

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Details	
Product Status	Active
Number of LABs/CLBs	448
Number of Logic Elements/Cells	4032
Total RAM Bits	294912
Number of I/O	195
Number of Gates	200000
Voltage - Supply	1.14V ~ 1.26V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	256-LBGA
Supplier Device Package	256-FTBGA (17x17)
Purchase URL	https://www.e-xfl.com/product-detail/xilinx/xc3s200an-5ftg256c

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Notice of Disclaimer

THE XILINX HARDWARE FPGA AND CPLD DEVICES REFERRED TO HEREIN ("PRODUCTS") ARE SUBJECT TO THE TERMS AND CONDITIONS OF THE XILINX LIMITED WARRANTY WHICH CAN BE VIEWED AT http://www.xilinx.com/warranty.htm. THIS LIMITED WARRANTY DOES NOT EXTEND TO ANY USE OF PRODUCTS IN AN APPLICATION OR ENVIRONMENT THAT IS NOT WITHIN THE SPECIFICATIONS STATED IN THE XILINX DATA SHEET. ALL SPECIFICATIONS ARE SUBJECT TO CHANGE WITHOUT NOTICE. PRODUCTS ARE NOT DESIGNED OR INTENDED TO BE FAIL-SAFE OR FOR USE IN ANY APPLICATION REQUIRING FAIL-SAFE PERFORMANCE, SUCH AS LIFE-SUPPORT OR SAFETY DEVICES OR SYSTEMS, OR ANY OTHER APPLICATION THAT INVOKES THE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). USE OF PRODUCTS IN CRITICAL APPLICATIONS IS AT THE SOLE RISK OF CUSTOMER, SUBJECT TO APPLICABLE LAWS AND REGULATIONS.

CRITICAL APPLICATIONS DISCLAIMER

XILINX PRODUCTS (INCLUDING HARDWARE, SOFTWARE AND/OR IP CORES) ARE NOT DESIGNED OR INTENDED TO BE FAIL-SAFE, OR FOR USE IN ANY APPLICATION REQUIRING FAIL-SAFE PERFORMANCE, SUCH AS IN LIFE-SUPPORT OR SAFETY DEVICES OR SYSTEMS, CLASS III MEDICAL DEVICES, NUCLEAR FACILITIES, APPLICATIONS RELATED TO THE DEPLOYMENT OF AIRBAGS, OR ANY OTHER APPLICATIONS THAT COULD LEAD TO DEATH, PERSONAL INJURY OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (INDIVIDUALLY AND COLLECTIVELY, "CRITICAL APPLICATIONS"). FURTHERMORE, XILINX PRODUCTS ARE NOT DESIGNED OR INTENDED FOR USE IN ANY APPLICATIONS THAT AFFECT CONTROL OF A VEHICLE OR AIRCRAFT, UNLESS THERE IS A FAIL-SAFE OR REDUNDANCY FEATURE (WHICH DOES NOT INCLUDE USE OF SOFTWARE IN THE XILINX DEVICE TO IMPLEMENT THE REDUNDANCY) AND A WARNING SIGNAL UPON FAILURE TO THE OPERATOR. CUSTOMER AGREES, PRIOR TO USING OR DISTRIBUTING ANY SYSTEMS THAT INCORPORATE XILINX PRODUCTS, TO THOROUGHLY TEST THE SAME FOR SAFETY PURPOSES. TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW, CUSTOMER ASSUMES THE SOLE RISK AND LIABILITY OF ANY USE OF XILINX PRODUCTS IN CRITICAL APPLICATIONS.

AUTOMOTIVE APPLICATIONS DISCLAIMER

XILINX PRODUCTS ARE NOT DESIGNED OR INTENDED TO BE FAIL-SAFE, OR FOR USE IN ANY APPLICATION REQUIRING FAIL-SAFE PERFORMANCE, SUCH AS APPLICATIONS RELATED TO: (I) THE DEPLOYMENT OF AIRBAGS, (II) CONTROL OF A VEHICLE, UNLESS THERE IS A FAIL-SAFE OR REDUNDANCY FEATURE (WHICH DOES NOT INCLUDE USE OF SOFTWARE IN THE XILINX DEVICE TO IMPLEMENT THE REDUNDANCY) AND A WARNING SIGNAL UPON FAILURE TO THE OPERATOR, OR (III) USES THAT COULD LEAD TO DEATH OR PERSONAL INJURY. CUSTOMER ASSUMES THE SOLE RISK AND LIABILITY OF ANY USE OF XILINX PRODUCTS IN SUCH APPLICATIONS.

Spartan-3AN FPGA Family: Functional Description

Product Specification

Spartan-3AN FPGA Design Documentation

The functionality of the Spartan®-3AN FPGA family is described in the following documents. The topics covered in each guide are listed below:

- <u>DS706</u>: Extended Spartan-3A Family Overview
- <u>UG331</u>: Spartan-3 Generation FPGA User Guide
 - Clocking Resources
 - Digital Clock Managers (DCMs)
 - Block RAM
 - Configurable Logic Blocks (CLBs)
 - Distributed RAM
 - SRL16 Shift Registers
 - Carry and Arithmetic Logic
 - I/O Resources
 - Embedded Multiplier Blocks
 - Programmable Interconnect
 - ISE[®] Design Tools
 - IP Cores
 - Embedded Processing and Control Solutions
 - Pin Types and Package Overview
 - Package Drawings
 - Powering FPGAs
 - Power Management
- UG332: Spartan-3 Generation Configuration
 User Guide
 - Configuration Overview
 - Configuration Pins and Behavior
 - Bitstream Sizes
 - Detailed Descriptions by Mode
 - Master Serial Mode using Xilinx® Platform Flash
 - Master SPI Mode using SPI Serial Flash PROM
 - Internal Master SPI Mode
 - Master BPI Mode using Parallel NOR Flash
 - Slave Parallel (SelectMAP) using a Processor
 - Slave Serial using a Processor
 - JTAG Mode
 - ISE iMPACT Programming Examples
 - MultiBoot Reconfiguration
 - Design Authentication using Device DNA

UG333: Spartan-3AN FPGA In-System Flash User Guide

- For FPGA applications that write to or read from the In-System Flash memory after configuration
- SPI_ACCESS interface
- In-System Flash memory architecture
- Read, program, and erase commands
- Status registers
- Sector Protection and Sector Lockdown features
- Security Register with Unique Identifier

Create a Xilinx user account and sign up to receive automatic e-mail notification whenever this data sheet or the associated user guides are updated.

Sign Up for Alerts on Xilinx.com
 https://secure.xilinx.com/webreg/register.do?group=my
 profile&languageID=1

Spartan-3AN FPGA Starter Kit

For specific hardware examples, please see the Spartan-3AN FPGA Starter Kit board web page, which has links to various design examples and the user guide.

- Spartan-3AN FPGA Starter Kit Board Page
 <u>http://www.xilinx.com/s3anstarter</u>
- UG334: Spartan-3AN FPGA Starter Kit User Guide

© Copyright 2007–2011 Xilinx, Inc. XILINX, the Xilinx logo, Virtex, Spartan, ISE, and other designated brands included herein are trademarks of Xilinx in the United States and other countries. PCI and PCI-X are trademarks of PCI-SIG and used under license. All other trademarks are the property of their respective owners.

Related Product Families

The Spartan-3AN FPGA family is generally compatible with the Spartan-3A FPGA family.

• <u>DS529</u>: Spartan-3A FPGA Family Data Sheet

Revision History

The following table shows the revision history for this document.

Date	Version	Revision
02/26/07	1.0	Initial release.
08/16/07	2.0	Updated for Production release of initial device.
09/12/07	2.0.1	Minor updates to text.
09/24/07	2.1	Added note that In-System Flash commands were not supported by simulation until ISE 10.1 software.
12/12/07	3.0	Updated to Production status with Production release of final family member, XC3S50AN. Noted that SPI_ACCESS simulation is supported in ISE 10.1 software. Updated links.
06/02/08	3.1	Minor updates.
11/19/09	3.2	In the Spartan-3AN FPGA Design Documentation section, added link to <u>DS706</u> , <i>Extended Spartan-3A Family Overview</i> and removed references to older software versions.
12/02/10	4.0	Updated link to sign up for Alerts and updated Notice of Disclaimer.
04/01/11	4.1	Added the FT(G)256 package selection for the XC3S50AN and XC3S400AN devices and the FG(G)484 package selection for the XC3S1400AN device throughout this data sheet.

Notice of Disclaimer

THE XILINX HARDWARE FPGA AND CPLD DEVICES REFERRED TO HEREIN ("PRODUCTS") ARE SUBJECT TO THE TERMS AND CONDITIONS OF THE XILINX LIMITED WARRANTY WHICH CAN BE VIEWED AT http://www.xilinx.com/warranty.htm. THIS LIMITED WARRANTY DOES NOT EXTEND TO ANY USE OF PRODUCTS IN AN APPLICATION OR ENVIRONMENT THAT IS NOT WITHIN THE SPECIFICATIONS STATED IN THE XILINX DATA SHEET. ALL SPECIFICATIONS ARE SUBJECT TO CHANGE WITHOUT NOTICE. PRODUCTS ARE NOT DESIGNED OR INTENDED TO BE FAIL-SAFE OR FOR USE IN ANY APPLICATION REQUIRING FAIL-SAFE PERFORMANCE, SUCH AS LIFE-SUPPORT OR SAFETY DEVICES OR SYSTEMS, OR ANY OTHER APPLICATION THAT INVOKES THE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). USE OF PRODUCTS IN CRITICAL APPLICATIONS IS AT THE SOLE RISK OF CUSTOMER, SUBJECT TO APPLICABLE LAWS AND REGULATIONS.

CRITICAL APPLICATIONS DISCLAIMER

XILINX PRODUCTS (INCLUDING HARDWARE, SOFTWARE AND/OR IP CORES) ARE NOT DESIGNED OR INTENDED TO BE FAIL-SAFE, OR FOR USE IN ANY APPLICATION REQUIRING FAIL-SAFE PERFORMANCE, SUCH AS IN LIFE-SUPPORT OR SAFETY DEVICES OR SYSTEMS, CLASS III MEDICAL DEVICES, NUCLEAR FACILITIES, APPLICATIONS RELATED TO THE DEPLOYMENT OF AIRBAGS, OR ANY OTHER APPLICATIONS THAT COULD LEAD TO DEATH, PERSONAL INJURY OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (INDIVIDUALLY AND COLLECTIVELY, "CRITICAL APPLICATIONS"). FURTHERMORE, XILINX PRODUCTS ARE NOT DESIGNED OR INTENDED FOR USE IN ANY APPLICATIONS THAT AFFECT CONTROL OF A VEHICLE OR AIRCRAFT, UNLESS THERE IS A FAIL-SAFE OR REDUNDANCY FEATURE (WHICH DOES NOT INCLUDE USE OF SOFTWARE IN THE XILINX DEVICE TO IMPLEMENT THE REDUNDANCY) AND A WARNING SIGNAL UPON FAILURE TO THE OPERATOR. CUSTOMER AGREES, PRIOR TO USING OR DISTRIBUTING ANY SYSTEMS THAT INCORPORATE XILINX PRODUCTS, TO THOROUGHLY TEST THE SAME FOR SAFETY PURPOSES. TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW, CUSTOMER ASSUMES THE SOLE RISK AND LIABILITY OF ANY USE OF XILINX PRODUCTS IN CRITICAL APPLICATIONS.

AUTOMOTIVE APPLICATIONS DISCLAIMER

XILINX PRODUCTS ARE NOT DESIGNED OR INTENDED TO BE FAIL-SAFE, OR FOR USE IN ANY APPLICATION REQUIRING FAIL-SAFE PERFORMANCE, SUCH AS APPLICATIONS RELATED TO: (I) THE DEPLOYMENT OF AIRBAGS, (II) CONTROL OF A VEHICLE, UNLESS THERE IS A FAIL-SAFE OR REDUNDANCY FEATURE (WHICH DOES NOT INCLUDE USE OF SOFTWARE IN THE XILINX DEVICE TO IMPLEMENT THE REDUNDANCY) AND A WARNING SIGNAL UPON FAILURE TO THE OPERATOR, OR (III) USES THAT COULD LEAD TO DEATH OR PERSONAL INJURY. CUSTOMER ASSUMES THE SOLE RISK AND LIABILITY OF ANY USE OF XILINX PRODUCTS IN SUCH APPLICATIONS.

Spartan-3AN FPGA Family: DC and Switching Characteristics

DS557 (v4.1) April 1, 2011

Product Specification

DC Electrical Characteristics

In this section, specifications can be designated as Advance, Preliminary, or Production. These terms are defined as follows:

Advance: Initial estimates are based on simulation, early characterization, and/or extrapolation from the characteristics of other families. Values are subject to change. Use as estimates, not for production.

Preliminary: Based on characterization. Further changes are not expected.

Production: These specifications are approved once the silicon has been characterized over numerous production lots. Parameter values are considered stable with no future changes expected.

All parameter limits are representative of worst-case supply voltage and junction temperature conditions. **Unless** otherwise noted, the published parameter values apply to all Spartan®-3AN devices. AC and DC characteristics are specified using the same numbers for both commercial and industrial grades.

Absolute Maximum Ratings

Stresses beyond those listed under Table 6: Absolute Maximum Ratings might cause permanent damage to the device. These are stress ratings only; functional operation of the device at these or any other conditions beyond those listed under the Recommended Operating Conditions is not implied. Exposure to absolute maximum conditions for extended periods of time adversely affects device reliability.

Symbol	Description	Conditions	Min	Max	Units
V _{CCINT}	Internal supply voltage		-0.5	1.32	V
V _{CCAUX}	Auxiliary supply voltage		-0.5	3.75	V
V _{CCO}	Output driver supply voltage		-0.5	3.75	V
V _{REF}	Input reference voltage		-0.5	V _{CCO} +0.5	V
V _{IN}	Voltage applied to all User I/O pins and dual-purpose pins	Driver in a high-impedance state	-0.95	4.6	V
	Voltage applied to all Dedicated pins		-0.5	4.6	V
Ι _{ΙΚ}	Input clamp current per I/O pin	$-0.5V < V_{IN} < (V_{CCO} + 0.5V)^{(1)}$	-	±100	mA
	Electrostatic Discharge Voltage	Human body model	-	±2000	V
V_{ESD}		Charged device model	-	±500	V
		Machine model	-	±200	V
TJ	Junction temperature		-	125	°C
T _{STG}	Storage temperature		-65	150	°C

Table 6: Absolute Maximum Ratings

Notes:

1. Upper clamp applies only when using PCI IOSTANDARDs.

1. For soldering guidelines, see UG112: Device Package User Guide and XAPP427: Implementation and Solder Reflow Guidelines for Pb-Free Packages.

© Copyright 2007–2011 Xilinx, Inc. XILINX, the Xilinx logo, Virtex, Spartan, ISE, and other designated brands included herein are trademarks of Xilinx in the United States and other countries. PCI and PCI-X are trademarks of PCI-SIG and used under license. All other trademarks are the property of their respective owners.

www.xilinx.com

Device DNA Read Endurance

Table 17: Device DNA Identifier Memory Characteristics

Symbol	Description	Minimum	Units
DNA_CYCLES	Number of READ operations or JTAG ISC_DNA read operations. Unaffected by HOLD or SHIFT operations	30,000,000	Read cycles

In-System Flash Memory Data Retention, Program/Write Endurance

Table 18: In-System Flash (ISF) Memory Characteristics

Symbol	Description	Minimum ⁽¹⁾	Units
ISF_RETENTION	Data retention	20	Years
ISF_ACTIVE	Time that the ISF memory is selected and active. SPI_ACCESS design primitive pins CSB = Low, CLK toggling $\$	2	Years
ISF_PAGE_CYCLES	CYCLES Number of program/erase cycles, per ISF memory page		Cycles
ISF_PAGE_REWRITE Number of cumulative random (non-sequential) page erase/program operations within a sector before pages must be rewritten		10,000	Cycles
ISF_SPR_CYCLES Number of program/erase cycles for Sector Protection Register		10,000	Cycles
ISF_SEC_CYCLES	Number of program cycles for Sector Lockdown Begister per sector		Cycle

Notes:

1. Minimum value at which functionality is still guaranteed. Do not exceed these values.

Switching Characteristics

All Spartan-3AN FPGAs ship in two speed grades: -4 and the higher performance -5. Switching characteristics in this document are designated as Preview, Advance, Preliminary, or Production, as shown in Table 19. Each category is defined as follows:

Preview: These specifications are based on estimates only and should not be used for timing analysis.

Advance: These specifications are based on simulations only and are typically available soon after establishing FPGA specifications. Although speed grades with this designation are considered relatively stable and conservative, some under-reporting might still occur.

Preliminary: These specifications are based on complete early silicon characterization. Devices and speed grades with this designation are intended to give a better indication of the expected performance of production silicon. The probability of under-reporting preliminary delays is greatly reduced compared to Advance data.

Production: These specifications are approved once enough production silicon of a particular device family member has been characterized to provide full correlation between speed files and devices over numerous production lots. There is no under-reporting of delays, and customers receive formal notification of any subsequent changes. Typically, the slowest speed grades transition to Production before faster speed grades.

Software Version Requirements

Production-quality systems must use FPGA designs compiled using a speed file designated as PRODUCTION status. FPGA designs using a less mature speed file designation should only be used during system prototyping or pre-production qualification. FPGA designs with speed files designated as Preview, Advance, or Preliminary should not be used in a production-quality system.

Whenever a speed file designation changes, as a device matures toward Production status, rerun the latest Xilinx® ISE® software on the FPGA design to ensure that the FPGA design incorporates the latest timing information and software updates.

In some cases, a particular family member (and speed grade) is released to Production at a different time than when the speed file is released with the Production label. Any labeling discrepancies are corrected in subsequent speed file releases. See Table 19 for devices that can be considered to have the Production label.

All parameter limits are representative of worst-case supply voltage and junction temperature conditions. **Unless** otherwise noted, the published parameter values apply to all Spartan-3AN devices. AC and DC characteristics are specified using the same numbers for both commercial and industrial grades. Create a Xilinx user account and sign up to receive automatic e-mail notification whenever this data sheet or the associated user guides are updated.

• Sign Up for Alerts

https://secure.xilinx.com/webreg/register.do?group=myprofi le&languageID=1

Timing parameters and their representative values are selected for inclusion either because they are important as general design requirements or they indicate fundamental device performance characteristics. The Spartan-3AN speed files (v1.41), part of the Xilinx Development Software, are the original source for many but not all of the values. The speed grade designations for these files are shown in Table 19. For more complete, more precise, and worst-case data, use the values reported by the Xilinx static timing analyzer (TRACE in the Xilinx development software) and back-annotated to the simulation netlist.

Table	19:	Spartan-3AN Family v1.41 Speed Grade
Desig	nati	ons

Device	Preview	Advance	Preliminary	Production
XC3S50AN				-4, -5
XC3S200AN				-4, -5
XC3S400AN				-4, -5
XC3S700AN				-4, -5
XC3S1400AN				-4, -5

Table 20 provides the recent history of the Spartan-3AN speed files.

Version	ISE Release	Description
1.41	ISE 10.1.03	Updated for Spartan-3A family. No change to data for Spartan-3AN family.
1.40	ISE 10.1.02	Updated for Spartan-3A family. No change to data for Spartan-3AN family.
1.39	ISE 10.1	Updated for Spartan-3A family. No change to data for Spartan-3AN family.
1.38	ISE 9.2.03i	Updated to Production. No change to data.
1.37	ISE 9.2.01i	Updated pin-to-pin setup and hold times, TMDS output adjustment, multiplier setup/hold times, and block RAM clock width.
1.36	ISE 9.2i	Added -5 speed grade, updated to Advance.
1.34	ISE 9.1.03i	Updated pin-to-pin timing.
1.32	ISE 9.1.01i	Preview speed files for -4 speed grade.

Table 25: Propagation Times for the	IOB Input Path (Cont'd)
-------------------------------------	-------------------------

		Conditions	DELAY_VALUE	Device	Speed Grade		
Symbol	Symbol Description				-5	-4	Unite
					Max	Max	
T _{IOPID}	IOPID The time it takes for data to travel	LVCMOS25 ⁽²⁾	15	XC3S200AN	5.43	6.24	ns
from the Input pin to the I output with the input delay programmed		16		5.75	6.59	ns	
			1	XC3S400AN	1.32	1.43	ns
			2		1.67	1.83	ns
			3		1.90	2.07	ns
			4		2.33	2.52	ns
			5		2.60	2.91	ns
			6		2.94	3.20	ns
			7		3.23	3.51	ns
			8		3.50	3.85	ns
			9		3.18	3.55	ns
			10		3.53	3.95	ns
			11		3.76	4.20	ns
		12		4.26	4.67	ns	
			13		4.51	4.97	ns
		14		4.85	5.32	ns	
			15		5.14	5.64	ns
			16		5.40	5.95	ns
			1	XC3S700AN	1.84	1.87	ns
			2		2.20	2.27	ns
			3		2.46	2.60	ns
			4		2.93	3.15	ns
			5		3.21	3.45	ns
			6		3.54	3.80	ns
			7		3.86	4.16	ns
			8		4.13	4.48	ns
			9		3.82	4.19	ns
			10		4.17	4.58	ns
			11		4.43	4.89	ns
			12		4.95	5.49	ns
			13		5.22	5.83	ns
			14		5.57	6.21	ns
			15		5.89	6.55	ns
			16		6.16	6.89	ns
			1	XC3S1400AN	1.95	2.18	ns
			2		2.29	2.59	ns
			3		2.54	2.84	ns
			4		2.96	3.30	ns

					Speed Grade																											
Symbol	Description	Conditions	DELAY_VALUE	Device	-5	-4	Units																									
					Max	Max																										
T _{IOPID}	The time it takes for data to travel	LVCMOS25 ⁽²⁾	5	XC3S1400AN	3.17	3.52	ns																									
	from the Input pin to the I output with the input delay programmed		6		3.52	3.92	ns																									
			7		3.82	4.18	ns																									
			8		4.10	4.57	ns																									
			9		3.84	4.31	ns																									
			10		4.20	4.79	ns																									
			11		4.46	5.06	ns																									
			12		4.87	5.51	ns																									
			13		5.07	5.73	ns																									
			14		5.43	6.08	ns																									
			15		5.73	6.33	ns																									
			16		6.01	6.77	ns																									
T _{IOPLI}		IFD_DELAY_VALUE=0	XC3S50AN	1.70	1.81	ns																										
	from the Input pin through the IFF latch to the I output with no input																												XC3S200AN	1.85	2.04	ns
	delay programmed																XC3S400AN	1.44	1.74	ns												
				XC3S700AN	1.48	1.74	ns																									
				XC3S1400AN	1.50	1.97	ns																									

Table 25: Propagation Times for the IOB Input Path (Cont'd)

Input Timing Adjustments

Table 26: Input Timing Adjustments by IOSTANDARD

Convert Input Time from LVCMOS25 to the		d the ent Below		
Following Signal Standard	Speed	Units		
(IOSTANDARD)	-5	-4		
Single-Ended Standards				
LVTTL	0.62	0.62	ns	
LVCMOS33	0.54	0.54	ns	
LVCMOS25	0	0	ns	
LVCMOS18	0.83	0.83	ns	
LVCMOS15	0.60	0.60	ns	
LVCMOS12	0.31	0.31	ns	
PCI33_3	0.41	0.41	ns	
PCI66_3	0.41	0.41	ns	
HSTL_I	0.72	0.72	ns	
HSTL_III	0.77	0.77	ns	
HSTL_I_18	0.69	0.69	ns	
HSTL_II_18	0.69	0.69	ns	
HSTL_III_18	0.79	0.79	ns	
SSTL18_I	0.71	0.71	ns	
SSTL18_II	0.71	0.71	ns	
SSTL2_I	0.68	0.68	ns	
SSTL2_II	0.68	0.68	ns	
SSTL3_I	0.78	0.78	ns	
SSTL3_II	0.78	0.78	ns	

Table 26: Input Timing Adjustments by IOSTANDARD

Convert Input Time from LVCMOS25 to the	Add Adjustme		
Following Signal Standard	Speed	Units	
(IOSTANDARD)	-5	-4	
Differential Standards			
LVDS_25	0.76	0.76	ns
LVDS_33	0.79	0.79	ns
BLVDS_25	0.79	0.79	ns
MINI_LVDS_25	0.78	0.78	ns
MINI_LVDS_33	0.79	0.79	ns
LVPECL_25	0.78	0.78	ns
LVPECL_33	0.79	0.79	ns
RSDS_25	0.79	0.79	ns
RSDS_33	0.77	0.77	ns
TMDS_33	0.79	0.79	ns
PPDS_25	0.79	0.79	ns
PPDS_33	0.79	0.79	ns
DIFF_HSTL_I_18	0.74	0.74	ns
DIFF_HSTL_II_18	0.72	0.72	ns
DIFF_HSTL_III_18	1.05	1.05	ns
DIFF_HSTL_I	0.72	0.72	ns
DIFF_HSTL_III	1.05	1.05	ns
DIFF_SSTL18_I	0.71	0.71	ns
DIFF_SSTL18_II	0.71	0.71	ns
DIFF_SSTL2_I	0.74	0.74	ns
DIFF_SSTL2_II	0.75	0.75	ns
DIFF_SSTL3_I	1.06	1.06	ns
DIFF_SSTL3_II	1.06	1.06	ns

Notes:

1. The numbers in this table are tested using the methodology presented in Table 30 and are based on the operating conditions set forth in Table 10, Table 13, and Table 15.

2. These adjustments are used to convert input path times originally specified for the LVCMOS25 standard to times that correspond to other signal standards.

Output Propagation Times

Table 27: Timing for the IOB Output Path

				Speed	Speed Grade		Speed Grade	
Symbol	Description	Conditions	Device	-5	-4	Units		
				Max	Max			
Clock-to-Out	put Times							
T _{IOCKP}	When reading from the Output Flip-Flop (OFF), the time from the active transition at the OCLK input to data appearing at the Output pin	LVCMOS25 ⁽²⁾ , 12 mA output drive, Fast slew rate	All	2.87	3.13	ns		
Propagation [*]	Times							
T _{IOOP}	The time it takes for data to travel from the IOB's O input to the Output pin	LVCMOS25 ⁽²⁾ , 12 mA output drive, Fast slew rate	All	2.78	2.91	ns		
Set/Reset Tin	nes	<u> </u>				_		
T _{IOSRP}	Time from asserting the OFF's SR input to setting/resetting data at the Output pin	LVCMOS25 ⁽²⁾ , 12 mA output drive, Fast slew rate	All	3.63	3.89	ns		
T _{IOGSRQ}	Time from asserting the Global Set Reset (GSR) input on the STARTUP_SPARTAN3A primitive to setting/resetting data at the Output pin			8.62	9.65	ns		

Notes:

1. The numbers in this table are tested using the methodology presented in Table 30 and are based on the operating conditions set forth in Table 10 and Table 13.

2. This time requires adjustment whenever a signal standard other than LVCMOS25 with 12 mA drive and Fast slew rate is assigned to the data Output. When this is true, *add* the appropriate Output adjustment from Table 29.

Г

Table 32: Recommended Number of SimultaneouslySwitching Outputs per V_{CCO}-GND Pair (Cont'd)

			Package Type			
Signal S (IOSTAI	Standard NDARD)		TQG144 FGG400 FGG484 FGG676			400, 484,
			Top, Bottom Banks 0,2	Left, Right Banks 1,3	Top, Bottom Banks 0,2	Left, Right Banks 1,3
LVCMOS25	Slow	2	16	16	76	76
		4	10	10	46	46
		6	8	8	33	33
		8	7	7	24	24
		12	6	6	18	18
		16	-	6	-	11
		24	-	5	-	7
	Fast	2	12	12	18	18
		4	10	10	14	14
		6	8	8	6	6
		8	6	6	6	6
		12	3	3	3	3
		16	-	3	-	3
		24	-	2	-	2
	QuietIO	2	36	36	76	76
		4	30	30	60	60
		6	24	24	48	48
		8	20	20	36	36
		12	12	12	36	36
		16	-	12	-	36
		24	_	8	_	8

 Table 32: Recommended Number of Simultaneously

 Switching Outputs per V_{CCO}-GND Pair (Cont'd)

					je Type	
Signal S (IOSTAI	Standard NDARD)		TQG	à144	FTG FGG FGG	256, 400, 484, 3676
			Top, Bottom Banks 0,2	Left, Right Banks 1,3	Top, Bottom Banks 0,2	Left, Right Banks 1,3
LVCMOS18	Slow	2	13	13	64	64
		4	8	8	34	34
		6	8	8	22	22
		8	7	7	18	18
		12	-	5	-	13
		16	-	5	-	10
	Fast	2	13	13	18	18
		4	8	8	9	9
		6	7	7	7	7
		8	4	4	4	4
		12	-	4	-	4
		16	-	3	-	3
	QuietIO	2	30	30	64	64
		4	24	24	64	64
		6	20	20	48	48
		8	16	16	36	36
		12	-	12	-	36
		16	-	12	-	24
LVCMOS15	Slow	2	12	12	55	55
		4	7	7	31	31
		6	7	7	18	18
		8	-	6	-	15
		12	-	5	-	10
	Fast	2	10	10	25	25
		4	7	7	10	10
		6	6	6	6	6
		8	-	4	-	4
		12	-	3	-	3
	QuietIO	2	30	30	70	70
		4	21	21	40	40
		6	18	18	31	31
		8	-	12	_	31
		12	-	12	-	20

Configurable Logic Block (CLB) Timing

Table 33: CLB (SLICEM) Timing

		Speed Grade				
Symbol	Description	-	-5	-	4	Units
		Min	Max	Min	Max	
Clock-to-Output	Times					
Т _{СКО}	When reading from the FFX (FFY) Flip-Flop, the time from the active transition at the CLK input to data appearing at the XQ (YQ) output	-	0.60	_	0.68	ns
Setup Times						
T _{AS}	Time from the setup of data at the F or G input to the active transition at the CLK input of the CLB	0.18	-	0.36	-	ns
T _{DICK}	Time from the setup of data at the BX or BY input to the active transition at the CLK input of the CLB	1.58	-	1.88	-	ns
Hold Times						
T _{AH}	Time from the active transition at the CLK input to the point where data is last held at the F or G input	0	-	0	-	ns
T _{CKDI}	Time from the active transition at the CLK input to the point where data is last held at the BX or BY input	0	-	0	-	ns
Clock Timing			+	- <u>i</u>		÷
Т _{СН}	The High pulse width of the CLB's CLK signal	0.63	-	0.75	-	ns
T _{CL}	The Low pulse width of the CLK signal	0.63	-	0.75	-	ns
F _{TOG}	Toggle frequency (for export control)	0	770	0	667	MHz
Propagation Time	es					
T _{ILO}	The time it takes for data to travel from the CLB's F (G) input to the X (Y) output	-	0.62	-	0.71	ns
Set/Reset Pulse	Width					
T _{RPW_CLB}	The minimum allowable pulse width, High or Low, to the CLB's SR input	1.33	-	1.61	-	ns

Notes:

1. The numbers in this table are based on the operating conditions set forth in Table 10.

18 x 18 Embedded Multiplier Timing

Table 37: 18 x 18 Embedded Multiplier Timing

			Speed	Grade		
Symbol	Description	-	-5	-	4	Units
		Min	Max	Min	Max	
Combinatori	al Delay			·		
T _{MULT}	Combinational multiplier propagation delay from the A and B inputs to the P outputs, assuming 18-bit inputs and a 36-bit product (AREG, BREG, and PREG registers unused)	_	4.36	_	4.88	ns
Clock-to-Out	iput Times	I	1			1
T _{MSCKP_P}	Clock-to-output delay from the active transition of the CLK input to valid data appearing on the P outputs when using the PREG register ^(2,3)	_	0.84	_	1.30	ns
T _{MSCKP_A} T _{MSCKP_B}	Clock-to-output delay from the active transition of the CLK input to valid data appearing on the P outputs when using either the AREG or BREG register ^(2,4)	_	4.44	_	4.97	ns
Setup Times						
T _{MSDCK_P}	Data setup time at the A or B input before the active transition at the CLK when using only the PREG output register (AREG, BREG registers unused) ⁽³⁾	3.56	_	3.98	_	ns
T _{MSDCK_A}	Data setup time at the A input before the active transition at the CLK when using the AREG input register ⁽⁴⁾	0.00	-	0.00	-	ns
T _{MSDCK_B}	Data setup time at the B input before the active transition at the CLK when using the BREG input register ⁽⁴⁾	0.00	-	0.00	-	ns
Hold Times						
T _{MSCKD_P}	Data hold time at the A or B input after the active transition at the CLK when using only the PREG output register (AREG, BREG registers unused) ⁽³⁾	0.00	_	0.00	-	ns
T _{MSCKD_A}	Data hold time at the A input after the active transition at the CLK when using the AREG input register ⁽⁴⁾	0.35	-	0.45	-	ns
T _{MSCKD_B}	Data hold time at the B input after the active transition at the CLK when using the BREG input register ⁽⁴⁾	0.35	-	0.45	-	ns
Clock Freque	ency					
F _{MULT}	Internal operating frequency for a two-stage 18x18 multiplier using the AREG and BREG input registers and the PREG output register ⁽⁵⁾	0	280	0	250	MHz

Notes:

1. The numbers in this table are based on the operating conditions set forth in Table 10.

2. The PREG register is typically used in both single-stage and two-stage pipelined multiplier implementations.

3. The PREG register is typically used when inferring a single-stage multiplier.

4. Input registers AREG or BREG are typically used when inferring a two-stage multiplier.

5. Combinational delay is less and pipelined performance is higher when multiplying input data with less than 18 bits.

Digital Clock Manager (DCM) Timing

For specification purposes, the DCM consists of three key components: the Delay-Locked Loop (DLL), the Digital Frequency Synthesizer (DFS), and the Phase Shifter (PS).

Aspects of DLL operation play a role in all DCM applications. All such applications inevitably use the CLKIN and the CLKFB inputs connected to either the CLK0 or the CLK2X feedback, respectively. Thus, specifications in the DLL tables (Table 39 and Table 40) apply to any application that only employs the DLL component. When the DFS and/or the PS components are used together with the DLL, then the specifications listed in the DFS and PS tables (Table 41 through Table 44) supersede any corresponding ones in the DLL tables. DLL specifications that do not change with the addition of DFS or PS functions are presented in Table 39 and Table 40.

Period jitter and cycle-cycle jitter are two of many different ways of specifying clock jitter. Both specifications describe statistical variation from a mean value. Period jitter is the worst-case deviation from the ideal clock period over a collection of millions of samples. In a histogram of period jitter, the mean value is the clock period.

Cycle-cycle jitter is the worst-case difference in clock period between adjacent clock cycles in the collection of clock periods sampled. In a histogram of cycle-cycle jitter, the mean value is zero.

Spread Spectrum

DCMs accept typical spread spectrum clocks as long as they meet the input requirements. The DLL will track the frequency changes created by the spread spectrum clock to drive the global clocks to the FPGA logic. See <u>XAPP469</u>: *Spread-Spectrum Clocking Reception for Displays* for details.

Delay-Locked Loop (DLL)

Table 39: Recommended Operating Conditions for the DLL

					Speed	Grade		
	Symbol	Descript	ion	-	5	-	4	Units
				Min	Мах	Min	Мах	-
Input Fr	equency Ranges							
F _{CLKIN}	CLKIN_FREQ_DLL	Frequency of the CLKIN clo	ck input	5 ⁽²⁾	280 ⁽³⁾	5 ⁽²⁾	250 ⁽³⁾	MHz
	ulse Requirements				I		1	
CLKIN_I	PULSE	CLKIN pulse width as a	$F_{CLKIN} \le 150 \text{ MHz}$	40%	60%	40%	60%	%
		percentage of the CLKIN period	F _{CLKIN} > 150 MHz	45%	55%	45%	55%	%
Input Cl	ock Jitter Tolerance an	d Delay Path Variation ⁽⁴⁾						
CLKIN_	CYC_JITT_DLL_LF	Cycle-to-cycle jitter at the	F _{CLKIN} ≤ 150 MHz	_	±300	_	±300	ps
CLKIN_	CYC_JITT_DLL_HF	CLKIN input	F _{CLKIN} > 150 MHz	_	±150	_	±150	ps
CLKIN_I	PER_JITT_DLL	Period jitter at the CLKIN input		_	±1	_	±1	ns
CLKFB_	DELAY_VAR_EXT	Allowable variation of off-chip feedback delay from the DCM output to the CLKFB input		_	±1	-	±1	ns

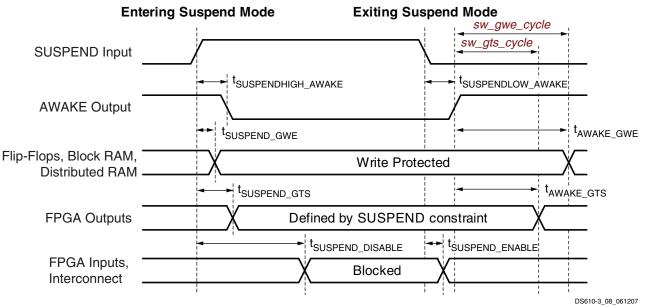
Notes:

1. DLL specifications apply when any of the DLL outputs (CLK0, CLK90, CLK180, CLK270, CLK2X, CLK2X180, or CLKDV) are in use.

2. The DFS, when operating independently of the DLL, supports lower FCLKIN frequencies. See Table 41.

3. The CLKIN_DIVIDE_BY_2 attribute can be used to increase the effective input frequency range up to F_{BUFG}. When set to TRUE, CLKIN_DIVIDE_BY_2 divides the incoming clock frequency by two as it enters the DCM.

4. CLKIN input jitter beyond these limits might cause the DCM to lose lock.


5. The DCM specifications are guaranteed when both adjacent DCMs are locked.

In-System Flash (ISF) Memory Timing

Table 48: In-System Flash (ISF) Memory Operations

Symbol	Description	Device	Typical	Max	Units
T _{XFER}	Page to Buffer transfer time	All	-	400	μs
T _{COMP}	Page to Buffer compare time	All	-	400	μs
Τ _{ΡΡ}	Page Programming time	XC3S50AN XC3S200AN XC3S400AN	2	4	ms
		XC3S700AN XC3S1400AN	3	6	ms
T _{PE}	Page Erase time	XC3S50AN XC3S200AN XC3S400AN	13	32	ms
		XC3S700AN XC3S1400AN	15	35	ms
T _{PEP}	Page Erase and Programming time	XC3S50AN XC3S200AN XC3S400AN XC3S700AN	14	35	ms
		XC3S1400AN	17	40	ms
T _{BE}	Block Erase time	XC3S50AN	15	35	ms
		XC3S200AN XC3S400AN	30	75	ms
		XC3S700AN XC3S1400AN	45	100	ms
T _{SE}	Sector Erase time	XC3S50AN	0.8	2.5	S
		XC3S200AN XC3S400AN XC3S700AN XC3S1400AN	1.6	5	S

Suspend Mode Timing

Table 49: Suspend Mode Timing Parameters

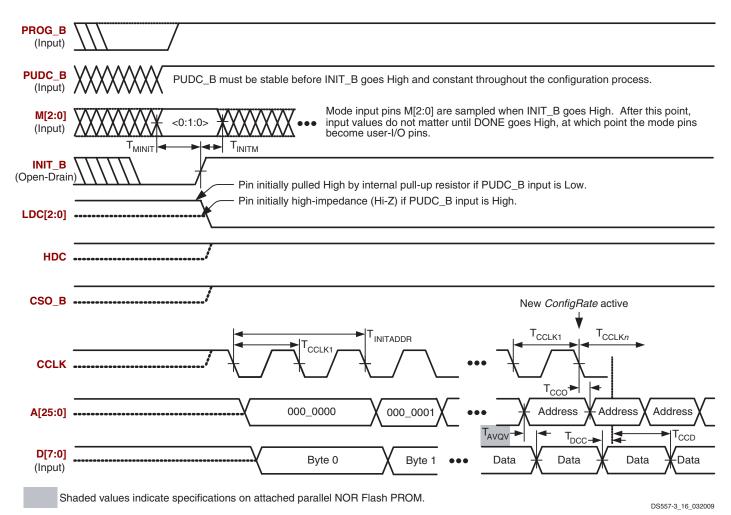
Symbol	Description	Min	Тур	Max	Units
Entering Suspend Mo	ode				
T _{SUSPENDHIGH_AWAKE}	Rising edge of SUSPEND pin to falling edge of AWAKE pin without glitch filter (<i>suspend_filter:No</i>)	-	7	-	ns
T _{SUSPENDFILTER}	Adjustment to SUSPEND pin rising edge parameters when glitch filter enabled (<i>suspend_filter:Yes</i>)	+160	+300	+600	ns
T _{SUSPEND_GTS}	Rising edge of SUSPEND pin until FPGA output pins drive their defined SUSPEND constraint behavior	-	10	Ι	ns
T _{SUSPEND_GWE}	Rising edge of SUSPEND pin to write-protect lock on all writable clocked elements	-	< 5	Ι	ns
T _{SUSPEND_DISABLE}	Rising edge of the SUSPEND pin to FPGA input pins and interconnect disabled	-	340	Ι	ns
Exiting Suspend Mod	le				1
T _{SUSPENDLOW_AWAKE}	Falling edge of the SUSPEND pin to rising edge of the AWAKE pin Does not include DCM lock time	-	4 to 108	-	μs
T _{SUSPEND_ENABLE}	Falling edge of the SUSPEND pin to FPGA input pins and interconnect re-enabled	-	3.7 to 109	-	μs
T _{AWAKE_GWE1}	Rising edge of the AWAKE pin until write-protect lock released on all writable clocked elements, using <i>sw_clk:InternalClock</i> and <i>sw_gwe_cycle:1</i>	-	67	-	ns
T _{AWAKE_GWE512}	Rising edge of the AWAKE pin until write-protect lock released on all writable clocked elements, using <i>sw_clk:InternalClock</i> and <i>sw_gwe_cycle:512</i>	-	14	-	μs
T _{AWAKE_GTS1}	Rising edge of the AWAKE pin until outputs return to the behavior described in the FPGA application, using <i>sw_clk:InternalClock</i> and <i>sw_gts_cycle:1</i>	-	57	-	ns
T _{AWAKE_GTS512}	Rising edge of the AWAKE pin until outputs return to the behavior described in the FPGA application, using <i>sw_clk:InternalClock</i> and <i>sw_gts_cycle:512</i>	-	14	_	μs

Notes:

1. These parameters based on characterization.

2. For information on using the Spartan-3AN Suspend feature, see XAPP480: Using Suspend Mode in Spartan-3 Generation FPGAs.

Symbol	Description	Requirement	Units
T _{CCS}	SPI serial Flash PROM chip-select time	$T_{CCS} \leq T_{MCCL1} - T_{CCO}$	ns
T _{DSU}	SPI serial Flash PROM data input setup time	$T_{DSU} \leq T_{MCCL1} - T_{CCO}$	ns
T _{DH}	SPI serial Flash PROM data input hold time	$T_{DH} \leq T_{MCCH1}$	ns
T _V	SPI serial Flash PROM data clock-to-output time	$T_V \leq T_{MCCLn} - T_{DCC}$	ns
f _C or f _R	Maximum SPI serial Flash PROM clock frequency (also depends on specific read command used)	$f_C \ge \frac{1}{T_{CCLKn(min)}}$	MHz


Table 58: Configuration Timing Requirements for Attached SPI Serial Flash

Notes:

1. These requirements are for successful FPGA configuration in SPI mode, where the FPGA generates the CCLK signal. The post-configuration timing can be different to support the specific needs of the application loaded into the FPGA.

2. Subtract additional printed circuit board routing delay as required by the application.

Byte Peripheral Interface (BPI) Configuration Timing

www.xilinx.com

Table 82: Spartan-3AN FGG676 Pinout (Cont'd)

Bank	Pin Name	FGG676 Ball	Туре		
GND	GND	T14	GND		
GND	GND	T16	GND		
GND	GND	T21	GND		
GND	GND	T26	GND		
GND	GND	U10	GND		
GND	GND	U13	GND		
GND	GND	U17	GND		
GND	GND	V3	GND		
GND	GND	W8	GND		
GND	GND	W14	GND		
GND	GND	W19	GND		
GND	GND	W24	GND		
VCCAUX	SUSPEND	V20	PWR MGMT		
VCCAUX	DONE	AB21	CONFIG		
VCCAUX	PROG_B	A2	CONFIG		
VCCAUX	ТСК	A25	JTAG		
VCCAUX	TDI	G7	JTAG		
VCCAUX	TDO	E23	JTAG		
VCCAUX	TMS	D4	JTAG		
VCCAUX	VCCAUX	AB5	VCCAUX		
VCCAUX	VCCAUX	AB11	VCCAUX		
VCCAUX	VCCAUX	AB22	VCCAUX		
VCCAUX	VCCAUX	E5	VCCAUX		
VCCAUX	VCCAUX	E16	VCCAUX		
VCCAUX	VCCAUX	E22	VCCAUX		
VCCAUX	VCCAUX	J18	VCCAUX		
VCCAUX	VCCAUX	K13	VCCAUX		
VCCAUX	VCCAUX	L5	VCCAUX		
VCCAUX	VCCAUX	N10	VCCAUX		
VCCAUX	VCCAUX	P17	VCCAUX		
VCCAUX	VCCAUX	T22	VCCAUX		
VCCAUX	VCCAUX	U14	VCCAUX		
VCCAUX	VCCAUX	V9	VCCAUX		
VCCINT	VCCINT	K15	VCCINT		
VCCINT	VCCINT	L12	VCCINT		
VCCINT	VCCINT	L14	VCCINT		
VCCINT	VCCINT	L16	VCCINT		
VCCINT	VCCINT	M11	VCCINT		
VCCINT	VCCINT	M13	VCCINT		
VCCINT	VCCINT	M15	VCCINT		

Bank	Pin Name	FGG676 Ball	Туре
VCCINT	VCCINT	M17	VCCINT
VCCINT	VCCINT	N12	VCCINT
VCCINT	VCCINT	N13	VCCINT
VCCINT	VCCINT	N14	VCCINT
VCCINT	VCCINT	N16	VCCINT
VCCINT	VCCINT	P11	VCCINT
VCCINT	VCCINT	P13	VCCINT
VCCINT	VCCINT	P14	VCCINT
VCCINT	VCCINT	P15	VCCINT
VCCINT	VCCINT	R12	VCCINT
VCCINT	VCCINT	R14	VCCINT
VCCINT	VCCINT	R16	VCCINT
VCCINT	VCCINT	T11	VCCINT
VCCINT	VCCINT	T13	VCCINT
VCCINT	VCCINT	T15	VCCINT
VCCINT	VCCINT	U12	VCCINT

User I/Os by Bank

Table 83 indicates how the 502 available user-I/O pins are distributed between the four I/O banks on the FGG676 package. The AWAKE pin is counted as a dual-purpose I/O.

Table 83: User I/Os Per Bank for the XC3S1400AN in the FGG676	Package
---	---------

Package Edge	I/O Bank	Maximum I/Os	All Possible I/O Pins by Type							
			I/O	INPUT	DUAL	VREF	CLK			
Тор	0	120	82	20	1	9	8			
Right	1	130	67	15	30	10	8			
Bottom	2	120	67	14	21	10	8			
Left	3	132	97	18	0	9	8			
Total		502	313	67	52	38	32			

Footprint Migration Differences

The XC3S1400AN is the only Spartan-3AN FPGA offered in the FGG676 package. The XC3S1400AN FPGA is pin compatible with the Spartan-3A XC3S1400A FPGA in the FG(G)676 package, although the Spartan-3A FPGA requires an external configuration source.

14	15	16	17	Bar 18	1 k 0 19	20	21	22	23	24	25	26	
I/O L26N_0 GCLK7	I/O L23N_0	GND	INPUT	I/O L18N_0	I/O L15N_0	I/O L14N_0	GND	I/O L07N_0	INPUT	N.C.	тск	GND	А
I/O L26P_0 GCLK6	1/0 L23P_0	VCCO_0	I/O L19N_0	I/O L18P_0	I/O L15P_0	I/O L14P_0 VREF_0	I/O L09N_0	VCCO_0	I/O L07P_0	N.C.	INPUT L65N_1	INPUT L65P_1 VREF_1	в
GND	I/O L22N_0	I/O L21N_0	I/O L19P_0	I/O L17N_0	GND	I/O L11N_0	I/O L09P_0	I/O L05N_0	I/O L06N_0	GND	I/O L63N_1 A23	I/O L63P_1 A22	с
INPUT VREF_0	INPUT	I/O L22P_0	I/O L21P_0	I/O L17P_0	INPUT	I/O L11P_0	I/O L10N_0	I/O L05P_0	I/O L06P_0	I/O L61N_1	I/O L61P_1	I/O L60N_1	D
I/O L24P_0	1/0 L20N_0 VREF_0	VCCAUX	I/O L13N_0	INPUT	VCCO_0	INPUT	I/O L10P_0	VCCAUX	TDO	I/O L56P_1	VCCO_1	I/O L60P_1	E
I/O L24N_0	I/O L20P_0	GND	I/O L13P_0	N.C.	I/O L02N_0	I/O L01N_0	GND	I/O L58P_1 VREF_1	I/O L56N_1	I/O L54N_1	I/O L54P_1	GND	F
INPUT	I/O L16P_0	INPUT	I/O L08N_0	N.C.	I/O L02P_0 VREF_0	I/O L01P_0	I/O L64N_1 A25	I/O L58N_1	I/O L51P_1	I/O L51N_1	INPUT L52N_1 VREF_1	INPUT L52P_1	G
GND	I/O L16N_0	VCCO_0	I/O L08P_0	INPUT	GND	I/O L64P_1 A24	I/O L62N_1 A21	VCCO_1	INPUT L48P_1	INPUT L48N_1	INPUT L44N_1	INPUT L44P_1 VREF_1	н
I/O L25N_0 GCLK5	INPUT	I/O L12P_0	INPUT VREF_0	VCCAUX	I/O L59P_1	I/O L59N_1	I/O L62P_1 A20	I/O L49N_1	I/O L49P_1	GND	I/O L43N_1 A19	I/O L43P_1 A18	J
I/O L25P_0 GCLK4	VCCINT	I/O L12N_0	GND	I/O L57N_1	I/O L57P_1	I/O L53N_1	I/O L50N_1	I/O L46N_1	I/O L46P_1	INPUT L40P_1	I/O L41P_1	I/O L41N_1	к
VCCINT	GND	VCCINT	I/O L55N_1	I/O L55P_1	VCCO_1	I/O L53P_1	GND	I/O L50P_1	INPUT L40N_1	I/O L38P_1 A12	VCCO_1	GND	L
GND	VCCINT	GND	VCCINT	I/O L47N_1	I/O L47P_1	I/O L42N_1 A17	I/O L45P_1	I/O L45N_1	I/O L38N_1 A13	INPUT L36P_1 VREF_1	I/O L35N_1 A11	I/O L35P_1 A10	м
VCCINT	GND	VCCINT	I/O L39N_1 A15	I/O L39P_1 A14	I/O L34N_1 RHCLK7	I/O L42P_1 A16	I/O L37N_1	VCCO_1	INPUT L36N_1	I/O L33N_1 RHCLK5	INPUT L32N_1	INPUT L32P_1	N 1 N
VCCINT	VCCINT	GND	VCCAUX	I/O L34P_1 IRDY1 RHCLK6	GND	I/O L30N_1 RHCLK1	I/O L30P_1 RHCLK0	I/O L37P_1	I/O L33P_1 RHCLK4	GND	I/O L31N_1 TRDY1 RHCLK ₃	I/O L31P_1 RHCLK2	Bank
VCCINT	GND	VCCINT	I/O L27N_1 A7	I/O L27P_1 A6	I/O L22P_1	I/O L22N_1	I/O L25P_1 A2	I/O L25N_1 A3	INPUT L28P_1 VREF_1	INPUT L28N_1	I/O L29P_1 A8	I/O L29N_1 A9	R
GND	VCCINT	GND	I/O L17N_1	I/O L17P_1	VCCO_1	I/O L14N_1	GND	VCCAUX	I/O L26P_1 A4	I/O L26N_1 A5	VCCO_1	GND	т
VCCAUX	I/O L35N_2	I/O L42N_2	GND	I/O L12N_1	I/O L12P_1	I/O L10N_1	I/O L14P_1	I/O L21N_1	I/O L23P_1	I/O L23N_1 VREF_1	INPUT L24P_1	INPUT L24N_1 VREF_1	U
I/O L31P_2	1/O L35P_2	I/O L42P_2	I/O L46N_2	I/O L08P_1	I/O L08N_1	SUSPEND	I/O L10P_1	I/O L18N_1	I/O L21P_1	I/O L19P_1	I/O L19N_1	INPUT L20N_1 VREF_1	v
GND	I/O L31N_2	VCCO_2	I/O L46P_2	N.C.	GND	I/O L04P_1	I/O L04N_1	VCCO_1	I/O L18P_1	GND	INPUT L16P_1	INPUT L20P_1	w
I/O L27P_2 GCLK0	I/O L34N_2 D3	INPUT VREF_2	I/O L43N_2	N.C.	N.C.	I/O L01P_1 HDC	I/O L01N_1 LDC2	I/O L13P_1	I/O L13N_1	I/O L15P_1	I/O L15N_1	INPUT L16N_1	Y
I/O L27N_2 GCLK1	I/O L34P_2 INIT_B	GND	I/O L43P_2	I/O L47N_2	INPUT	INPUT VREF_2	GND	I/O L09P_1	I/O L09N_1	I/O L11P_1	I/O L11N_1	GND	A A
VCCO_2	I/O L30N_2 MOSI CSI_B	I/O L38N_2	INPUT	I/O L47P_2	VCCO_2	INPUT	DONE	VCCAUX	I/O L07P_1	I/O L07N_1 VREF_1	VCCO_1	I/O L06N_1	A B
I/O L29N_2	I/O L30P_2	I/O L38P_2	INPUT	INPUT	I/O L40N_2	I/O L41N_2	I/O L45N_2	N.C.	I/O L03P_1 A0	I/O L03N_1 A1	I/O L05N_1	I/O L06P_1	A C
I/O L29P_2	I/O L32P_2 AWAKE	INPUT	I/O L33N_2	GND	I/O L40P_2	I/O L41P_2	I/O L44N_2	I/O L45P_2	N.C.	GND	I/O L02N_1 LDC0	I/O L05P_1	A D
I/O L28N_2 GCLK3	I/O L32N_2 DOUT	VCCO_2	I/O L33P_2	I/O L36N_2 D1	I/O L37N_2	I/O L39N_2	I/O L44P_2	VCCO_2	I/O L48N_2	I/O L52N_2 CCLK	I/O L51N_2	I/O L02P_1 LDC1	е
I/O L28P_2 GCLK2	INPUT VREF_2	GND	INPUT VREF_2	I/O L36P_2 D2	I/O L37P_2	I/O L39P_2	GND	INPUT VREF_2	I/O L48P_2	L52P_2 D0 DIN/MISO	I/O L51P_2	GND	A F
Bank 2										08_030911			

Right Half of FGG676 Package (Top View)

www.xilinx.com

Figure 24: FGG676 Package Footprint (Top View)