

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	eZ8
Core Size	8-Bit
Speed	20MHz
Connectivity	-
Peripherals	Brown-out Detect/Reset, LED, POR, PWM, WDT
Number of I/O	25
Program Memory Size	12KB (12K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 3.6V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/zilog/z8f1233qj020sg

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

CPU and Peripheral Overview

The eZ8 CPU, Zilog's latest 8-bit CPU, meets the continuing demand for faster and more code-efficient microcontrollers. The eZ8 CPU executes a superset of the original Z8 instruction set. The eZ8 CPU features include:

- Direct register-to-register architecture allows each register to function as an accumulator, improving execution time and decreasing the required program memory
- Software stack allows much greater depth in subroutine calls and interrupts than hardware stacks
- Compatible with existing Z8 CPU code
- Expanded internal register file allows access up to 4KB
- New instructions improve execution efficiency for code developed using high-level programming languages, including C
- Pipelined instruction fetch and execution
- New instructions for improved performance including BIT, BSWAP, BTJ, CPC, LDC, LDCI, LEA, MULT and SRL
- New instructions support 12-bit linear addressing of the register file
- Up to 10 MIPS operation
- C Compiler-friendly
- 2 to 9 clock cycles per instruction

For more information about the eZ8 CPU, refer to the <u>eZ8 CPU Core User Manual</u> (<u>UM0128</u>), which is available for download on <u>www.zilog.com</u>.

General Purpose Input/Output

The Z8 Encore! F0830 Series features up to 25 port pins (Ports A–D) for general-purpose input/output (GPIO). The number of GPIO pins available is a function of package. Each pin is individually programmable.

Flash Controller

The Flash Controller programs and erases the Flash memory. It also supports protection against accidental programming and erasure.

Reset Sources

Table 10 lists the possible sources of a system reset.

Operating Mode	Reset Source	Special Conditions		
NORMAL or HALT modes	Power-On Reset/Voltage Brown-Out	Reset delay begins after supply voltage exceeds POR level.		
	Watchdog Timer time-out when con- figured for reset	None.		
	RESET pin assertion	All reset pulses less than four system clock in width are ignored.		
	On-Chip Debugger initiated reset (OCDCTL[0] set to 1)	System, except the On-Chip Debugger is unaffected by the reset.		
STOP Mode	Power-On Reset/Voltage Brown-Out	Reset delay begins after supply voltage exceeds POR level.		
	RESET pin assertion	All reset pulses less than 12 ns are ignored.		
	DBG pin driven Low	None.		

Power-On Reset

Each device in the Z8 Encore! F0830 Series contains an internal Power-On Reset circuit. The POR circuit monitors the digital supply voltage and holds the device in the Reset state until the digital supply voltage reaches a safe operating level. After the supply voltage exceeds the POR voltage threshold (V_{POR}), the device is held in the Reset state until the POR counter has timed out. If the crystal oscillator is enabled by the option bits, the time-out is longer.

After the Z8 Encore! F0830 Series device exits the Power-On Reset state, the eZ8 CPU fetches the reset vector. Following the Power-On Reset, the POR status bit in the Reset Status (RSTSTAT) Register is set to 1.

Figure 6 displays the Power-On Reset operation. See the <u>Electrical Characteristics</u> chapter on page 184 for the POR threshold voltage (V_{POR}).

The Voltage Brown-Out circuit can be either enabled or disabled during STOP Mode. Operations during STOP Mode is set by the VBO_AO Flash option bit. See the <u>Flash</u> <u>Option Bits</u> chapter on page 124 for information about configuring VBO_AO.

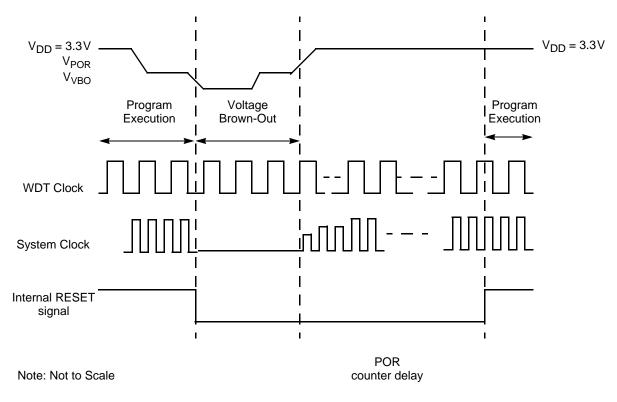


Figure 7. Voltage Brown-Out Reset Operation

Watchdog Timer Reset

If the device is operating in NORMAL or STOP Mode, the Watchdog Timer can initiate a system reset at time-out if the WDT_RES Flash option bit is programmed to 1; this state is the unprogrammed state of the WDT_RES Flash option bit. If the bit is programmed to 0, it configures the Watchdog Timer to cause an interrupt – not a system reset – at time-out. The WDT status bit in the Reset Status (RSTSTAT) Register is set to 1 to signify that the reset was initiated by the Watchdog Timer.

External Reset Input

The $\overline{\text{RESET}}$ pin has a Schmitt-triggered input and an internal pull-up resistor. After the $\overline{\text{RESET}}$ pin is asserted for a minimum of four system clock cycles, the device progresses through the system reset sequence. Because of the possible asynchronicity of the system

Interrupt Request 2 Register

The Interrupt Request 2 (IRQ2) Register, shown in Table 37, stores interrupt requests for both vectored and polled interrupts. When a request is sent to the Interrupt Controller, the corresponding bit in the IRQ2 Register becomes 1. If interrupts are globally enabled (vectored interrupts), the Interrupt Controller passes an interrupt request to the eZ8 CPU. If interrupts are globally disabled (polled interrupts), the eZ8 CPU can read the Interrupt Request 2 Register to determine if any interrupt requests are pending.

Bit	7	6	5	4	3	2	1	0		
Field		Rese	erved		PC3I	PC2I	PC1I	PC0I		
RESET	0	0	0	0	0	0	0	0		
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Address		FC6H								
Bit	Description	Description								
[7:4]	Reserved These regis	sters are res	erved and n	nust be prog	rammed to	0000.				
[3] PC <i>x</i> l	PCxI0 = No interrupt request is pending for GPIO Port C pin x.1 = An interrupt request from GPIO Port C pin x is awaiting service.									
Note: x in	dicates the sp	ecific GPIO p	ort pin numbe	ər (3–0).						

Table 37. Interrupt Request 2 Register (IRQ2)

IRQ0 Enable High and Low Bit Registers

Table 38 lists the priority control values for IRQ0. The IRQ0 Enable High and Low Bit registers, shown in Tables 39 and 40, form a priority-encoded enabling service for interrupts in the Interrupt Request 0 Register. Priority is generated by setting the bits in each register.

IRQ0EN	IH[x]	IRQ0ENL[x]	Priority	Description			
C)	0	Disabled	Disabled			
C)	1	Level 1	Low			
1		0	Level 2	Nominal			
1		1	Level 3	High			
Note: x	Note: x indicates the register bits in the range 7–0.						

Table 38. IRQ0 Enable and Priority Encoding

Timer Reload High and Low Byte Registers

The Timer 0–1 Reload High and Low Byte (TxRH and TxRL) registers, shown in Tables 52 and 53, store a 16-bit reload value, {TRH[7:0], TRL[7:0]}. Values written to the Timer Reload High Byte Register are stored in a temporary holding register. When a write to the Timer Reload Low Byte Register occurs, the temporary holding register value is written to the Timer High Byte Register. This operation allows simultaneous updates of the 16-bit timer reload value. In COMPARE Mode, the Timer Reload High and Low Byte registers store the 16-bit compare value.

Bit	7	6	5	4	3	2	1	0
Field		TRH						
RESET	1	1	1	1	1	1	1	1
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Address		F02H, F0AH						

Table 52. Timer 0–1 Reload High Byte Register (TxRH)

Table 53. Timer 0–1 Reload Low Byte Register (TxRL)

Bit	7	6	5	4	3	2	1	0
Field		TRL						
RESET	1	1	1	1	1	1	1	1
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Address		F03H, F0BH						

Bit	Description
[7:0]	Timer Reload Register High and Low
TRH, TRL	These two bytes form the 16-bit reload value, {TRH[7:0], TRL[7:0]}. This value sets the max- imum count value, which initiates a timer reload to 0001H. In COMPARE Mode, these two bytes form the 16-bit compare value.

Bit	Description (Continued)
[2:0]	Timer Mode
TMODE	This field along with the TMODEHI bit in TxCTL0 register determines the operating mode of
	the timer. TMODEHI is the most significant bit of the timer mode selection value.
	0000 = ONE-SHOT Mode.
	0001 = CONTINUOUS Mode.
	0010 = COUNTER Mode.
	0011 = PWM SINGLE OUTPUT Mode.
	0100 = CAPTURE Mode.
	0101 = COMPARE Mode.
	0110 = GATED Mode.
	0111 = CAPTURE/COMPARE Mode.
	1000 = PWM DUAL OUTPUT Mode.
	1001 = CAPTURE RESTART Mode.
	1010 = COMPARATOR COUNTER Mode.

91

ADC Data High Byte Register

The ADC Data High Byte Register, listed in Table 64, contains the upper eight bits of the ADC output. Access to the ADC Data High Byte Register is read-only. Reading the ADC Data High Byte Register latches data in the ADC Low Bits Register.

Table 64. ADC Data High Byte Register (ADCD_H)

Bit	7	6	5	4	3	2	1	0	
Field	ADCDH								
RESET		X							
R/W	R								
Address	F72H								

Bit	Description
[7:0]	ADC High Byte
ADCDH	00h–FFh = The last conversion output is held in the data registers until the next ADC conver- sion is completed.

ADC Data Low Bits Register

The ADC Data Low Bits Register, shown in Table 65, contains the lower bits of the ADC output. Access to the ADC Data Low Bits Register is read-only. Reading the ADC Data High Byte Register latches lower bits of the ADC in the ADC Data Low Bits Register.

Bit	7	6	5	4	3	2	1	0
Field	ADO	CDL	DL Reserved					
RESET	Х		X					
R/W	R		R R					
Address	F73H							

Table 65.	ADC Data L	ow Bits R	Register (A	ADCD_L)
-----------	------------	-----------	-------------	---------

Bit	Description
[7:6] ADCDL	ADC Low Bits 00–11b = These bits are the two least-significant bits of the 10-bit ADC output. These bits are undefined after a reset. The low bits are latched into this register whenever the ADC Data High Byte Register is read.
[5:0]	Reserved These bits are reserved and must be programmed to 000000.

Comparator Control Register Definitions

The Comparator Control Register (CMP0) configures the comparator inputs and sets the value of the internal voltage reference. The GPIO pin is always used as positive comparator input.

	•		-		_				
Bit	7	6	5	4	3	2	1	0	
Field	Reserved	INNSEL		REFLVL Reserve					
RESET	0	0	0	1	0	1	0	0	
R/W	R/W	R/W	R/W R/W R/W R/W F						
Address				F9	0H				
Bit	Description								
[7]	Reserved This bit is reserved and must be programmed to 0.								
[6] INNSEL	Signal Select for Negative Input 0 = internal reference disabled, GPIO pin used as negative comparator input. 1 = internal reference enabled as negative comparator input.								
[5:2] REFLVL	1 = internal reference enabled as negative comparator input. Internal Reference Voltage Level This reference is independent of the ADC voltage reference. 0000 = 0.0V. 0001 = 0.2V. 0010 = 0.4V. 0011 = 0.6V. 0100 = 0.8V. 0101 = 1.0V (Default). 0110 = 1.2V. 0111 = 1.4V. 1000 = 1.6V. 1001 = 1.8V. 1010-1111 = Reserved.								
[1:0]	Reserved These bits a	are reserved	l and must b	e programm	ned to 00.				

Table 68. Comparator Control Register (CMP0)

Note: The bit values used in Table 87 are set at the factory; no calibration is required.

	Trigger Voltage
VBO_TRIM	Level
000	1.7
001	1.6
101	2.2
110	2.0
100	2.4
111	1.8

Table 88. VBO Trim Definition

On-chip Flash memory is only guaranteed to perform write operations when voltage supplies exceed 2.7 V. Write operations at voltages below 2.7 V will yield unpredictable results.

Table 89. Trim Option Bits at 0006H (TCLKFLT)

Bit	7	7 6 5 4 3 2 1 0								
Field	DivBy4	Reserved	DlyCtl1	DlyCtl2	DlyCtl3	Reserved	FilterSel1	FilterSel0		
RESET	0 1 0 0 0 1 0 0							0		
R/W	R/W R/W R/W R/W R/W R/W						R/W			
Address	Information Page Memory 0026H									
Note: U = Unchanged by Reset. R/W = Read/Write.										

Bit	Description
[7]	Output Frequency Selection
DivBy4	0 = Output frequency is input frequency.
	1 = Output frequency is 1/4 of the input frequency.
[6]	Reserved
	This bit is reserved and must be programmed to 1.
[5:3]	Delay Control
DlyCtl <i>x</i>	3-bit selection for the pulse width that can be filtered. See Table 90 for Delay Control values at
	3.3V operation voltage.
[2]	Reserved
	This bit is reserved and must be programmed to 1.
Notes: x	indicates bit values 3–1; y indicates bit values 1–0.

>

On-Chip Debugger

The Z8 Encore! devices contain an integrated On-Chip Debugger (OCD) that provides the following advanced debugging features:

- Reading and writing of the register file
- Reading and writing of program and data memory
- Setting of breakpoints and watchpoints
- Executing eZ8 CPU instructions

Architecture

The On-Chip Debugger consists of four primary functional blocks: transmitter, receiver, autobaud detector/generator and debug controller. Figure 20 displays the architecture of the On-Chip Debugger.

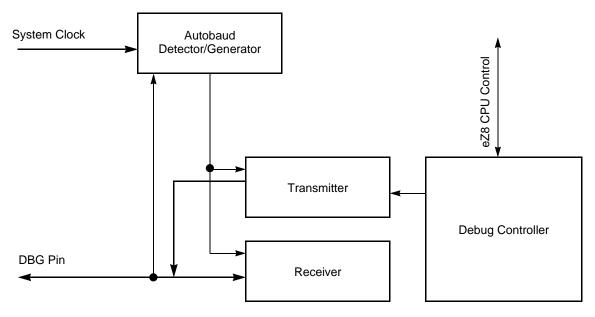


Figure 20. On-Chip Debugger Block Diagram

ory size and is approximately equal to the system clock period multiplied by the number of bytes in program memory.

```
DBG \leftarrow 0EH
DBG \rightarrow CRC[15:8]
DBG \rightarrow CRC[7:0]
```

Step Instruction (10H). The step instruction command, steps one assembly instruction at the current program counter (PC) location. If the device is not in DEBUG Mode or the Flash read protect option bit is enabled, the OCD ignores this command.

```
DBG \leftarrow 10H
```

Stuff Instruction (11H). The stuff instruction command, steps one assembly instruction and allows specification of the first byte of the instruction. The remaining 0–4 bytes of the instruction are read from program memory. This command is useful for stepping over instructions where the first byte of the instruction has been overwritten by a breakpoint. If the device is not in DEBUG Mode or the Flash read protect option bit is enabled, the OCD ignores this command.

```
DBG \leftarrow 11H
DBG \leftarrow opcode[7:0]
```

Execute Instruction (12H). The execute instruction command allows sending an entire instruction to be executed to the eZ8 CPU. This command can also step over breakpoints. The number of bytes to send for the instruction depends on the opcode. If the device is not in DEBUG Mode or the Flash read protect option bit is enabled, this command reads and discards one byte.

```
DBG \leftarrow 12H
DBG \leftarrow 1-5 byte opcode
```

On-Chip Debugger Control Register Definitions

This section describes the features of the On-Chip Debugger Control and Status registers.

OCD Control Register

The OCD Control Register controls the state of the On-Chip Debugger. This register is used to enter or exit DEBUG Mode and to enable the BRK instruction. It can also reset the Z8 Encore! F0830 Series device.

A reset and stop function can be achieved by writing 81H to this register. A *reset and go* function can be achieved by writing 41H to this register. If the device is in DEBUG Mode, a run function can be implemented by writing 40H to this register.

OCD Status Register

The OCD Status Register reports status information about the current state of the debugger and the system.

Table 97. OCD Status Register (OCDSTAT)	Table 97.	OCD	Status	Register	(OCDSTAT)
---	-----------	-----	--------	----------	-----------

Bit	7	6	5	4	3	2	1	0
Field	DBG	HALT	FRPENB	Reserved				
RESET	0	0	0	0	0	0	0	0
R/W	R	R	R	R	R	R	R	R
Bit Description								

Description
Debug Status 0 = NORMAL Mode.
1 = DEBUG Mode.
HALT Mode
0 = Not in HALT Mode.
1 = In HALT Mode.
Flash Read Protect Option Bit Enable
0 = FRP bit enabled, that allows disabling of many OCD commands.
1 = FRP bit has no effect.
Reserved
These bits are reserved and must be programmed to 00000.

eZ8 CPU Instruction Set

This chapter describes the following features of the eZ8 CPU instruction set: <u>Assembly Language Programming Introduction</u>: see page 162 <u>Assembly Language Syntax</u>: see page 163 <u>eZ8 CPU Instruction Notation</u>: see page 164 <u>eZ8 CPU Instruction Classes</u>: see page 166 <u>eZ8 CPU Instruction Summary</u>: see page 171

Assembly Language Programming Introduction

The eZ8 CPU assembly language provides a means for writing an application program without concern for actual memory addresses or machine instruction formats. A program written in assembly language is called a source program. Assembly language allows the use of symbolic addresses to identify memory locations. It also allows mnemonic codes (op codes and operands) to represent the instructions themselves. The op codes identify the instruction while the operands represent memory locations, registers or immediate data values.

Each assembly language program consists of a series of symbolic commands called statements. Each statement contains labels, operations, operands and comments.

Labels can be assigned to a particular instruction step in a source program. The label identifies that step in the program as an entry point for use by other instructions.

The assembly language also includes assembler directives that supplement the machine instruction. The assembler directives, or pseudo-ops, are not translated into a machine instruction. Rather, these pseudo-ops are interpreted as directives that control or assist the assembly process.

The source program is processed (assembled) by the assembler to obtain a machine language program called the object code. The object code is executed by the eZ8 CPU. An example segment of an assembly language program is provided in the following example.

163

Assembly Language Source Program Example

JP START	; Everything after the semicolon is a comment.
START:	; A label called "START". The first instruction (JP START) in this ; example causes program execution to jump to the point within the ; program where the START label occurs.
LD R4, R7	; A Load (LD) instruction with two operands. The first operand, ; Working register R4, is the destination. The second operand, ; Working register R7, is the source. The contents of R7 is ; written into R4.
LD 234H, #%01	; Another Load (LD) instruction with two operands. ; The first operand, extended mode register Address 234H, ; identifies the destination. The second operand, immediate data ; value 01H, is the source. The value 01H is written into the ; register at address 234H.

Assembly Language Syntax

For proper instruction execution, eZ8 CPU assembly language syntax requires that the operands be written as *destination*, *source*. After assembly, the object code usually reflects the operands in the order *source*, *destination*, but ordering is op code-dependent.

The following examples illustrate the format of some basic assembly instructions and the resulting object code produced by the assembler. This binary format must be followed by users that prefer manual program coding or intend to implement their own assembler.

Example 1

If the contents of registers 43H and 08H are added and the result is stored in 43H, the assembly syntax and resulting object code is:

Table 101. Assembly	Language Syntax Example 1
---------------------	---------------------------

Assembly Language Code	ADD	43H,	08H	(ADD c	dst,	src)
Object Code	04	08	43	(OPC s	src,	dst)

Table 110. Logical Instructions

Mnemonic	Operands	Instruction
AND	dst, src	Logical AND
ANDX	dst, src	Logical AND using Extended Addressing
СОМ	dst	Complement
OR	dst, src	Logical OR
ORX	dst, src	Logical OR using Extended Addressing
XOR	dst, src	Logical Exclusive OR
XORX	dst, src	Logical Exclusive OR using Extended Addressing

Table 111. Program Control Instructions

Mnemonic	Operands	Instruction
BRK	—	On-chip Debugger Break
BTJ	p, bit, src, DA	Bit Test and Jump
BTJNZ	bit, src, DA	Bit Test and Jump if Non-Zero
BTJZ	bit, src, DA	Bit Test and Jump if Zero
CALL	dst	Call Procedure
DJNZ	dst, src, RA	Decrement and Jump Non-Zero
IRET	—	Interrupt Return
JP	dst	Jump
JP cc	dst	Jump Conditional
JR	DA	Jump Relative
JR cc	DA	Jump Relative Conditional
RET	_	Return
TRAP	vector	Software Trap

Table 112. Rotate and Shift Instructions

Mnemonic	Operands	Instruction
BSWAP	dst	Bit Swap
RL	dst	Rotate Left
RLC	dst	Rotate Left through Carry

Assembly			ress ode	Op Code(s)			Fla	ags			Fetch	Instr.
Mnemonic	Symbolic Operation	dst	src	(Hex)	С	Ζ	S	۷	D	Н		
AND dst, src	$dst \gets dst \; AND \; src$	r	r	52	_	*	*	0	_	_	2	3
		r	lr	53	_						2	4
		R	R	54							3	3
		R	IR	55	_						3	4
		R	IM	56	_						3	3
		IR	IM	57	_						3	4
ANDX dst, src	$dst \gets dst \ AND \ src$	ER	ER	58	_	*	*	0	_	_	4	3
		ER	IM	59	_						4	3
ATM	Block all interrupt and DMA requests during execution of the next 3 instructions			2F	-	_	_	_	_	_	1	2
BCLR bit, dst	dst[bit] ← 0	r		E2	_	*	*	0	_	_	2	2
BIT p, bit, dst	dst[bit] ← p	r		E2	_	*	*	0	_	_	2	2
BRK	Debugger Break			00	-	_	-	-	_	_	1	1
BSET bit, dst	dst[bit] ← 1	r		E2	-	*	*	0	-	-	2	2
BSWAP dst	dst[7:0] ← dst[0:7]	R		D5	Х	*	*	0	-	-	2	2
BTJ p, bit, src,	if src[bit] = p		r	F6	-	_	-	-	_	_	3	3
dst	$PC \leftarrow PC + X$		lr	F7	_						3	4
BTJNZ bit, src,			r	F6	-	-	-	-	-	-	3	3
dst	$PC \leftarrow PC + X$		lr	F7	_						3	4
BTJZ bit, src,	if src[bit] = 0		r	F6	-	_	-	-	_	-	3	3
dst	$PC \gets PC + X$		Ir	F7							3	4
CALL dst	$SP \leftarrow SP - 2$	IRR		D4	_	_	_	_	_	_	2	6
	@SP ← PC PC ← dst	DA		D6							3	3
CCF	$C \leftarrow \sim C$			EF	*	_	_	_	_		1	2

Table 113. eZ8 CPU Instruction Summary (Continued)

Note: Flags Notation:

* = Value is a function of the result of the operation.

- = Unaffected.

X = Undefined.

0 = Reset to 0.

1 = Set to 1.

DC Characteristics

Table 116 lists the DC characteristics of the Z8 Encore! F0830 Series products. All voltages are referenced to V_{SS} , the primary system ground.

	T _A = 0°C to +70°C			T _A = -40°C to +105°C				
Parameter	Min	Тур	Max	Min	Тур	Max	Units	Conditions
Supply Voltage				2.7	_	3.6	V	Power supply noise not to exceed 100mV peak to peak
Low Level Input Voltage				-0.3	_	0.3*V _D D	V	For all input pins except RESET.
Low Level Input Voltage				-0.3	_	0.8	V	For RESET.
High Level Input Voltage				2.0	_	5.5	V	For all input pins without analog or oscillator func- tion.
High Level Input Voltage				2.0	_	V _{DD} +0. 3	V	For those pins with ana- log or oscillator function.
Low Level Output Voltage				_	-	0.4	V	$I_{OL} = 2mA; V_{DD} = 3.0V$ High Output Drive disabled.
High Level Output Voltage				2.4	_	-	V	$I_{OH} = -2mA; V_{DD} = 3.0V$ High Output Drive dis- abled.
Low Level Output Voltage				-	_	0.6	V	$I_{OL} = 20$ mA; $V_{DD} = 3.3$ V High Output Drive enabled.
High Level Output Voltage				2.4	_	-	V	$I_{OH} = -20 \text{ mA};$ $V_{DD} = 3.3 \text{ V}$ High Output Drive enabled.
Input Leakage Current				-5	_	+5	μΑ	$V_{DD} = 3.6 \text{V};$ $V_{IN} = V_{DD} \text{ or } V_{SS}^{1}$
Tristate Leakage Current				-5	_	+5	μA	V _{DD} = 3.6 V
	Supply Voltage Low Level Input Voltage Low Level Input Voltage High Level Input Voltage Low Level Output Voltage Low Level Output Voltage High Level Output Voltage High Level Output Voltage Input Leakage Current	ParameterMinSupply VoltageImSupply VoltageImLow Level Input VoltageImLow Level Input VoltageImHigh Level Input VoltageImHigh Level Input VoltageImLow Level Output VoltageImHigh Level Input VoltageImHigh Level Output VoltageImHigh Level Output VoltageImInput Leakage CurrentImTristate LeakageIm	ParameterMinTypSupply VoltageImage: Constant of the second of the s	ParameterMinTypMaxSupply VoltageImage: Supply VoltageImage: Supply VoltageImage: Supply VoltageLow Level Input VoltageImage: Supply VoltageImage: Supply VoltageImage: Supply VoltageHigh Level Input VoltageImage: Supply VoltageImage: Supply VoltageImage: Supply VoltageHigh Level Input VoltageImage: Supply VoltageImage: Supply VoltageImage: Supply VoltageLow Level Output VoltageImage: Supply VoltageImage: Supply VoltageImage: Supply VoltageHigh Level Output VoltageImage: Supply VoltageImage: Supply VoltageImage: Supply VoltageHigh Level Output VoltageImage: Supply VoltageImage: Supply VoltageImage: Supply VoltageInput Leakage CurrentImage: Supply VoltageImage: Supply VoltageImage: Supply VoltageInput Leakage CurrentImage: Supply VoltageImage: Supply VoltageImage: Supply Voltage	NumNumNumParameterMinTypMaxMinSupply Voltage2.72.7Low Level Input Voltage-0.3-0.3Low Level Input Voltage-0.3-0.3High Level Input Voltage2.02.0High Level Input Voltage2.0-0.3High Level Input Voltage2.0-0.3Low Level Output Voltage-2.0Low Level Output VoltageHigh Level Output VoltageHigh Level Output VoltageLow Level Output VoltageInput Leakage Current-5-5Tristate Leakage-5-5	ParameterMinTypMaxMinTypSupply Voltage2.7-Low Level Input Voltage-0.3-Low Level Input Voltage-0.3-High Level Input Voltage2.0-High Level Input Voltage2.0-High Level Input Voltage2.0-Low Level Output VoltageHigh Level Input Voltage2.0-High Level Output VoltageHigh Level Output VoltageLow Level Output VoltageHigh Level Output VoltageInput Leakage Current-5-Tristate Leakage-5-	ParameterMinTypMaxMinTypMaxSupply Voltage 2.7 $ 3.6$ Low Level Input Voltage -0.3 $ 0.3^*V_D$ DLow Level Input Voltage -0.3 $ 0.3^*V_D$ 	ParameterMinTypMaxMinTypMaxUnitsSupply Voltage 2.7 $ 3.6$ VLow Level Input Voltage -0.3 $ 0.3^*V_D$ DV DLow Level Input Voltage -0.3 $ 0.3^*V_D$ DV DLow Level Input Voltage -0.3 $ 0.3^*V_D$ DV DHigh Level Input Voltage 2.0 $ 5.5$ SVHigh Level Input Voltage 2.0 $ V_{DD}+0.$ SV SHigh Level Input Voltage 2.0 $ 0.4$ SVLow Level Output Voltage $ 0.4$ VHigh Level Output Voltage 2.4 $ -$ VHigh Level Output Voltage 2.4 $ V$ High Level Output Voltage 2.4 $ V$ High Level Output Voltage -5 $ +5$ μ A

Table 116. DC Characteristics	Table	ics
-------------------------------	-------	-----

Notes:

1. This condition excludes all pins that have on-chip pull-ups, when driven Low.

2. These values are provided for design guidance only and are not tested in production.

3. See Figure 31 for HALT Mode current.

		= 2.7 to 0°C to +			= 2.7 to 40°C to -			
Parameter	Min	Тур	Max	Min	Тур	Max	Units	Notes
Flash Byte Read Time				50	-	_	ns	
Flash Byte Program Time				20	_	_	μs	
Flash Page Erase Time				50	-	_	ms	
Flash Mass Erase Time				50	-	_	ms	
Writes to Single Address Before Next Erase				_	-	2		
Flash Row Program Time				_	-	8	ms	Cumulative pro- gram time for single row cannot exceed limit before next erase. This parame- ter is only an issue when bypassing the Flash Controller.
Data Retention				10	_	_	years	25°C
Endurance				10,000	-	-	cycles	Program/erase cycles

Table 119. Flash Memory Electrical Characteristics and Timing

Table 120. Watchdog Timer Electrical Characteristics and Timing

			= 2.7 to 0°C to -		TA	= 2.7 - = -40°C +105°C	C to		
Symbol	Parameter	Min	Тур	Max	Min	Тур	Max	Units	Conditions
	Active power consumption					2	3	μA	
F _{WDT}	WDT oscillator frequency				2.5	5	7.5	kHz	

Part Number	Flash	RAM	NVDS	ADC Channels	Description
Z8F0131PJ020SG	1KB	256	Yes	0	PDIP 28-pin
Z8F0131QJ020SG	1KB	256	Yes	0	QFN 28-pin
Extended Temperature	: −40°C to	105°C			
Z8F0130SH020EG	1KB	256	Yes	7	SOIC 20-pin
Z8F0130HH020EG	1KB	256	Yes	7	SSOP 20-pin
Z8F0130PH020EG	1KB	256	Yes	7	PDIP 20-pin
Z8F0130QH020EG	1KB	256	Yes	7	QFN 20-pin
Z8F0131SH020EG	1KB	256	Yes	0	SOIC 20-pin
Z8F0131HH020EG	1KB	256	Yes	0	SSOP 20-pin
Z8F0131PH020EG	1KB	256	Yes	0	PDIP 20-pin
Z8F0131QH020EG	1KB	256	Yes	0	QFN 20-pin
Z8F0130SJ020EG	1KB	256	Yes	8	SOIC 28-pin
Z8F0130HJ020EG	1KB	256	Yes	8	SSOP 28-pin
Z8F0130PJ020EG	1KB	256	Yes	8	PDIP 28-pin
Z8F0130QJ020EG	1KB	256	Yes	8	QFN 28-pin
Z8F0131SJ020EG	1KB	256	Yes	0	SOIC 28-pin
Z8F0131HJ020EG	1KB	256	Yes	0	SSOP 28-pin
Z8F0131PJ020EG	1KB	256	Yes	0	PDIP 28-pin
Z8F0131QJ020EG	1KB	256	Yes	0	QFN 28-pin
ZUSBSC00100ZACG					USB Smart Cable Accessory Kit
ZUSBOPTSC01ZACG					Opto-Isolated USB Smart Cable Accessory Kit

Table 128. Z8 Encore! XP F0830 Series Ordering Matrix

Part Number Suffix Designations

Zilog part numbers consist of a number of components, as indicated in the following example.

Example. Part number Z8F0830SH020SG is an 8-bit 20MHz Flash MCU with 8KB Program Memory and equipped with ADC and NVDS in a 20-pin SOIC package, operating within a 0°C to +70°C temperature range and built using lead-free solder.

watchdog timer reload upper byte (WDTU) 96 register file 14 register pair 165 register pointer 165 registers ADC channel 1 102 ADC data high byte 103 ADC data low bit 103, 104, 105 reset and stop mode characteristics 22 and stop mode recovery 21 carry flag 167 sources 23 **RET 169** return 169 RL 169 **RLC 169** rotate and shift instuctions 169 rotate left 169 rotate left through carry 169 rotate right 170 rotate right through carry 170 RP 165 RR 165, 170 rr 165 **RRC** 170

S

SBC 167 SCF 167, 168 second opcode map after 1FH 183 set carry flag 167, 168 set register pointer 168 shift right arithmatic 170 shift right logical 170 signal descriptions 11 software trap 169 source operand 165 SP 165 SRA 170 src 165 SRL 170 SRP 168 stack pointer 165 **STOP 168** stop mode 30, 168 stop mode recovery sources 26 using a GPIO port pin transition 27, 28 using watch-dog timer time-out 27 **SUB 167** subtract 167 subtract - extended addressing 167 subtract with carry 167 subtract with carry - extended addressing 167 **SUBX 167 SWAP 170** swap nibbles 170 symbols, additional 165

Т

Table 134. Power Consumption Reference Table 197 **TCM 167 TCMX 167** test complement under mask 167 test complement under mask - extended addressing 167 test under mask 167 test under mask - extended addressing 167 tiing diagram, voltage measurement 100 timer signals 11 timers 68 architecture 68 block diagram 69 capture mode 77, 78, 89, 90 capture/compare mode 81, 89 compare mode 79, 89 continuous mode 70, 89 counter mode 71, 72 counter modes 89 gated mode 80, 89 one-shot mode 69, 89 operating mode 69 PWM mode 74, 75, 89, 90 reading the timer count values 82