

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Active
Number of LABs/CLBs	2816
Number of Logic Elements/Cells	25344
Total RAM Bits	589824
Number of I/O	502
Number of Gates	1400000
Voltage - Supply	1.14V ~ 1.26V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	676-BGA
Supplier Device Package	676-FBGA (27x27)
Purchase URL	https://www.e-xfl.com/product-detail/xilinx/xc3s1400an-4fgg676i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Spartan-3AN FPGA Family: Introduction and Ordering Information

DS557 (v4.1) April 1, 2011

Product Specification

Introduction

The Spartan®-3AN FPGA family combines the best attributes of a leading edge, low cost FPGA with nonvolatile technology across a broad range of densities. The family combines all the features of the Spartan-3A FPGA family plus leading technology in-system Flash memory for configuration and nonvolatile data storage.

The Spartan-3AN FPGAs are part of the Extended Spartan-3A family, which also includes the Spartan-3A FPGAs and the higher density Spartan-3A DSP FPGAs. The Spartan-3AN FPGA family is excellent for space-constrained applications such as blade servers, medical devices, automotive infotainment, telematics, GPS, and other small consumer products. Combining FPGA and Flash technology minimizes chip count, PCB traces and overall size while increasing system reliability.

The Spartan-3AN FPGA internal configuration interface is completely self-contained, increasing design security. The family maintains full support for external configuration. The Spartan-3AN FPGA is the world's first nonvolatile FPGA with MultiBoot, supporting two or more configuration files in one device, allowing alternative configurations for field upgrades, test modes, or multiple system configurations.

Features

- The new standard for low cost nonvolatile FPGA solutions
- Eliminates traditional nonvolatile FPGA limitations with the advanced 90 nm Spartan-3A device feature set
 - Memory, multipliers, DCMs, SelectIO, hot swap, power management, etc.
- Integrated robust configuration memory
 - Saves board space
 - Improves ease-of-use
 - Simplifies design
 - Reduces support issues
- Plentiful amounts of nonvolatile memory available to the user
 - Up to 11+ Mb available
 - MultiBoot support
 - Embedded processing and code shadowing
 - Scratchpad memory
 - Robust 100K Flash memory program/erase cycles

- 20 years Flash memory data retention
- Security features provide bitstream anti-cloning protection
 - Buried configuration interface
 - Unique Device DNA serial number in each device for design Authentication to prevent unauthorized copying
 Flash memory sector protection and lockdown
- Configuration watchdog timer automatically recovers from configuration errors
- Suspend mode reduces system power consumption
 - Retains all design state and FPGA configuration data
 - Fast response time, typically less than 100 μs
- Full hot-swap compliance
- Multi-voltage, multi-standard SelectIO™ interface pins
 - Up to 502 I/O pins or 227 differential signal pairs
 - LVCMOS, LVTTL, HSTL, and SSTL single-ended signal standards
 - 3.3V, 2.5V, 1.8V, 1.5V, and 1.2V signaling
 - Up to 24 mA output drive
 - 3.3V $\pm 10\%$ compatibility and hot swap compliance
 - 622+ Mb/s data transfer rate per I/O
 - DDR/DDR2 SDRAM support up to 400 Mb/s
 - LVDS, RSDS, mini-LVDS, PPDS, and HSTL/SSTL differential I/O
- Abundant, flexible logic resources
 - Densities up to 25,344 logic cells
 - Optional shift register or distributed RAM support
 - Enhanced 18 x 18 multipliers with optional pipeline
- Hierarchical SelectRAM™ memory architecture
 - Up to 576 Kbits of dedicated block RAM
- Up to 176 Kbits of efficient distributed RAM
- Up to eight Digital Clock Managers (DCMs)
- Eight global clocks and eight additional clocks per each half of device, plus abundant low-skew routing
- Complete Xilinx® ISE® and WebPACK[™] software development system support
- <u>MicroBlaze</u>[™] and <u>PicoBlaze</u>[™] embedded processor cores
- Fully compliant 32-/64-bit 33 MHz PCI™ technology support
- Low-cost QFP and BGA Pb-free (RoHS) packaging options
 - Pin-compatible with the same packages in the Spartan-3A FPGA family

Table 2: Summary of Spartan-3AN FPGA Attributes

Device	System Gates	Equivalent Logic Cells	CLBs	Slices	Distributed RAM Bits ⁽¹⁾	Block RAM Bits ⁽¹⁾	Dedicated Multipliers	DCMs	Maximum User I/O	Maximum Differential I/O Pairs	Bitstream Size ⁽¹⁾	In-System Flash Bits
XC3S50AN	50K	1,584	176	704	11K	54K	3	2	144	64	427K	1M
XC3S200AN	200K	4,032	448	1,792	28K	288K	16	4	195	90	1,168K	4M
XC3S400AN	400K	8,064	896	3,584	56K	360K	20	4	311	142	1,842K	4M
XC3S700AN	700K	13,248	1,472	5,888	92K	360K	20	8	372	165	2,669K	8M
XC3S1400AN	1400K	25,344	2,816	11,264	176K	576K	32	8	502	227	4,644K	16M

Notes:

1. By convention, one Kb is equivalent to 1,024 bits and one Mb is equivalent to 1,024 Kb.

© Copyright 2007–2011 Xilinx, Inc. XILINX, the Xilinx logo, Virtex, Spartan, ISE, and other designated brands included herein are trademarks of Xilinx in the United States and other countries. PCI and PCI-X are trademarks of PCI-SIG and used under license. All other trademarks are the property of their respective owners.

Package Marking

Figure 3 provides a top marking example for Spartan-3AN FPGAs in the quad-flat packages. Figure 4 shows the top marking for Spartan-3AN FPGAs in BGA packages. The markings for the BGA packages are nearly identical to those for the quad-flat packages, except that the marking is rotated with respect to the ball A1 indicator.

The "5C" and "4I" Speed Grade/Temperature Range part combinations may be dual marked as "5C/4I". Devices with the dual mark can be used as either -5C or -4I devices. Devices with a single mark are only guaranteed for the marked speed grade and temperature range.

Figure 3: Spartan-3AN FPGA QFP Package Marking Example

Figure 4: Spartan-3AN FPGA BGA Package Marking Example

General DC Characteristics for I/O Pins

Table	11:	General DC	Characteristics	of User I/O.	Dual-Purpos	e, and Dedicated F	Pins
			•			-,	

Symbol	Description	Test Co	onditions	Min	Тур	Max	Units
ا _ل (2)	Leakage current at User I/O, Input-only, Dual-Purpose, and Dedicated pins, FPGA powered	Driver is in a high-impeda $V_{IN} = 0V$ or V_{CCO} max, sa	nce state, ample-tested	-10	_	+10	μΑ
I _{HS}	Leakage current on pins during hot socketing, FPGA unpowered	All pins except INIT_B, Pf pins when PUDC_B = 1.	ROG_B, DONE, and JTAG	-10	-	+10	μA
		INIT_B, PROG_B, DONE pins when PUDC_B = 0.	, and JTAG pins or other	Ad	ld I _{HS} + I _F	RPU	μΑ
I _{RPU} ⁽³⁾	Current through pull-up resistor at User I/O, Dual-Purpose,	V _{IN} = GND	V _{CCO} or V _{CCAUX} = 3.0V to 3.6V	-151	-315	-710	μA
	Dedicated pins are powered by		V _{CCO} = 2.3V to 2.7V	-82	-182	-437	μA
	V _{CCAUX} . ⁽⁴⁾		V _{CCO} = 1.7V to 1.9V	-36	-88	-226	μA
			V _{CCO} = 1.4V to 1.6V	-22	-56	-148	μA
			V _{CCO} = 1.14V to 1.26V	-11	-31	-83	μA
R _{PU} ⁽³⁾	Equivalent pull-up resistor value	V _{IN} = GND	V _{CCO} = 3.0V to 3.6V	5.1	11.4	23.9	kΩ
	Input-only, and Dedicated pins		$V_{CCO} = 2.3V$ to 2.7V	6.2	14.8	33.1	kΩ
	(based on I _{RPU} per Note 3)		V _{CCO} = 1.7V to 1.9V	8.4	21.6	52.6	kΩ
			V _{CCO} = 1.4V to 1.6V	10.8	28.4	74.0	kΩ
			V _{CCO} = 1.14V to 1.26V	15.3	41.1	119.4	kΩ
I _{RPD} ⁽³⁾	Current through pull-down resistor at User I/O, Dual-Purpose, Input-only, and Dedicated pins	V _{IN} = V _{CCO}	V _{CCAUX} = 3.0V to 3.6V	167	346	659	μA
R _{PD} ⁽³⁾	Equivalent pull-down resistor	$V_{CCAUX} = 3.0V$ to $3.6V$	V _{IN} = 3.0V to 3.6V	5.5	10.4	20.8	kΩ
	Input-only, and Dedicated pins		$V_{IN} = 2.3V$ to 2.7V	4.1	7.8	15.7	kΩ
	(based on I _{RPD} per Note 3)		V _{IN} = 1.7V to 1.9V	3.0	5.7	11.1	kΩ
			V _{IN} = 1.4V to 1.6V	2.7	5.1	9.6	kΩ
			V _{IN} = 1.14V to 1.26V	2.4	4.5	8.1	kΩ
I _{REF}	V _{REF} current per pin	All V _{CC}	_{CO} levels	-10	-	+10	μA
C _{IN}	Input capacitance		-	_	_	10	pF
R _{DT}	Resistance of optional differential termination circuit within a differential I/O pair. Not available	$V_{CCO} = 3.3V \pm 10\%$	LVDS_33, MINI_LVDS_33, RSDS_33	90	100	115	Ω
	on input-only pails.	$V_{CCO} = 2.5V \pm 10\%$	LVDS_25, MINI_LVDS_25, RSDS_25	90	110	_	Ω

Notes:

1. The numbers in this table are based on the conditions set forth in Table 10.

 For single-ended signals that are placed on a differential-capable I/O, V_{IN} of –0.2V to –0.5V is supported but can cause increased leakage between the two pins. See *Parasitic Leakage* in <u>UG331</u>, *Spartan-3 Generation FPGA User Guide*.

3. This parameter is based on characterization. The pull-up resistance $R_{PU} = V_{CCO} / I_{RPU}$. The pull-down resistance $R_{PD} = V_{IN} / I_{RPD}$.

4. V_{CCAUX} must be 3.3V on Spartan-3AN FPGAs. V_{CCAUX} for Spartan-3A FPGAs can be either 3.3V or 2.5V.

Table 15: Recommended Operating Conditions for User I/Os Using Differential Signal Standards (Cont'd)

	V _{CCO} for Drivers ⁽¹⁾			V _{ID}			V _{ICM} ⁽²⁾		
	Min (V)	Nom (V)	Max (V)	Min (mV)	Nom (mV)	Max (mV)	Min (V)	Nom (V)	Max (V)
DIFF_SSTL3_II ⁽⁸⁾	3.0	3.3	3.6	100	-	_	1.1	-	1.9

Notes:

The V_{CCO} rails supply only differential output drivers, not input circuits. 1.

V_{ICM} must be less than V_{CCAUX}. 2.

- These true differential output standards are supported only on FPGA banks 0 and 2. Inputs are unrestricted. See the "Using I/O Resources" 3. chapter in UG331.
- See External Termination Requirements for Differential I/O, page 22. 4.
- LVPECL is supported on inputs only, not outputs. Requires $V_{CCAUX} = 3.3V \pm 10\%$. 5.
- LVPECL_33 maximum $V_{ICM} = V_{CCAUX} (V_{ID} / 2)$ 6.
- 7.
- Requires $V_{CCAUX} = 3.3V \pm 10\%$ for inputs. ($V_{CCAUX} 300 \text{ mV}$) $\leq V_{ICM} \leq (V_{CCAUX} 37 \text{ mV})$ V_{REF} inputs are used for the DIFF_SSTL and DIFF_HSTL standards. The V_{REF} settings are the same as for the single-ended versions in 8. Table 13. Other differential standards do not use V_{REF}
- These higher-drive output standards are supported only on FPGA banks 1 and 3. Inputs are unrestricted. See the "Using I/O Resources" 9. chapter in UG331.

Differential Output Pairs

External Termination Requirements for Differential I/O

LVDS, RSDS, MINI_LVDS, and PPDS I/O Standards

BLVDS_25 I/O Standard

Figure 9: External Output and Input Termination Resistors for BLVDS_25 I/O Standard

TMDS_33 I/O Standard

Figure 10: External Input Resistors Required for TMDS_33 I/O Standard

www.xilinx.com

I/O Timing

Pin-to-Pin Clock-to-Output Times

Table 21: Pin-to-Pin Clock-to-Output Times for the IOB Output Path

Symbol				Speed	Grade		
Symbol	Description	Conditions	Device	-5	-4	Units	
				Max	Max	-	
Clock-to-Output Times							
T _{ICKOFDCM}	When reading from the Output	LVCMOS25 ⁽²⁾ , 12 mA	XC3S50AN	3.18	3.42	ns	
	Flip-Flop (OFF), the time from the active transition on the Global	output drive, Fast slew rate, with DCM ⁽³⁾	XC3S200AN	3.21	3.27	ns	
	Clock pin to data appearing at the Output pin. The DCM is in use.		XC3S400AN	2.97	3.33	ns	
			XC3S700AN	3.39	3.50	ns	
			XC3S1400AN	3.51	3.99	ns	
T _{ICKOF}	When reading from OFF, the time	LVCMOS25 ⁽²⁾ , 12 mA	XC3S50AN	4.59	5.02	ns	
	Global Clock pin to data appearing	rate, without DCM	XC3S200AN	4.88	5.24	ns	
	at the Output pin. The DCM is not		XC3S400AN	4.68	5.12	ns	
			XC3S700AN	4.97	5.34	ns	
			XC3S1400AN	5.06	5.69	ns	

Notes:

1. The numbers in this table are tested using the methodology presented in Table 30 and are based on the operating conditions set forth in Table 10 and Table 13.

2. This clock-to-output time requires adjustment whenever a signal standard other than LVCMOS25 is assigned to the Global Clock Input or a standard other than LVCMOS25 with 12 mA drive and Fast slew rate is assigned to the data Output. If the former is true, *add* the appropriate Input adjustment from Table 26. If the latter is true, *add* the appropriate Output adjustment from Table 29.

3. DCM output jitter is included in all measurements.

Table	25: P	ropagation	Times	for the	IOB	Input	Path	(Cont'd)
-------	--------------	------------	-------	---------	-----	-------	------	----------

	Description Conditions DELAY VALUE Device				Spo Gra	eed ade	
Symbol	Description	Conditions	DELAY_VALUE	Device	-5	-4	Units
					Max	Max	
T _{IOPLID}	The time it takes for data to travel	LVCMOS25 ⁽²⁾	1	XC3S50AN	2.30	2.41	ns
	from the Input pin through the IFF latch to the I output with the input		2		3.24	3.35	ns
	delay programmed		3		3.65	3.98	ns
			4		4.18	4.55	ns
			5		4.02	4.47	ns
			6		4.86	5.32	ns
			7		5.61	6.17	ns
			8		6.11	6.75	ns
			1	XC3S200AN	2.19	2.43	ns
			2		2.86	3.16	ns
			3		3.52	4.01	ns
			4		4.02	4.60	ns
			5		3.83	4.43	ns
			6		4.70	5.46	ns
			7		5.48	6.33	ns
			8		5.99	6.94	ns
			1	XC3S400AN	1.93	2.25	ns
			2		2.57	2.90	ns
			3		3.16	3.66	ns
			4		3.63	4.19	ns
			5		3.55	4.18	ns
			6		4.34	5.03	ns
			7		5.09	5.88	ns
			8		5.58	6.42	ns
			1	XC3S700AN	1.96	2.18	ns
			2		2.76	3.06	ns
			3		3.45	3.95	ns
			4		3.97	4.54	ns
			5		3.83	4.37	ns
			6		4.74	5.42	ns
			7		5.53	6.33	ns
			8		6.06	6.96	ns

Using IBIS Models to Simulate Load Conditions in Application

IBIS models permit the most accurate prediction of timing delays for a given application. The parameters found in the IBIS model (V_{REF} , R_{REF} , and V_{MEAS}) correspond directly with the parameters used in Table 30 (V_T , R_T , and V_M). Do not confuse V_{REF} (the termination voltage) from the IBIS model with V_{REF} (the input-switching threshold) from the table. A fourth parameter, C_{REF} is always zero. The four parameters describe all relevant output test conditions. IBIS models are found in the Xilinx development software as well as at the following link:

www.xilinx.com/support/download/index.htm

Delays for a given application are simulated according to its specific load conditions as follows:

- 1. Simulate the desired signal standard with the output driver connected to the test setup shown in Figure 11. Use parameter values V_T , R_T , and V_M from Table 30. C_{REF} is zero.
- 2. Record the time to V_M .
- Simulate the same signal standard with the output driver connected to the PCB trace with load. Use the appropriate IBIS model (including V_{REF} R_{REF} C_{REF} and V_{MEAS} values) or capacitive value to represent the load.
- 4. Record the time to V_{MEAS}.
- 5. Compare the results of steps 2 and 4. Add (or subtract) the increase (or decrease) in delay to (or from) the appropriate Output standard adjustment (Table 29) to yield the worst-case delay of the PCB trace.

Simultaneously Switching Output Guidelines

This section provides guidelines for the recommended maximum allowable number of Simultaneous Switching Outputs (SSOs). These guidelines describe the maximum number of user I/O pins of a given output signal standard that should simultaneously switch in the same direction, while maintaining a safe level of switching noise. Meeting these guidelines for the stated test conditions ensures that the FPGA operates free from the adverse effects of ground and power bounce.

Ground or power bounce occurs when a large number of outputs simultaneously switch in the same direction. The output drive transistors all conduct current to a common voltage rail. Low-to-High transitions conduct to the V_{CCO} rail; High-to-Low transitions conduct to the GND rail. The resulting cumulative current transient induces a voltage difference across the inductance that exists between the die pad and the power supply or ground return. The inductance is associated with bonding wires, the package lead frame,

and any other signal routing inside the package. Other variables contribute to SSO noise levels, including stray inductance on the PCB as well as capacitive loading at receivers. Any SSO-induced voltage consequently affects internal switching noise margins and ultimately signal quality.

Table 31 and Table 32 provide the essential SSO guidelines. For each device/package combination, Table 31 provides the number of equivalent V_{CCO} /GND pairs. The equivalent number of pairs is based on characterization and may not match the physical number of pairs. For each output signal standard and drive strength, Table 32 recommends the maximum number of SSOs, switching in the same direction, allowed per V_{CCO} /GND pair within an I/O bank. The guidelines in Table 32 are categorized by package style, slew rate, and output drive current. Furthermore, the number of SSOs is specified by I/O bank. Generally, the left and right I/O banks (Banks 1 and 3) support higher output drive current.

Multiply the appropriate numbers from Table 31 and Table 32 to calculate the maximum number of SSOs allowed within an I/O bank. Exceeding these SSO guidelines might result in increased power or ground bounce, degraded signal integrity, or increased system jitter.

SSO_{MAX}/IO Bank = Table 31 x Table 32

The recommended maximum SSO values assumes that the FPGA is soldered on the printed circuit board and that the board uses sound design practices. The SSO values do not apply for FPGAs mounted in sockets, due to the lead inductance introduced by the socket.

The number of SSOs allowed for quad-flat packages (TQ) is lower than for ball grid array packages (FG) due to the larger lead inductance of the quad-flat packages. Ball grid array packages are recommended for applications with a large number of simultaneously switching outputs.

Table 31: Equivalent V_{CCO}/GND Pairs per Bank

Dovico	Package Style								
Device	TQG144	FTG256	FGG400	FGG484	FGG676				
XC3S50AN	2	3	-	-	-				
XC3S200AN	-	4	-	-	-				
XC3S400AN	-	4	5	-	-				
XC3S700AN	-	-	-	5	-				
XC3S1400AN	_	_	_	6	9				

Clock Buffer/Multiplexer Switching Characteristics

Table 36: Clock Distribution Switching Characteristics

			Maxi	Units	
Description	Symbol	Minimum	Speed		
			-5	-4	
Global clock buffer (BUFG, BUFGMUX, BUFGCE) I input to O-output delay	T _{GIO}	-	0.22	0.23	ns
Global clock multiplexer (BUFGMUX) select S-input setup to I0 and I1 inputs. Same as BUFGCE enable CE-input	T _{GSI}	-	0.56	0.63	ns
Frequency of signals distributed on global buffers (all sides)	F _{BUFG}	0	350	334	MHz

Notes:

1. The numbers in this table are based on the operating conditions set forth in Table 10.

Table 40: Switching Characteristics for the DLL (Cont'd)

				Speed	Grade		
Symbol	Description		-5		-4		Units
			Min	Max	Min	Max	
Delay Lines							
DCM_DELAY_STEP ⁽⁵⁾	Finest delay resolution, average over all taps	All	15	35	15	35	ps

Notes:

1. The numbers in this table are based on the operating conditions set forth in Table 10 and Table 39.

2. Indicates the maximum amount of output jitter that the DCM adds to the jitter on the CLKIN input.

3. For optimal jitter tolerance and faster lock time, use the CLKIN_PERIOD attribute.

4. Some jitter and duty-cycle specifications include 1% of input clock period or 0.01 UI. For example, the data sheet specifies a maximum jitter of "±[1% of CLKIN period + 150]". Assume the CLKIN frequency is 100 MHz. The equivalent CLKIN period is 10 ns and 1% of 10 ns is 0.1 ns or 100 ps. According to the data sheet, the maximum jitter is ±[100 ps + 150 ps] = ±250 ps.

5. The typical delay step size is 23 ps.

Digital Frequency Synthesizer (DFS)

Table 41: Recommended Operating Conditions for the DFS

	Symbol	Description	-	5	-4		Units	
			Min	Max	Min	Max		
Input Free	quency Ranges ⁽²⁾							
F _{CLKIN}	CLKIN_FREQ_FX	Frequency for the CLKIN input		0.200	333 <mark>(3)</mark>	0.200	333 <mark>(3)</mark>	MHz
Input Cloc	ck Jitter Tolerance ⁽⁴⁾							
CLKIN_CY	′C_JITT_FX_LF	Cycle-to-cycle jitter at the	$F_{CLKFX} \le 150 \text{ MHz}$	-	±300	-	±300	ps
CLKIN_CY	′C_JITT_FX_HF	output frequency	F _{CLKFX} > 150 MHz	-	±150	-	±150	ps
CLKIN_PE	R_JITT_FX	Period jitter at the CLKIN input	Period jitter at the CLKIN input		±1	_	±1	ns

Notes:

1. DFS specifications apply when either of the DFS outputs (CLKFX or CLKFX180) are used.

2. If both DFS and DLL outputs are used on the same DCM, follow the more restrictive CLKIN_FREQ_DLL specifications in Table 39.

3. To support double the maximum effective FCLKIN limit, set the CLKIN_DIVIDE_BY_2 attribute to TRUE. This attribute divides the incoming clock frequency by two as it enters the DCM.

4. CLKIN input jitter beyond these limits may cause the DCM to lose lock.

Table 42: Switching Characteristics for the DFS

					Speed Grade			
Symbol	Description			-5		-	4	Units
				Min	Max	Min	Max	
Output Frequency Range	es		1	1				
CLKOUT_FREQ_FX	Frequency for the CLKFX and CLKFX1	80 outputs	All	5	350	5	320	MHz
Output Clock Jitter (2)(3)			1			1		
CLKOUT_PER_JITT_FX	Period jitter at the CLKFX and	CLKIN	All	Тур	Max	Тур	Max	
		≤ 20 MHz		Us	e the Spa Calcı	rtan-3A J ulator:	itter	ps
				www.xil tion/dat	inx.com/s a_sheets/	<pre>support/documenta s/s3a_jitter_calc.zip</pre>		
	CLKIN > 20 MHz		±[1% of CLKFX period + 100]	±[1% of CLKFX period + 200]	±[1% of CLKFX period + 100]	±[1% of CLKFX period + 200]	ps	
Duty Cycle ⁽⁴⁾⁽⁵⁾	1							
CLKOUT_DUTY_CYCLE_FX	Duty cycle precision for the CLKFX and outputs, including the BUFGMUX and duty-cycle distortion	d CLKFX180 clock tree	All	_	±[1% of CLKFX period + 350]	-	±[1% of CLKFX period + 350]	ps
Phase Alignment ⁽⁵⁾								
CLKOUT_PHASE_FX	Phase offset between the DFS CLKFX output and the DLL CLK0 output when both the DFS and DLL are used		All	_	±200	-	±200	ps
CLKOUT_PHASE_FX180	Phase offset between the DFS CLKFX180 output and the DLL CLK0 output when both the DFS and DLL are used		All	_	±[1% of CLKFX period + 200]	_	±[1% of CLKFX period + 200]	ps
Lock Time								
LOCK_FX ⁽²⁾	The time from deassertion at the DCM's Reset input to the rising	The from deassertion at the Reset input to the rising $\leq 15 \text{ MHz} \leq F_{\text{CLKIN}}$ A		_	5	_	5	ms
	Transition at its LOCKED output. The DFS asserts LOCKED when the CLKFX and CLKFX180 signals are valid. If using both the DLL and the DFS, use the longer locking time.	F _{CLKIN} > 15 MHz	F _{CLKIN} > 15 MHz	_	450	_	450	μs

Notes:

- 1. The numbers in this table are based on the operating conditions set forth in Table 10 and Table 41.
- 2. For optimal jitter tolerance and faster lock time, use the CLKIN_PERIOD attribute.
- 3. Maximum output jitter is characterized within a reasonable noise environment (40 SSOs and 25% CLB switching) on an XC3S1400A FPGA. Output jitter strongly depends on the environment, including the number of SSOs, the output drive strength, CLB utilization, CLB switching activities, switching frequency, power supply and PCB design. The actual maximum output jitter depends on the system application.
- 4. The CLKFX and CLKFX180 outputs always have an approximate 50% duty cycle.
- 5. Some duty-cycle and alignment specifications include a percentage of the CLKFX output period. For example, the data sheet specifies a maximum CLKFX jitter of "±[1% of CLKFX period + 200]". Assume the CLKFX output frequency is 100 MHz. The equivalent CLKFX period is 10 ns and 1% of 10 ns is 0.1 ns or 100 ps. According to the data sheet, the maximum jitter is ±[100 ps + 200 ps] = ±300 ps.

Symbol	Description	Minimum	Maximum	Units	
T _{CCLK1}	Initial CCLK clock period	See Table 51			
T _{CCLKn}	CCLK clock period after FPGA loads ConfigRate setting	S	ee Table 51		
T _{MINIT}	Setup time on M[2:0] mode pins before the rising edge of INIT_B	50	-	ns	
T _{INITM}	Hold time on M[2:0] mode pins after the rising edge of INIT_B	0	-	ns	
T _{INITADDR}	Minimum period of initial A[25:0] address cycle; LDC[2:0] and HDC are asserted and valid	5	5	T _{CCLK1} cycles	
T _{CCO}	Address A[25:0] outputs valid after CCLK falling edge	S	ee Table 55		
T _{DCC}	Setup time on D[7:0] data inputs before CCLK rising edge	See T _s	SMDCC in Table	56	
T _{CCD}	Hold time on D[7:0] data inputs after CCLK rising edge	0	-	ns	

Table 59: Timing for Byte-wide Peripheral Interface (BPI) Configuration Mode

Table 60: Configuration Timing Requirements for Attached Parallel NOR Flash

Symbol	Description	Requirement	Units
T _{CE} (t _{ELQV})	Parallel NOR Flash PROM chip-select time	T _{CE} ≤ T _{INITADDR}	ns
T _{OE} (t _{GLQV})	Parallel NOR Flash PROM output-enable time	T _{OE} ≤ T _{INITADDR}	ns
T _{ACC} (t _{AVQV})	Parallel NOR Flash PROM read access time	$T_{ACC} \leq 0.5 T_{CCLKn(min)} - T_{CCO} - T_{DCC} - PCB$	ns
T _{BYTE} (t _{FLQV,} t _{FHQV})	For x8/x16 PROMs only: BYTE# to output valid time ⁽³⁾	T _{BYTE} ≤ T _{INITADDR}	ns

Notes:

1. These requirements are for successful FPGA configuration in BPI mode, where the FPGA generates the CCLK signal. The

post-configuration timing can be different to support the specific needs of the application loaded into the FPGA.

2. Subtract additional printed circuit board routing delay as required by the application.

3. The initial BYTE# timing can be extended using an external, appropriately sized pull-down resistor on the FPGA's LDC2 pin. The resistor value also depends on whether the FPGA's PUDC_B pin is High or Low.

IEEE 1149.1/1532 JTAG Test Access Port Timing

Figure 18: JTAG Waveforms

www.xilinx.com

		Maximum	Maximum	Maximum	All Possible I/Os by Type					
Device	Package	and Input-Only	Input- Only	Differential Pairs	I/O	INPUT	DUAL	VREF ⁽¹⁾	CLK	N.C.
VC2SEOAN	TQG144	108	7	50	42	2	26	8	30	0
XC3550AN	FTG256	144	32	64	53	20	26	15	30	51
XC3S200AN	FTG256	195	35	90	69	21	52	21	32	0
XC28400AN	FTG256	195	35	90	69	21	52	21	32	0
7C33400AN	FGG400	311	63	142	155	46	52	26	32	0
XC3S700AN	FGG484	372	84	165	194	61	52	33	32	3
XC3S1400AN	FGG484	375	87	165	195	62	52	34	32	0
	FGG676	502	94	227	313	67	52	38	32	17

Table 64: Maximum User I/O by Package

Notes:

1. Some VREFs are on INPUT pins. See pinout tables for details.

Electronic versions of the package pinout tables and foot-prints are available for download from the Xilinx website at:

http://www.xilinx.com/support/documentation/data_sheets/s3a_pin.zip

Using a spreadsheet program, the data can be sorted and reformatted according to any specific needs. Similarly, the ASCII-text file is easily parsed by most scripting programs.

Package Overview

Table 65 shows the five low-cost, space-saving production package styles for the Spartan-3AN family.

Table 65: Spartan-3AN Family Package Options

Package	Leads	Туре	Maximum I/Os	Lead Pitch (mm)	Body Area (mm)	Height (mm)
TQ144/TQG144	144	Thin Quad Flat Pack (TQFP)	108	0.5	20 x 20	1.60
FT256/FTG256	256	Fine-pitch Thin Ball Grid Array (FBGA)	195	1.0	17 x 17	1.55
FG400/FGG400	400	Fine-pitch Ball Grid Array (FBGA)	311	1.0	21 x 21	2.43
FG484/FGG484	484	Fine-pitch Ball Grid Array (FBGA)	375	1.0	23 x 23	2.60
FG676/FGG676	676	Fine-pitch Ball Grid Array (FBGA)	502	1.0	27 x 27	2.60

Notes:

1. For mass, refer to the MDDS files (see Table 66).

Each package style is available in an environmentally friendly lead-free (Pb-free) option. The Pb-free packages include an extra "G" in the package style name. For example, the standard "CS484" package becomes "CSG484" when ordered as the Pb-free option. Leaded (Pb) packages are available for selected devices, with the same pinout and without the "G" in the ordering code; See Table 5, page 7 for more information. The mechanical dimensions of the Pb and Pb-free packages are similar, as shown in the mechanical drawings provided in Table 66.

For additional package information, see <u>UG112</u>: *Device Package User Guide*.

User I/Os by Bank

Table 71 and Table 72 indicate how the available user-I/O pins are distributed between the four I/O banks on the FTG256 package. The AWAKE pin is counted as a dual-purpose I/O. The XC3S50AN FPGA in the FTG256 package has 51 unconnected balls, labeled with an N.C. type. These pins are also indicated in Figure 20.

Table	71.	User I/Os	Per Ban	k on XC	S50AN in	the F	TG256 I	Package
Table	/ 1.					uie i	102301	acrage

Package	VO Bonk		All Possible I/O Pins by Type				
Edge	I/O Ballk		I/O	INPUT	DUAL	VREF	CLK
Тор	0	40	21	7	1	3	8
Right	1	32	12	5	4	3	8
Bottom	2	40	5	2	21	6	6
Left	3	32	15	6	0	3	8
Total		144	53	20	26	15	30

Table 72: User I/Os Per Bank on XC3S200AN and XC3S400AN in the FTG256 Package

Package	1/O Bonk	Movimum I/Oo	All Possible I/O Pins by Type						
Edge	I/O Ballk		I/O	INPUT	DUAL	VREF	CLK		
Тор	0	47	27	6	1	5	8		
Right	1	50	1	6	30	5	8		
Bottom	2	48	11	2	21	6	8		
Left	3	50	30	7	0	5	8		
Total		195	69	21	52	21	32		

Table 76: Spartan-3AN FGG400 Pinout (Cont'd)

Bank	Pin Name	FGG400 Ball	Туре
0	IO_L32N_0/PUDC_B	B2	DUAL
0	IO_L32P_0/VREF_0	A2	VREF
0	IP_0	E14	INPUT
0	IP_0	F11	INPUT
0	IP_0	F14	INPUT
0	IP_0	G8	INPUT
0	IP_0	G9	INPUT
0	IP_0	G10	INPUT
0	IP_0	G12	INPUT
0	IP_0	G13	INPUT
0	IP_0	H9	INPUT
0	IP_0	H10	INPUT
0	IP_0	H11	INPUT
0	IP_0	H12	INPUT
0	IP_0/VREF_0	G11	VREF
0	VCCO_0	B4	VCCO
0	VCCO_0	B10	VCCO
0	VCCO_0	B16	VCCO
0	VCCO_0	D7	VCCO
0	VCCO_0	D13	VCCO
0	VCCO_0	F10	VCCO
1	IO_L01N_1/LDC2	V20	DUAL
1	IO_L01P_1/HDC	W20	DUAL
1	IO_L02N_1/LDC0	U18	DUAL
1	IO_L02P_1/LDC1	V19	DUAL
1	IO_L03N_1/A1	R16	DUAL
1	IO_L03P_1/A0	T17	DUAL
1	IO_L05N_1	T20	I/O
1	IO_L05P_1	T18	I/O
1	IO_L06N_1	U20	I/O
1	IO_L06P_1	U19	I/O
1	IO_L07N_1	P17	I/O
1	IO_L07P_1	P16	I/O
1	IO_L08N_1	R17	I/O
1	IO_L08P_1	R18	I/O
1	IO_L09N_1	R20	I/O
1	IO_L09P_1	R19	I/O
1	IO_L10N_1/VREF_1	P20	VREF
1	IO_L10P_1	P18	I/O
1	IO_L12N_1/A3	N17	DUAL

Bank	Pin Name	FGG400 Ball	Туре
1	IO_L12P_1/A2	N15	DUAL
1	IO_L13N_1/A5	N19	DUAL
1	IO_L13P_1/A4	N18	DUAL
1	IO_L14N_1/A7	M18	DUAL
1	IO_L14P_1/A6	M17	DUAL
1	IO_L16N_1/A9	L16	DUAL
1	IO_L16P_1/A8	L15	DUAL
1	IO_L17N_1/RHCLK1	M20	RHCLK
1	IO_L17P_1/RHCLK0	M19	RHCLK
1	IO_L18N_1/TRDY1/RHCLK3	L18	RHCLK
1	IO_L18P_1/RHCLK2	L19	RHCLK
1	IO_L20N_1/RHCLK5	L17	RHCLK
1	IO_L20P_1/RHCLK4	K18	RHCLK
1	IO_L21N_1/RHCLK7	J20	RHCLK
1	IO_L21P_1/IRDY1/RHCLK6	K20	RHCLK
1	IO_L22N_1/A11	J18	DUAL
1	IO_L22P_1/A10	J19	DUAL
1	IO_L24N_1	K16	I/O
1	IO_L24P_1	J17	I/O
1	IO_L25N_1/A13	H18	DUAL
1	IO_L25P_1/A12	H19	DUAL
1	IO_L26N_1/A15	G20	DUAL
1	IO_L26P_1/A14	H20	DUAL
1	IO_L28N_1	H17	I/O
1	IO_L28P_1	G18	I/O
1	IO_L29N_1/A17	F19	DUAL
1	IO_L29P_1/A16	F20	DUAL
1	IO_L30N_1/A19	F18	DUAL
1	IO_L30P_1/A18	G17	DUAL
1	IO_L32N_1	E19	I/O
1	IO_L32P_1	E20	I/O
1	IO_L33N_1	F17	I/O
1	IO_L33P_1	E18	I/O
1	IO_L34N_1	D18	I/O
1	IO_L34P_1	D20	I/O
1	IO_L36N_1/A21	F16	DUAL
1	IO_L36P_1/A20	G16	DUAL
1	IO_L37N_1/A23	C19	DUAL
1	IO_L37P_1/A22	C20	DUAL
1	IO_L38N_1/A25	B19	DUAL

Bank	Pin Name	FGG400 Ball	Туре
VCCAUX	TMS	E4	JTAG
VCCAUX	VCCAUX	A13	VCCAUX
VCCAUX	VCCAUX	E16	VCCAUX
VCCAUX	VCCAUX	H1	VCCAUX
VCCAUX	VCCAUX	K13	VCCAUX
VCCAUX	VCCAUX	L8	VCCAUX
VCCAUX	VCCAUX	N20	VCCAUX
VCCAUX	VCCAUX	T5	VCCAUX
VCCAUX	VCCAUX	Y8	VCCAUX
VCCINT	VCCINT	J10	VCCINT
VCCINT	VCCINT	J12	VCCINT
VCCINT	VCCINT	K9	VCCINT
VCCINT	VCCINT	K11	VCCINT
VCCINT	VCCINT	L10	VCCINT
VCCINT	VCCINT	L12	VCCINT
VCCINT	VCCINT	M9	VCCINT
VCCINT	VCCINT	M11	VCCINT
VCCINT	VCCINT	N10	VCCINT

Table 76: Spartan-3AN FGG400 Pinout (Cont'd)

User I/Os by Bank

Table 77 indicates how the 311 available user-I/O pins are distributed between the four I/O banks on the FGG400 package. The AWAKE pin is counted as a dual-purpose I/O.

Package Edge	I/O Bank	Maximum I/Os	All Possible I/O Pins by Type				
			I/O	INPUT	DUAL	VREF	CLK
Тор	0	77	50	12	1	6	8
Right	1	79	21	12	30	8	8
Bottom	2	76	35	6	21	6	8
Left	3	79	49	16	0	6	8
Total		311	155	46	52	26	32

Table 77: User I/Os Per Bank for the XC3S400AN in the FGG400 Package

Footprint Migration Differences

The XC3S400AN is the only Spartan-3AN FPGA offered in the FGG400 package.

The XC3S400AN FPGA is pin compatible with the Spartan-3A XC3S400A FPGA in the FG(G)400 package, although the Spartan-3A FPGA requires an external configuration source.

Table 78: Spartan-3AN FGG484 Pinout (Cont'd)

Table 78: Spartan-3AN FGG484	Pinout (Cont'd)
------------------------------	-----------------

Bank	Pin Name	FGG484 Ball	Туре
0	IO_L29N_0	D6	I/O
0	IO_L29P_0	C6	I/O
0	IO_L30N_0	D8	I/O
0	IO_L30P_0	E9	I/O
0	IO_L31N_0	B4	I/O
0	IO_L31P_0	A4	I/O
0	IO_L32N_0	D5	I/O
0	IO_L32P_0	C5	I/O
0	IO_L33N_0	B3	I/O
0	IO_L33P_0	A3	I/O
0	IO_L34N_0	F8	I/O
0	IO_L34P_0	E7	I/O
0	IO_L35N_0	E6	I/O
0	IO_L35P_0	F7	I/O
0	IO_L36N_0/PUDC_B	A2	DUAL
0	IO_L36P_0/VREF_0	B2	VREF
0	IP_0	E16	INPUT
0	IP_0	E8	INPUT
0	IP_0	F10	INPUT
0	IP_0	F12	INPUT
0	IP_0	F16	INPUT
0	IP_0 G10 I		INPUT
0	IP_0	G11	INPUT
0	IP_0 G12 INP		INPUT
0	IP_0 G13 INP		INPUT
0	IP_0	G14	INPUT
0	IP_0	G15	INPUT
0	IP_0	G16	INPUT
0	IP_0	G7	INPUT
0	IP_0	G9	INPUT
0	IP_0	H10	INPUT
0	IP_0	H13	INPUT
0	IP_0	H14	INPUT
0	IP_0/VREF_0	G8	VREF
0	IP_0/VREF_0	H12	VREF
0	IP_0/VREF_0	H9	VREF
0	VCCO_0	B10	VCCO
0	VCCO_0	B14	VCCO
0	VCCO_0	B18	VCCO
0	VCCO_0 B5 VCC0		VCCO

Bank	Pin Name	FGG484 Ball	Туре
0	VCCO_0	F14	VCCO
0	VCCO_0	F9	VCCO
1	IO_L01N_1/LDC2	Y21	DUAL
1	IO_L01P_1/HDC	AA22	DUAL
1	IO_L02N_1/LDC0	W20	DUAL
1	IO_L02P_1/LDC1	W19	DUAL
1	IO_L03N_1/A1	T18	DUAL
1	IO_L03P_1/A0	T17	DUAL
1	IO_L05N_1	W21	I/O
1	IO_L05P_1	Y22	I/O
1	IO_L06N_1	V20	I/O
1	IO_L06P_1	V19	I/O
1	IO_L07N_1	V22	I/O
1	IO_L07P_1	W22	I/O
1	IO_L09N_1	U21	I/O
1	IO_L09P_1	U22	I/O
1	IO_L10N_1	U19	I/O
1	IO_L10P_1	U20	I/O
1	IO_L11N_1	T22	I/O
1	IO_L11P_1	T20	I/O
1	IO_L13N_1	T19	I/O
1	IO_L13P_1	R20	I/O
1	IO_L14N_1 R22 I		I/O
1	IO_L14P_1 R21		I/O
1	IO_L15N_1/VREF_1	P22	VREF
1	IO_L15P_1	P20	I/O
1	IO_L17N_1/A3	P18	DUAL
1	IO_L17P_1/A2	R19	DUAL
1	IO_L18N_1/A5	N21	DUAL
1	IO_L18P_1/A4	N22	DUAL
1	IO_L19N_1/A7	N19	DUAL
1	IO_L19P_1/A6	N20	DUAL
1	IO_L20N_1/A9	N17	DUAL
1	IO_L20P_1/A8	N18	DUAL
1	IO_L21N_1/RHCLK1	L22	RHCLK
1	IO_L21P_1/RHCLK0	M22	RHCLK
1	IO_L22N_1/TRDY1/RHCLK3	L20	RHCLK
1	IO_L22P_1/RHCLK2	L21	RHCLK
1	IO_L24N_1/RHCLK5	M20	RHCLK
1	IO_L24P_1/RHCLK4 M18 RHCLK		RHCLK

Table 82: Spartan-3AN FGG676 Pinout (Cont'd)

Bank	Pin Name	FGG676 Ball	Туре
0	IO_L33N_0	B10	I/O
0	IO_L33P_0	A10	I/O
0	IO_L34N_0	D10	I/O
0	IO_L34P_0	C10	I/O
0	IO_L35N_0	H12	I/O
0	IO_L35P_0	G12	I/O
0	IO_L36N_0	B9	I/O
0	IO_L36P_0	A9	I/O
0	IO_L37N_0	D9	I/O
0	IO_L37P_0	E10	I/O
0	IO_L38N_0	B8	I/O
0	IO_L38P_0	A8	I/O
0	IO_L39N_0	K12	I/O
0	IO_L39P_0	J12	I/O
0	IO_L40N_0	D8	I/O
0	IO_L40P_0	C8	I/O
0	IO_L41N_0	C6	I/O
0	IO_L41P_0	B6	I/O
0	IO_L42N_0	C7	I/O
0	IO_L42P_0	B7	I/O
0	IO_L43N_0	K11	I/O
0	IO_L43P_0	J11	I/O
0	IO_L44N_0	D6	I/O
0	IO_L44P_0	C5	I/O
0	IO_L45N_0	B4	I/O
0	IO_L45P_0	A4	I/O
0	IO_L46N_0	H10	I/O
0	IO_L46P_0	G10	I/O
0	IO_L47N_0	H9	I/O
0	IO_L47P_0	G9	I/O
0	IO_L48N_0	E7	I/O
0	IO_L48P_0	F7	I/O
0	IO_L51N_0	B3	I/O
0	IO_L51P_0	A3	I/O
0	IO_L52N_0/PUDC_B	G8	DUAL
0	IO_L52P_0/VREF_0	F8	VREF
0	IP_0	A5	INPUT
0	IP_0	A7	INPUT
0	IP_0	A13	INPUT
0	IP_0	A17	INPUT

Table 82: Spartan-3AN FGG676 Pinout (Cont'd)

Bank	Pin Name	FGG676 Ball	Туре	
0	IP_0	A23	INPUT	
0	IP_0	C4	INPUT	
0	IP_0	D12	INPUT	
0	IP_0	D15	INPUT	
0	IP_0	D19	INPUT	
0	IP_0	E11	INPUT	
0	IP_0	E18	INPUT	
0	IP_0	E20	INPUT	
0	IP_0	F10	INPUT	
0	IP_0	G14	INPUT	
0	IP_0	G16	INPUT	
0	IP_0	H13	INPUT	
0	IP_0	H18	INPUT	
0	IP_0	J10	INPUT	
0	IP_0	J13	INPUT	
0	IP_0	J15	INPUT	
0	IP_0/VREF_0	D7	VREF	
0	IP_0/VREF_0	D14	VREF	
0	IP_0/VREF_0	G11	VREF	
0	IP_0/VREF_0	J17	VREF	
0	N.C.	A24	N.C.	
0	N.C.	B24	N.C.	
0	N.C.	D5	N.C.	
0	N.C.	E9	N.C.	
0	N.C.	F18	N.C.	
0	N.C.	E6	N.C.	
0	N.C.	F9	N.C.	
0	N.C.	G18	N.C.	
0	VCCO_0	B5	VCCO	
0	VCCO_0	B11	VCCO	
0	VCCO_0	B16	VCCO	
0	VCCO_0	B22	VCCO	
0	VCCO_0	E8	VCCO	
0	VCCO_0	E13	VCCO	
0	VCCO_0	E19	VCCO	
0	VCCO_0	H11	VCCO	
0	VCCO_0	H16	VCCO	
1	IO_L01N_1/LDC2	Y21	DUAL	
1	IO_L01P_1/HDC	Y20	DUAL	
1	IO_L02N_1/LDC0 AD25 DUAL		DUAL	

Table 82: Spartan-3AN FGG676 Pinout (Cont'd)

Table	82:	Spartan-3AN	FGG676	Pinout	(Cont'd)	1
-------	-----	-------------	--------	--------	----------	---

Bank	Pin Name	FGG676 Ball	Туре	
2	IP_2	AD9	INPUT	
2	IP_2	AD10	INPUT	
2	IP_2	AD16	INPUT	
2	IP_2	AF2	INPUT	
2	IP_2	AF7	INPUT	
2	IP_2	Y11	INPUT	
2	IP_2/VREF_2	AA9	VREF	
2	IP_2/VREF_2	AA20	VREF	
2	IP_2/VREF_2	AB6	VREF	
2	IP_2/VREF_2	AB10	VREF	
2	IP_2/VREF_2	AC10	VREF	
2	IP_2/VREF_2	AD12	VREF	
2	IP_2/VREF_2	AF15	VREF	
2	IP_2/VREF_2	AF17	VREF	
2	IP_2/VREF_2	AF22	VREF	
2	IP_2/VREF_2	Y16	VREF	
2	N.C.	AA8	N.C.	
2	N.C.	AC5	N.C.	
2	N.C.	AC22	N.C.	
2	N.C.	AD5	N.C.	
2	N.C.	Y18	N.C.	
2	N.C.	Y19	N.C.	
2	N.C.	AD23	N.C.	
2	N.C.	W18	N.C.	
2	N.C.	Y8	N.C.	
2	VCCO_2	AB8	VCCO	
2	VCCO_2	AB14	VCCO	
2	VCCO_2	AB19	VCCO	
2	VCCO_2	AE5	VCCO	
2	VCCO_2	AE11	VCCO	
2	VCCO_2	AE16	VCCO	
2	VCCO_2	AE22	VCCO	
2	VCCO_2	W11	VCCO	
2	VCCO_2	W16	VCCO	
3	IO_L01N_3	J9	I/O	
3	IO_L01P_3	J8	I/O	
3	IO_L02N_3	B1	I/O	
3	IO_L02P_3	B2	I/O	
3	IO_L03N_3	H7	I/O	
3	IO_L03P_3	G6	I/O	

Bank	Pin Name	FGG676 Ball	Туре		
3	IO_L05N_3	K8	I/O		
3	IO_L05P_3	K9	I/O		
3	IO_L06N_3	E4	I/O		
3	IO_L06P_3	D3	I/O		
3	IO_L07N_3	F4	I/O		
3	IO_L07P_3	E3	I/O		
3	IO_L09N_3	G4	I/O		
3	IO_L09P_3	F5	I/O		
3	IO_L10N_3	H6	I/O		
3	IO_L10P_3	J7	I/O		
3	IO_L11N_3	F2	I/O		
3	IO_L11P_3	E1	I/O		
3	IO_L13N_3	J6	I/O		
3	IO_L13P_3	K7	I/O		
3	IO_L14N_3	F3	I/O		
3	IO_L14P_3	G3	I/O		
3	IO_L15N_3	L9	I/O		
3	IO_L15P_3	L10	I/O		
3	IO_L17N_3 H1 I/		I/O		
3	IO_L17P_3	D_L17P_3 H2 I/C			
3	IO_L18N_3 L7 I/C		I/O		
3	IO_L18P_3	K6	I/O		
3	IO_L19N_3	J4	I/O		
3	IO_L19P_3	J5 I/O			
3	IO_L21N_3	M9	/I/O		
3	IO_L21P_3	M10	I/O		
3	IO_L22N_3	K4	I/O		
3	IO_L22P_3	K5	I/O		
3	IO_L23N_3	K2	I/O		
3	IO_L23P_3	K3	I/O		
3	IO_L25N_3	L3	I/O		
3	IO_L25P_3	L4	I/O		
3	IO_L26N_3	M7	I/O		
3	IO_L26P_3	M8	I/O		
3	IO_L27N_3	М3	I/O		
3	IO_L27P_3	M4	I/O		
3	IO_L28N_3	M6	I/O		
3	IO_L28P_3	M5	I/O		
3	IO_L29N_3/VREF_3	M1	VREF		
3	IO_L29P_3	M2	2 I/O		

Revision History

The following table shows the revision history for this document.

Date	Version	Revision
02/26/07	1.0	Initial release.
08/16/07	2.0	Updated for Production release of initial device. Noted that family is available in Pb-free packages only.
09/12/07	2.0.1	Minor updates to text.
09/24/07	2.1	Update thermal characteristics in Table 67.
12/12/07	3.0	Updated to Production status with Production release of final family member, XC3S50AN. Noted that non-Pb-free packages may be available for selected devices. Updated thermal characteristics in Table 67. Updated links.
06/02/08	3.1	Add Package Overview section. Removed VREF and INPUT designations and diamond symbols on unconnected N.C. pins for XC3S700AN FGG484 in Table 78 and Figure 22 and for XC3S1400AN FGG676 in Table 82 and Figure 23.
11/19/09	3.2	Renamed package 'Footprint Area' to 'Body Area' throughout document. Noted in Introduction that references to Pb-free package code also apply to the Pb package. Added Pb packages to Table 65 and Table 66. Changed Body Area of TQ144/TQG144 packages in Table 65. Corrected bank designation for SUSPEND to VCCAUX. Noted that non-Pb-free (Pb) packages are available for selected devices. Updated Table 79 and Figure 22 for I/O vs. Input pin counts.
12/02/10	4.0	Upgraded Notice of Disclaimer.
04/01/11	4.1	Updated the CLK description in Table 62. In Table 64, added device/package combinations for the XC3S50AN and XC3S400AN in the FT(G)256 package and the XC3S1400AN in the FG(G)484 package. In Table 65, updated the maximum I/Os for the FG484/FGG484 packages, removed the Mass column, and updated Note 1. In Table 65, changed the FTG256 link from <u>PK115_FTG256</u> , FGG676 link from <u>PK111_FGG676</u> , and the TQG144 link from <u>PK126_TQG144</u> . Completely replaced the section FTG256: 256-Ball Fine-Pitch, Thin Ball Grid Array with new information on the added device/package combinations and new figures and tables. Revised U16, U7, and T8 in Table 78. Added Table 80 and Table 81 and updated Figure 23.