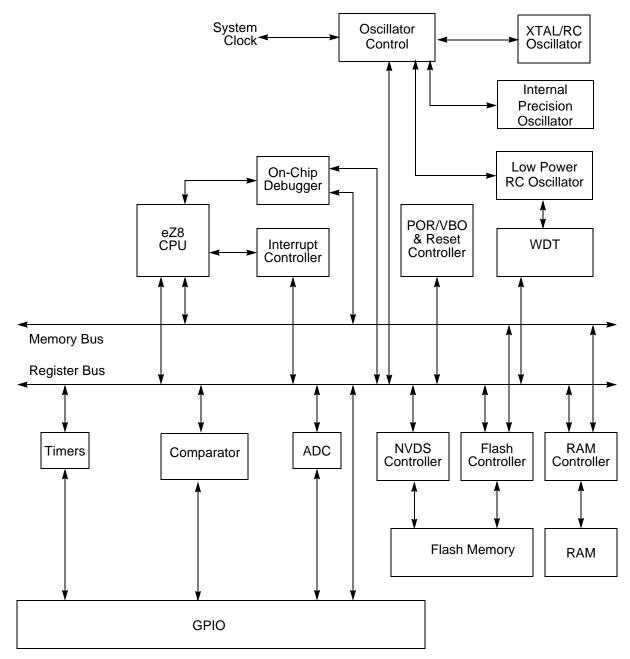


Figure 1. Z8 Encore! F0830 Series Block Diagram

17

Register Map

Table 8 provides an address map of the Z8 Encore! F0830 Series register file. Not all devices and package styles in the Z8 Encore! F0830 Series support the ADC or all of the GPIO ports. Consider registers for unimplemented peripherals as reserved.

Address (Hex)	Register Description	Mnemonic	Reset (Hex)	Page No.
General Purpos	e RAM			
000–0FF	General purpose register file RAM		XX	
100–EFF	Reserved	_	XX	
Timer 0				
F00	Timer 0 high byte	T0H	00	83
F01	Timer 0 low byte	TOL	01	83
F02	Timer 0 reload high byte	TORH	FF	85
F03	Timer 0 reload low byte	TORL	FF	85
F04	Timer 0 PWM high byte	T0PWMH	00	86
F05	Timer 0 PWM low byte	TOPWML	00	86
F06	Timer 0 control 0	T0CTL0	00	87
F07	Timer 0 control 1		00	88
Timer 1				
F08	Timer 1 high byte	T1H	00	83
F09	Timer 1 low byte	T1L	01	83
F0A	Timer 1 reload high byte	T1RH	FF	85
F0B	Timer 1 reload low byte	T1RL	FF	85
F0C	Timer 1 PWM high byte	T1PWMH	00	86
F0D	Timer 1 PWM low byte	T1PWML	00	86
F0E	Timer 1 control 0	T1CTL0	00	87
F0F	Timer 1 control 1	T1CTL1	00	83
F10–F6F	Reserved	_	XX	
Analog-to-Digita	al Converter (ADC)			
F70	ADC control 0	ADCCTL0	00	102
F71	Reserved		XX	
F72	ADC data high byte	ADCD_H	XX	103

Table 8. Register File Address Map

Note: XX = Undefined.

31

HALT Mode

Executing the eZ8 CPU HALT instruction places the device into HALT Mode. In HALT Mode, the operating characteristics are:

- Primary oscillator is enabled and continues to operate
- System clock is enabled and continues to operate
- eZ8 CPU is stopped
- Program counter (PC) stops incrementing
- Watchdog Timer's internal RC oscillator continues to operate
- If enabled, the Watchdog Timer continues to operate
- All other on-chip peripherals continue to operate

The eZ8 CPU can be brought out of HALT Mode by any one of the following operations:

- Interrupt
- Watchdog Timer time-out (interrupt or reset)
- Power-On Reset
- Voltage Brown-Out reset
- External **RESET** pin assertion

To minimize current in HALT Mode, all GPIO pins that are configured as digital inputs must be driven to V_{DD} when pull-up register bit is enabled or to one of power rail (V_{DD} or GND) when pull-up register bit is disabled.

Peripheral Level Power Control

In addition to the STOP and HALT modes, it is possible to disable each peripheral on each of the Z8 Encore! F0830 Series devices. Disabling a given peripheral minimizes its power consumption.

Power Control Register Definitions

Power Control Register 0

Each bit of the following registers disables a peripheral block, either by gating its system clock input or by removing power from the block.

Port A–D Control Registers

The Port A–D Control registers, shown in Table 20, set the GPIO port operation. The value in the corresponding Port A–D Address Register determines which subregister is read from or written to by a Port A–D Control Register transaction.

Bit	7	6	5	4	3	2	1	0
Field	PCTL							
RESET	00H							
R/W	R/W	R/W R/W R/W R/W R/W R/W R/W						
Address	FD1H, FD5H, FD9H, FDDH							

Table 20	. Port A-D	Control	Registers	(PxCTL)
----------	------------	---------	-----------	---------

Bit	Description
[7:0]	Port Control
PCTL	The Port Control Register provides access to all subregisters that configure the GPIO port operation.

Port A–D Data Direction Subregisters

The Port A–D Data Direction Subregister, shown in Table 21, is accessed through the Port A–D Control Register by writing 01H to the Port A–D Address Register.

Bit	7	6	5	4	3	2	1	0
Field	DD7	DD6	DD5	DD4	DD3	DD2	DD1	DD0
RESET	1	1	1	1	1	1	1	1
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Address	If 01H ir	If 01H in Port A–D Address Register, accessible through the Port A–D Control Register						

Table 21. Port A–D Data Direction Subregisters (PxDD)

Description
Data Direction
 These bits control the direction of the associated port pin. Port Alternate Function operation overrides the Data Direction Register setting. 0 = Output. Data in the Port A–D Output Data Register is driven onto the port pin. 1 = Input. The port pin is sampled and the value written into the Port A–D Input Data Register The output driver is tristated.

Note: x indicates the specific GPIO port pin number (7–0).

Port A–D Alternate Function Set 1 Subregisters

The Port A–D Alternate Function Set 1 Subregister, shown in Table 27, is accessed through the Port A–D Control Register by writing 07H to the Port A–D Address Register. The Alternate Function Set 1 subregisters select the alternate function available at a port pin. Alternate functions selected by setting or clearing bits in this register are defined in the <u>GPIO Alternate Functions</u> section on page 34.

Note:Alternate function selection on the port pins must also be enabled, as described in the PortA-D Alternate Function Subregisters section on page 42.

Bit	7	6	5	4	3	2	1	0
Field	PAFS17	PAFS16	PAFS15	PAFS14	PAFS13	PAFS12	PAFS11	PAFS10
RESET	0	0	0	0	0	0	0	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Address	If 07H in Port A–D Address Register, accessible through the Port A–D Control Register							
Dit	Description						E Control 1	Cyster

Table 27. Port A–D Alternate Function Set 1 Subregisters (PxAFS1)

Bit Description

[7:0] Port Alternate Function Set 1

PAFS1x 0 = Port Alternate function selected as defined in Table 16 in GPIO Alternate Functions section.

> 1 = Port Alternate function selected as defined in Table 16 in GPIO Alternate Functions section.

Note: x indicates the specific GPIO port pin number (7–0).

LED Drive Enable Register

The LED Drive Enable Register, shown in Table 31, activates the controlled current drive. The Alternate Function Register has no control over the LED function; therefore, setting the Alternate Function Register to select the LED function is not required. LEDEN bits [7:0] correspond to Port C bits [7:0], respectively.

Bit	7	6	5	4	3	2	1	0
Field				LEDE	N[7:0]			
RESET	0	0	0	0	0	0	0	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Address		F82H						

Bit	Description
[7:0]	LED Drive Enable
LEDEN	These bits determine which Port C pins are connected to an internal current sink. 0 = Tristate the Port C pin. 1= Connect controlled current sink to the Port C pin.

LED Drive Level High Register

The LED Drive Level High Register, shown in Table 32, contains two control bits for each Port C pin. These two bits select one of four programmable current drive levels for each Port C pin. Each pin is individually programmable.

Bit	7	6	5	4	3	2	1	0
Field	LEDLVLH[7:0]							
RESET	0	0	0	0	0	0	0	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Address	F83H							

Bit Description

[7:0] LED Level High Bits

LEDLVLH {LEDLVLH, LEDLVLL} select one of four programmable current drive levels for each Port C pin. 00 = 3mA.

01= 7 mA.

10= 13mA.

11= 20mA.

Shared Interrupt Select Register

The shared interrupt select (IRQSS) register determines the source of the PADxS interrupts. See Table 48. The shared interrupt select register selects between Port A and alternate sources for the individual interrupts.

Because these shared interrupts are edge-triggered, it is possible to generate an interrupt just by switching from one shared source to another. For this reason, an interrupt must be disabled before switching between sources.

Bit	7	6	5	4	3	2	1	0
Field	Reserved	PA6CS	Reserved					
RESET	0	0	0	0	0	0	0	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Address	FCEH							

Table 48. Shared Interrupt Select Register (IRQSS)

Bit	Description
[7]	Reserved This bit is reserved and must be programmed to 0.
[6] PA6CS	 PA6/Comparator Selection 0 = PA6 is used for the interrupt caused by PA6CS interrupt request. 1 = The comparator is used for the interrupt caused by PA6CS interrupt request.
[5:0]	Reserved These registers are reserved and must be programmed to 000000.

Interrupt Control Register

The Interrupt Control (IRQCTL) Register, shown in Table 49, contains the master enable bit for all interrupts.

Bit	7	6	5	4	3	2	1	0
Field	IRQE	Reserved						
RESET	0	0	0	0	0	0	0	0
R/W	R/W	R	R	R	R	R	R	R
Address	FCFH							

Table 49. Interrupt Control Register (IRQCTL)

Bit	Description
[7] IRQE	 Interrupt Request Enable This bit is set to 1 by executing an Enable Interrupts (EI) or Interrupt Return (IRET) instruction or by a direct register write of 1 to this bit. It is reset to 0 by executing a DI instruction, eZ8 CPU acknowledgement of an interrupt request, reset, or by a direct register write of a 0 to this bit. 0 = Interrupts are disabled. 1 = Interrupts are enabled.
[6:0]	Reserved These registers are reserved and must be programmed to 0000000.

Timer Reload High and Low Byte Registers

The Timer 0–1 Reload High and Low Byte (TxRH and TxRL) registers, shown in Tables 52 and 53, store a 16-bit reload value, {TRH[7:0], TRL[7:0]}. Values written to the Timer Reload High Byte Register are stored in a temporary holding register. When a write to the Timer Reload Low Byte Register occurs, the temporary holding register value is written to the Timer High Byte Register. This operation allows simultaneous updates of the 16-bit timer reload value. In COMPARE Mode, the Timer Reload High and Low Byte registers store the 16-bit compare value.

Bit	7	6	5	4	3	2	1	0
Field	TRH							
RESET	1	1	1	1	1	1	1	1
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Address	F02H, F0AH							

Table 52. Timer 0–1 Reload High Byte Register (TxRH)

Table 53. Timer 0–1 Reload Low Byte Register (TxRL)

Bit	7	6	5	4	3	2	1	0
Field		TRL						
RESET	1	1	1	1	1	1	1	1
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Address	F03H, F0BH							

Bit	Description
[7:0]	Timer Reload Register High and Low
TRH, TRL	These two bytes form the 16-bit reload value, {TRH[7:0], TRL[7:0]}. This value sets the max- imum count value, which initiates a timer reload to 0001H. In COMPARE Mode, these two bytes form the 16-bit compare value.

Page Erase

Flash memory can be erased one page (512 bytes) at a time. Page erasing Flash memory sets all bytes in that page to the value FFH. The Flash Page Select Register identifies the page to be erased. Only a page residing in an unprotected sector can be erased. With the Flash Controller unlocked and the active page set, writing the value 95h to the Flash Control Register initiates the Page Erase operation. While the Flash Controller executes the Page Erase operation, the eZ8 CPU idles, but the system clock and on-chip peripherals continue to operate. The eZ8 CPU resumes operation after the page erase operation completes. If the Page Erase operation is performed using the On-Chip Debugger, poll the Flash Status Register to determine when the Page Erase operation is complete. When the page erase is complete, the Flash Controller returns to its Locked state.

Mass Erase

Flash memory can also be mass erased using the Flash Controller, but only by using the On-Chip Debugger. Mass erasing Flash memory sets all bytes to the value FFH. With the Flash Controller unlocked and the mass erase successfully enabled, writing the value 63H to the Flash Control Register initiates the Mass Erase operation. While the Flash Controller executes the Mass Erase operation, the eZ8 CPU idles, but the system clock and on-chip peripherals continue to operate. Using the On-Chip Debugger, poll the Flash Status Register to determine when the Mass Erase operation is complete. When the mass erase is complete, the Flash Controller returns to its Locked state.

Flash Controller Bypass

The Flash Controller can be bypassed; instead, the control signals for Flash memory can be brought out to the GPIO pins. Bypassing the Flash Controller allows faster row programming algorithms by controlling the Flash programming signals directly.

Row programing is recommended for gang programming applications and large volume customers who do not require in-circuit initial programming of Flash memory. Mass Erase and Page Erase operations are also supported, when the Flash Controller is bypassed.

For more information about bypassing the Flash Controller, refer to *Third-Party Flash Programming Support for Z8 Encore!*. This document is available for download at <u>www.zilog.com</u>.

Flash Controller Behavior in Debug Mode

The following behavioral changes can be observed in the Flash Controller when the Flash Controller is accessed using the On-Chip Debugger:

• The Flash write protect option bit is ignored.

Flash Control Register

The Flash Controller must be unlocked using the Flash Control Register before programming or erasing Flash memory. Writing the sequence 73H 8CH, sequentially, to the Flash Control Register unlocks the Flash Controller. When the Flash Controller is unlocked, Flash memory can be enabled for mass erase or page erase by writing the appropriate enable command to the FCTL. Page erase applies only to the active page selected in Flash Page Select Register. Mass erase is enabled only through the On-Chip Debugger. Writing an invalid value or an invalid sequence returns the Flash Controller to its Locked state. The write-only Flash Control Register shares its register file address with the read-only Flash Status Register.

Bit	7	6	5	4	3	2	1	0
Field	FCMD							
RESET	0	0	0	0	0	0	0	0
R/W	W	W	W	W	W	W	W	W
Address	FF8H							

Table 72.	Flash	Control	Register	(FCTL)
-----------	-------	---------	----------	--------

Bit Description

[7:0]	Flash Command
-------	---------------

- FCMD 73H = First unlock command.
 - 8CH = Second unlock command.
 - 95H = Page erase command (must be third command in sequence to initiate page erase).
 - 63H = Mass erase command (must be third command in sequence to initiate mass erase).
 - 5EH = Enable Flash Sector Protect Register access.

- Watchdog Timer reset
- Asserting the RESET pin Low to initiate a reset
- Driving the DBG pin Low while the device is in STOP Mode initiates a system reset

OCD Data Format

The OCD interface uses the asynchronous data format defined for RS-232. Each character is transmitted as 1 start bit, 8 data bits (least-significant bit first) and 1 stop bit. See Figure 23.

 START	D0	D1	D2	D3	D4	D5	D6	D7	STOP
OTAR	00	ы	02	05	D4	00	DU	ы	0101

Figure 23. OCD Data Format

OCD Autobaud Detector/Generator

To run over a range of baud rates (data bits per second) with various system clock frequencies, the On-Chip Debugger contains an autobaud detector/generator. After a reset, the OCD is idle until it receives data. The OCD requires that the first character sent from the host is the character 80H. The character 80H has eight continuous bits low (one Start bit plus 7 data bits), framed between high bits. The autobaud detector measures this period and sets the OCD baud rate generator accordingly.

The autobaud detector/generator is clocked by the system clock. The minimum baud rate is the system clock frequency divided by 512. For optimal operation with asynchronous datastreams, the maximum recommended baud rate is the system clock frequency divided by 8. The maximum possible baud rate for asynchronous datastreams is the system clock frequency divided by 4, but this theoretical maximum is possible only for low noise designs with clean signals. Table 94 lists minimum and recommended maximum baud rates for sample crystal frequencies.

System Clock Frequency (MHz)	Recommended Maximum Baud Rate (kbps)	Recommended Standard PC Baud Rate (bps)	Minimum Baud Rate (kbps)	
20.0	2500.0	1,843,200	39	
1.0	125.0	115,200	1.95	
0.032768 (32 KHz)	4.096	2400	0.064	

Table 9	94. OCD	Baud-Rate	Limits

If the OCD receives a serial break (nine or more continuous bits low), the autobaud detector/generator resets. Reconfigure the autobaud detector/generator by sending 80H.

OCD Serial Errors

The OCD can detect any of the following error conditions on the DBG pin:

- Serial break (a minimum of nine continuous bits Low)
- Framing error (received Stop bit is Low)
- Transmit collision (simultaneous transmission by OCD and host detected by the OCD)

When the OCD detects one of these errors, it aborts any command currently in progress, transmits a four character long serial break back to the host and resets the autobaud detector/generator. A framing error or transmit collision may be caused by the host sending a serial break to the OCD. As a result of the open-drain nature of the interface, returning a serial break back to the host only extends the length of the serial break if the host releases the serial break early.

The host transmits a serial break on the DBG pin when first connecting to the Z8 Encore! F0830 Series devices or when recovering from an error. A serial break from the host resets the autobaud generator/detector, but does not reset the OCD Control Register. A serial break leaves the device in DEBUG Mode, if that is the current mode. The OCD is held in reset until the end of the serial break when the DBG pin returns high. Because of the opendrain nature of the DBG pin, the host can send a serial break to the OCD even if the OCD is transmitting a character.

Breakpoints

Execution breakpoints are generated using the BRK instruction (opcode 00H). When the eZ8 CPU decodes a BRK instruction, it signals the OCD. If breakpoints are enabled, the OCD enters DEBUG Mode and idles the eZ8 CPU. If breakpoints are not enabled, the OCD ignores the BRK signal and the BRK instruction operates as an NOP instruction.

Breakpoints in Flash Memory

The BRK instruction is opcode 00H, which corresponds to the fully programmed state of a byte in Flash memory. To implement a breakpoint, write 00H to the required break address overwriting the current instruction. To remove a breakpoint, the corresponding page of Flash memory must be erased and reprogrammed with the original data.

149

Table 96. OCD Control Register (OCDCTL)

Bit	7	6	5	4	3	2	1	0				
Field	DBGMODE	BRKEN	DBGACK		Res	erved		RST				
RESET	0	0	0	0	0	0	0	0				
R/W	R/W	R/W	R/W	R	R	R	R	R/W				
Bit	Descriptio	Description										
 [7] DEBUG Mode DBGMODE The device enters DEBUG Mode when this bit is 1. When in DEBUG Mode, the eZ8 CPU stops fetching new instructions. Clearing this bit causes the eZ8 CPU to restart. This bit is automatically set when a BRK instruction is decoded and breakpoints are enabled. If the Flash read protect option bit is enabled, this bit can only be cleared by resetting the device. It cannot be written to 0. 0 = The Z8 Encore! F0830 Series device is operating in NORMAL Mode. 1 = The Z8 Encore! F0830 Series device is in DEBUG Mode. 												
[6] BRKEN	This bit co are disable when a BR cally set to 0 = Breakp	Breakpoint Enable This bit controls the behavior of the BRK instruction (opcode 00H). By default, breakpoints are disabled and the BRK instruction behaves similar to an NOP instruction. If this bit is 1 when a BRK instruction is decoded, the DBGMODE bit of the OCDCTL register is automatically set to 1. 0 = Breakpoints are disabled. 1 = Breakpoints are enabled.										
[5] DBGACK	This bit en Debug ack 0 = Debug	 Debug Acknowledge This bit enables the debug acknowledge feature. If this bit is set to 1, the OCD sends a Debug acknowledge character (FFH) to the host when a breakpoint occurs. 0 = Debug acknowledge is disabled. 1 = Debug acknowledge is enabled. 										
[4:1]	Reserved These bits	are reserve	ed and must	be progran	nmed to 000	00.						
[0] Reset RST Setting this bit to 1 resets the Z8F04xA family device. The device goes through a Power-On Reset sequence with the exception that the On-Chip Debugger is not r bit is automatically cleared to 0 at the end of the reset sequence. 0 = No effect. 1 = Reset the Flash read protect option bit device.												

OCD Status Register

The OCD Status Register reports status information about the current state of the debugger and the system.

Table 97. OCD Status Register (OCDSTAT)	Table 97.	OCD	Status	Register	(OCDSTAT)
---	-----------	-----	--------	----------	-----------

Bit	7	6	5	4	3	2	1	0				
Field	DBG	HALT	FRPENB	Reserved								
RESET	0	0	0	0	0	0	0	0				
R/W	R	R	R	R	R	R	R	R				
Bit												

Description
Debug Status 0 = NORMAL Mode.
1 = DEBUG Mode.
HALT Mode
0 = Not in HALT Mode.
1 = In HALT Mode.
Flash Read Protect Option Bit Enable
0 = FRP bit enabled, that allows disabling of many OCD commands.
1 = FRP bit has no effect.
Reserved
These bits are reserved and must be programmed to 00000.

Table 110. Logical Instructions

Mnemonic	Operands	Instruction
AND	dst, src	Logical AND
ANDX	dst, src	Logical AND using Extended Addressing
СОМ	dst	Complement
OR	dst, src	Logical OR
ORX	dst, src	Logical OR using Extended Addressing
XOR	dst, src	Logical Exclusive OR
XORX	dst, src	Logical Exclusive OR using Extended Addressing

Table 111. Program Control Instructions

Mnemonic	Operands	Instruction
BRK	—	On-chip Debugger Break
BTJ	p, bit, src, DA	Bit Test and Jump
BTJNZ	bit, src, DA	Bit Test and Jump if Non-Zero
BTJZ	bit, src, DA	Bit Test and Jump if Zero
CALL	dst	Call Procedure
DJNZ	dst, src, RA	Decrement and Jump Non-Zero
IRET	—	Interrupt Return
JP	dst	Jump
JP cc	dst	Jump Conditional
JR	DA	Jump Relative
JR cc	DA	Jump Relative Conditional
RET	_	Return
TRAP	vector	Software Trap

Table 112. Rotate and Shift Instructions

Mnemonic	Operands	Instruction
BSWAP	dst	Bit Swap
RL	dst	Rotate Left
RLC	dst	Rotate Left through Carry

		T _A = 0°C to +70°C			T _A = −40°C to +105°C					
Symbol	Parameter	Min	Тур	Max	Min	Typ ¹	Max	Units	Conditions	
T _{POR}	Power-On Reset Digital Delay				TBD	13	TBD	μs	66 Internal Preci- sion Oscillator cycles	
T _{POR}	Power-On Reset Digital Delay				TBD	8	TBD	ms	5000 Internal Pre- cision Oscillator cycles	
T _{SMR}	Stop Mode Recovery with crystal oscillator disabled				TBD	13	TBD	μs	66 Internal Preci- sion Oscillator cycles	
T _{SMR}	Stop Mode Recovery with crystal oscillator enabled				TBD	8	TBD	ms	5000 Internal Pre- cision Oscillator cycles	
T _{VBO}	Voltage Brown-Out Pulse Rejection Period				_	10	_	μs	V _{DD} < V _{VBO} to gen erate a Reset.	
T _{RAMP}	Time for V_{DD} to transition from V_{SS} to V_{POR} to ensure valid Reset				0.10	_	100	ms		

Table 118. Power-On Reset and Voltage Brown-Out Electrical Characteristics and Timing

ance only and are not tested in production.

Low Power Control

For more information about the Power Control Register, see the <u>Power Control Register</u> <u>Definitions</u> section on page 31.

Hex Address: F80

Bit	7	6	5	4	3	2	1	0			
Field		Reserved		VBO	Reserved	Reserved	COMP	Reserved			
RESET	1	0	0	0	1	0	0	0			
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
Address		F80H									

Table 151. Power Control Register 0 (PWRCTL0)

Hex Address: F81

This address range is reserved.

LED Controller

For more information about the LED Drive registers, see the <u>GPIO Control Register Definitions</u> section on page 39.

Hex Address: F82

Bit	7	6	5	4	3	2	1	0
Field	LEDEN[7:0]							
RESET	0	0	0	0	0	0	0	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Address	F82H							

Table 152. LED Drive Enable (LEDEN)

Customer Support

To share comments, get your technical questions answered or report issues you may be experiencing with our products, please visit Zilog's Technical Support page at http://support.zilog.com.

To learn more about this product, find additional documentation or to discover other facets about Zilog product offerings, please visit the Zilog Knowledge Base at <u>http://zilog.com/</u><u>kb</u> or consider participating in the Zilog Forum at <u>http://zilog.com/forum</u>.

This publication is subject to replacement by a later edition. To determine whether a later edition exists, please visit the Zilog website at <u>http://www.zilog.com</u>.