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What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade
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to the Technical Reference Manual.

Figure 4-2. DMA Timing Diagram

4.3.4.2 Auto Repeat DMA

Auto repeat DMA is typically used when a static pattern is 
repetitively read from system memory and written to a peripheral. 
This is done with a single TD that chains to itself.

4.3.4.3 Ping Pong DMA

A ping pong DMA case uses double buffering to allow one buffer 
to be filled by one client while another client is consuming the 
data previously received in the other buffer. In its simplest form, 
this is done by chaining two TDs together so that each TD calls 
the opposite TD when complete.

4.3.4.4 Circular DMA

Circular DMA is similar to ping pong DMA except it contains more 
than two buffers. In this case there are multiple TDs; after the last 
TD is complete it chains back to the first TD.

4.3.4.5 Indexed DMA

In an indexed DMA case, an external master requires access to 
locations on the system bus as if those locations were shared 
memory. As an example, a peripheral may be configured as an 
SPI or I2C slave where an address is received by the external 
master. That address becomes an index or offset into the internal 
system bus memory space. This is accomplished with an initial 
“address fetch” TD that reads the target address location from 
the peripheral and writes that value into a subsequent TD in the 
chain. This modifies the TD chain on the fly. When the “address 
fetch” TD completes it moves on to the next TD, which has the 
new address information embedded in it. This TD then carries 
out the data transfer with the address location required by the 
external master.

4.3.4.6 Scatter Gather DMA

In the case of scatter gather DMA, there are multiple 
noncontiguous sources or destinations that are required to 
effectively carry out an overall DMA transaction. For example, a 
packet may need to be transmitted off of the device and the 
packet elements, including the header, payload, and trailer, exist 

in various noncontiguous locations in memory. Scatter gather 
DMA allows the segments to be concatenated together by using 
multiple TDs in a chain. The chain gathers the data from the 
multiple locations. A similar concept applies for the reception of 
data onto the device. Certain parts of the received data may need 
to be scattered to various locations in memory for software 
processing convenience. Each TD in the chain specifies the 
location for each discrete element in the chain.

4.3.4.7 Packet Queuing DMA

Packet queuing DMA is similar to scatter gather DMA but 
specifically refers to packet protocols. With these protocols, 
there may be separate configuration, data, and status phases 
associated with sending or receiving a packet. 

For instance, to transmit a packet, a memory mapped 
configuration register can be written inside a peripheral, 
specifying the overall length of the ensuing data phase. The CPU 
can set up this configuration information anywhere in system 
memory and copy it with a simple TD to the peripheral. After the 
configuration phase, a data phase TD (or a series of data phase 
TDs) can begin (potentially using scatter gather). When the data 
phase TD(s) finish, a status phase TD can be invoked that reads 
some memory mapped status information from the peripheral 
and copies it to a location in system memory specified by the 
CPU for later inspection. Multiple sets of configuration, data, and 
status phase “subchains” can be strung together to create larger 
chains that transmit multiple packets in this way. A similar 
concept exists in the opposite direction to receive the packets.

4.3.4.8 Nested DMA

One TD may modify another TD, as the TD configuration space
is memory mapped similar to any other peripheral. For example,
a first TD loads a second TD’s configuration and then calls the
second TD. The second TD moves data as required by the
application. When complete, the second TD calls the first TD,
which again updates the second TD’s configuration. This
process repeats as often as necessary.
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Figure 6-1. Clocking Subsystem

6.1.1  Internal Oscillators 

6.1.1.1 Internal Main Oscillator

The IMO operates with no external components and outputs a 
stable clock. A factory trim for each frequency range is stored in 
the device. With the factory trim, tolerance varies from ±5% at 
3 MHz, up to ±10% at 48 MHz. The IMO, in conjunction with the 
PLL, allows generation of CPU and system clocks up to the 
device's maximum frequency. The IMO provides clock outputs at 
3, 6, 12, 24, and 48 MHz.

6.1.1.2 Clock Doubler

The clock doubler outputs a clock at twice the frequency of the 
input clock. The doubler works at input frequency of 24 MHz, 
providing 48 MHz for the USB. It can be configured to use a clock 
from the MHzECO or the DSI (external pin). The doubler is 
typically used to clock the USB.

6.1.1.3 Phase-Locked Loop

The PLL allows low frequency, high accuracy clocks to be 
multiplied to higher frequencies. This is a tradeoff between 
higher clock frequency and accuracy and, higher power 
consumption and increased startup time. 

The PLL block provides a mechanism for generating clock 
frequencies based upon a variety of input sources. The PLL 
outputs clock frequencies in the range of 24 to 67 MHz. Its input 
and feedback dividers supply 4032 discrete ratios to create 
almost any desired system clock frequency. The accuracy of the 
PLL output depends on the accuracy of the PLL input source. 
The most common PLL use is to multiply the IMO clock at 3 MHz, 

where it is most accurate, to generate the CPU and system 
clocks up to the device’s maximum frequency.

The PLL achieves phase lock within 250 µs (verified by bit 
setting). It can be configured to use a clock from the IMO, 
MHzECO, or DSI (external pin). The PLL clock source can be 
used until lock is complete and signaled with a lock bit. The lock 
signal can be routed through the DSI to generate an interrupt. 
Disable the PLL before entering low power modes.

6.1.1.4 Internal Low-Speed Oscillator

The ILO provides clock frequencies for low power consumption, 
including the sleep timer. The ILO generates up to three different 
clocks: 1 kHz, 33 kHz, and 100 kHz. 

The 1 kHz clock (CLK1K) is typically used for a background 
‘heartbeat’ timer. This clock inherently lends itself to long sleep 
intervals using the central timewheel (CTW). The central 
timewheel is a free running counter clocked by the ILO 1 kHz 
output. The central timewheel is always enabled except in 
hibernate mode and when the CPU is stopped during debug on 
chip mode. It can be used to generate periodic interrupts for 
timing purposes or to wake the system from a low power mode. 
Firmware can reset the central timewheel. 

The central timewheel can be programmed to wake the system 
periodically and optionally issue an interrupt. This enables 
flexible, periodic wakeups from low power modes or coarse 
timing applications. Systems that require accurate timing should 
use the RTC capability instead of the central timewheel. The 
100 kHz clock (CLK100K) works as a low power system clock to 
run the CPU. It can also generate fast time intervals using the 
fast timewheel.
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The fast timewheel is a 100 kHz, 5-bit counter clocked by the ILO 
that can also be used to generate periodic interrupts. The fast 
timewheel settings are programmable, and the counter 
automatically resets when the terminal count is reached. This 
enables flexible, periodic interrupts to the CPU at a higher rate 
than is allowed using the central timewheel. The fast timewheel 
can generate an optional interrupt each time the terminal count 
is reached. The 33 kHz clock (CLK33K) comes from a 
divide-by-3 operation on CLK100K. This output can be used as 
a reduced accuracy version of the 32.768 kHz ECO clock with 
no need for a crystal. The fast timewheel cannot be used as a 
wakeup source and must be turned off before entering sleep or 
hibernate mode.

6.1.2  External Oscillators 

6.1.2.1 MHz External Crystal Oscillator 

The MHzECO provides high frequency, high precision clocking 
using an external crystal (see Figure 6-2). It supports crystals in 
the range of 4 to 25 MHz. When used in conjunction with the PLL, 
it can generate CPU and system clocks up to the device's 
maximum frequency (see Phase-Locked Loop on page 19). The 
MHzECO with a 24 MHz crystal can be used with the clock 
doubler to generate a 48 MHz clock for the USB. If a crystal is 
not used then Xi must be shorted to ground and Xo must be left 
floating. MHzECO accuracy depends on the crystal chosen.

Figure 6-2.  MHzECO Block Diagram

6.1.2.2 32.768 kHz ECO

The 32.768 kHz external crystal oscillator (32kHzECO) provides 
precision timing with minimal power consumption using an 
external 32.768 kHz watch crystal (see Figure 6-3). The RTC 
uses a 1 second interrupt to implement the RTC functionality in 
firmware. The oscillator works in two distinct power modes. This 
allows users to trade off power consumption with noise immunity 
from neighboring circuits. The GPIO pins connected to the 
external crystal and capacitors are fixed. 

Figure 6-3.  32kHzECO Block Diagram

It is recommended that the external 32.768-kHz watch crystal 
have a load capacitance (CL) of 6 pF or 12.5 pF. Check the 
crystal manufacturer's datasheet. The two external capacitors, 
CL1 and CL2, are typically of the same value, and their total 
capacitance, CL1CL2 / (CL1 + CL2), including pin and trace 
capacitance, should equal the crystal CL value. For more infor-
mation, refer to application note AN54439: PSoC 3 and PSoC 5 
External Oscillators. See also pin capacitance specifications in 
the “GPIO” section on page 61.

6.1.2.3 Digital System Interconnect

The DSI provides routing for clocks taken from external clock 
oscillators connected to I/O. The oscillators can also be 
generated within the device in the digital system and UDBs. 
While the primary DSI clock input provides access to all clocking 
resources, up to eight other DSI clocks (internally or externally 
generated) may be routed directly to the eight digital clock 
dividers. This is only possible if there are multiple precision clock 
sources.

6.1.3  Clock Distribution 

All seven clock sources are inputs to the central clock distribution 
system. The distribution system is designed to create multiple 
high precision clocks. These clocks are customized for the 
design’s requirements and eliminate the common problems 
found with limited resolution prescalers attached to peripherals. 
The clock distribution system generates several types of clock 
trees.

■ The system clock is used to select and supply the fastest clock 
in the system for general system clock requirements and clock 
synchronization of the PSoC device. 

■ Bus clock 16-bit divider uses the system clock to generate the 
system’s bus clock used for data transfers and the CPU. The 
CPU clock is directly derived from the bus clock.
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■ Eight fully programmable 16-bit clock dividers generate digital 
system clocks for general use in the digital system, as 
configured by the design’s requirements. Digital system clocks 
can generate custom clocks derived from any of the seven 
clock sources for any purpose. Examples include baud rate 
generators, accurate PWM periods, and timer clocks, and 
many others. If more than eight digital clock dividers are 
required, the UDBs and fixed function timer/counter/PWMs can 
also generate clocks. 

■ Four 16-bit clock dividers generate clocks for the analog system 
components that require clocking, such as ADCs and mixers. 
The analog clock dividers include skew control to ensure that 
critical analog events do not occur simultaneously with digital 
switching events. This is done to reduce analog system noise.

Each clock divider consists of an 8-input multiplexer, a 16-bit 
clock divider (divide by 2 and higher) that generates ~50% duty 
cycle clocks, system clock resynchronization logic, and deglitch 
logic. The outputs from each digital clock tree can be routed into 
the digital system interconnect and then brought back into the 
clock system as an input, allowing clock chaining of up to 32 bits. 

6.1.4  USB Clock Domain 

The USB clock domain is unique in that it operates largely 
asynchronously from the main clock network. The USB logic 
contains a synchronous bus interface to the chip, while running 
on an asynchronous clock to process USB data. The USB logic 
requires a 48 MHz frequency. This frequency can be generated 
from different sources, including DSI clock at 48 MHz or doubled 
value of 24 MHz from the MHzECO or DSI signal.

6.2  Power System

The power system consists of separate analog, digital, and I/O 
supply pins, labeled VDDA, VDDD, and VDDIOX, respectively. It 
also includes two internal 1.8 V regulators that provide the digital 
(VCCD) and analog (VCCA) supplies for the internal core logic. 
The output pins of the regulators (VCCD and VCCA) and the 
VDDIO pins must have capacitors connected as shown in 
Figure 6-4 (10 µF is required for sleep mode. See Table 11-3). 
The two VCCD pins must be shorted together, with as short a 
trace as possible. The power system also contains a hibernate 
regulator.

Figure 6-4.  PSoC Power System

Note The two VCCD pins must be connected together with as short a trace as possible. A trace under the device is recommended, as 
shown in Figure 2-4. 
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Figure 6-5.  Power Mode Transitions

6.2.1.1 Active Mode 

Active mode is the primary operating mode of the device. When 
in active mode, the active configuration template bits control 
which available resources are enabled or disabled. When a 
resource is disabled, the digital clocks are gated, analog bias 
currents are disabled, and leakage currents are reduced as 
appropriate. User firmware can dynamically control subsystem 
power by setting and clearing bits in the active configuration 
template. The CPU can disable itself, in which case the CPU is 
automatically reenabled at the next wakeup event.

When a wakeup event occurs, the global mode is always 
returned to active, and the CPU is automatically enabled, 
regardless of its template settings. Active mode is the default 
global power mode upon boot.

6.2.1.2 Alternate Active Mode

Alternate Active mode is very similar to Active mode. In alternate 
active mode, fewer subsystems are enabled, to reduce power 
consumption. One possible configuration is to turn off the CPU 
and flash, and run peripherals at full speed.

6.2.1.3 Sleep Mode 

Sleep mode powers down the CPU and other internal circuitry to 
reduce power consumption. However, supervisory services such 
as the central timewheel (CTW) remain available in this mode. 
The device can wake up using CTW or system reset. The wake 
up time from sleep mode is 125 µs (typical).

6.2.1.4 Hibernate Mode 

In hibernate mode nearly all of the internal functions are 
disabled. Internal voltages are reduced to the minimal level to 
keep vital systems alive. Configuration state is preserved in 
hibernate mode and SRAM memory is retained. GPIOs 
configured as digital outputs maintain their previous values and 
external GPIO pin interrupt settings are preserved. The device 
can only return from hibernate mode in response to an external 
reset (XRES).

6.2.1.5 Wakeup Events

Wakeup events can come from the central timewheel or device 
reset. A wakeup event restores the system to active mode. The 
central timewheel allows the system to periodically wake up, poll 
peripherals, do voltage monitoring, or perform real-time 
functions. Reset event sources include the external reset pin 
(XRES).

6.3  Reset

CY8C55 has multiple internal and external reset sources 
available. The reset sources are:
■ Power source monitoring - The analog and digital power 

voltages, VDDA, VDDD, VCCA, and VCCD are monitored in 
several different modes during power up and active mode. The 
monitors are programmable to generate an interrupt to the 
processor under certain conditions.

■ External - The device can be reset from an external source by 
pulling the reset pin (XRES) low. The XRES pin includes an 
internal pull-up to VDDIO1. VDDD, VDDA, and VDDIO1 must 
all have voltage applied before the part comes out of reset.

■ Watchdog timer - A watchdog timer monitors the execution of 
instructions by the processor. If the watchdog timer is not reset 
by firmware within a certain period of time, the watchdog timer 
generates a reset. The watchdog timer can be used only when 
the part remains in active mode.

■ Software - The device can be reset under program control. 

Figure 6-6.  Resets 
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The term system reset indicates that the processor as well as 
analog and digital peripherals and registers are reset.

A reset status register shows some of the resets or power voltage 
monitoring interrupts. The program may examine this register to 
detect and report certain exception conditions. This register is 
cleared after a power-on reset. For details see the Technical 
Reference Manual.

6.3.1  Power Voltage Level Monitors
■ IPOR - Initial Power on Reset

At initial power on, IPOR monitors the power voltages VDDD
and VDDA, both directly at the pins and at the outputs of the
corresponding internal regulators. The trip level is not precise.
It is set to approximately 1 volt, which is below the lowest
specified operating voltage but high enough for the internal
circuits to be reset and to hold their reset state. The monitor
generates a reset pulse that is at least 100 ns wide. It may be
much wider if one or more of the voltages ramps up slowly.
To save power the IPOR circuit is disabled when the internal
digital supply is stable. When the voltage is high enough, the
IMO starts.

■ ALVI, DLVI, AHVI - Analog/Digital Low Voltage Interrupt, Analog 
High Voltage Interrupt 
Interrupt circuits are available to detect when VDDA and
VDDD go outside a voltage range. For AHVI, VDDA is
compared to a fixed trip level. For ALVI and DLVI, VDDA and
VDDD are compared to trip levels that are programmable, as
listed in Table 6-4. 

The monitors are disabled until after IPOR. The monitors are
not available in low-power modes. To monitor voltages in
sleep mode, wake up periodically using the CTW. After
wakeup, the 2.45 V LVI interrupt may trigger. Voltage
monitoring is not available in hibernate mode. 

6.3.2  Other Reset Sources

■ XRES - External Reset 

CY8C55 has a dedicated XRES pin which holds the part in
reset while held active (low). The response to an XRES is the
same as to an IPOR reset. The external reset is active low. It
includes an internal pull-up resistor. XRES is active during
sleep and hibernate modes.

■ SRES - Software Reset 

A reset can be commanded under program control by setting
a bit in the software reset register. This is done either directly
by the program or indirectly by DMA access. The response to
a SRES is the same as after an IPOR reset.

Another register bit exists to disable this function. 

■ WRES - Watchdog Timer Reset 

The watchdog reset detects when the software program is no
longer being executed correctly. To indicate to the watchdog
timer that it is running correctly, the program must periodically
reset the timer. If the timer is not reset before a user-specified
amount of time, then a reset is generated. 

Note IPOR disables the watchdog function. The program
must enable the watchdog function at an appropriate point in
the code by setting a register bit. When this bit is set, it cannot
be cleared again except by an IPOR power on reset event.
The watchdog timer can be used only when the part remains
in active mode.

6.4  I/O System and Routing

PSoC I/Os are extremely flexible. Every GPIO has analog and 
digital I/O capability. All I/Os have a large number of drive modes, 
which are set at POR. PSoC also provides up to four individual 
I/O voltage domains through the VDDIO pins.

There are two types of I/O pins on every device; those with USB 
provide a third type. Both general purpose I/O (GPIO) and 
special I/O (SIO) provide similar digital functionality. The primary 
differences are their analog capability and drive strength. 
Devices that include USB also provide two USBIO pins that 
support specific USB functionality as well as limited GPIO 
capability. 

All I/O pins are available for use as digital inputs and outputs for 
both the CPU and digital peripherals. In addition, all I/O pins can 
generate an interrupt. The flexible and advanced capabilities of 
the PSoC I/O, combined with any signal to any pin routability, 
greatly simplify circuit design and board layout. All GPIO pins can 
be used for analog input, CapSense[11], and LCD segment drive, 
while SIO pins are used for voltages in excess of VDDA and for 
programmable output voltages.

Table 6-4.  Analog/Digital Low Voltage Interrupt, Analog High 
Voltage Interrupt

Interrupt Supply
Normal
Voltage 
Range

Available Trip
Settings

DLVI VDDD 2.7 V-5.5 V 2.45 V-5.45 V in 250 mV 
increments. The 2.45 V 
setting is used for LVD.

ALVI VDDA 2.7 V-5.5 V 2.45 V-5.45 V in 250 mV 
increments. The 2.45 V 
setting is used for LVD.

AHVI VDDA 2.7 V-5.5 V 5.75 V

Note
11. GPIOs with opamp outputs are not recommended for use with CapSense.
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Figure 6-7.  GPIO Block Diagram
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Figure 7-6. Digital System Interconnect

Interrupt and DMA routing is very flexible in the CY8C55 
programmable architecture. In addition to the numerous fixed 
function peripherals that can generate interrupt requests, any 
data signal in the UDB array routing can also be used to generate 
a request. A single peripheral may generate multiple 
independent interrupt requests simplifying system and firmware 
design. Figure 7-7 shows the structure of the IDMUX 
(Interrupt/DMA Multiplexer).

Figure 7-7. Interrupt and DMA Processing in the IDMUX 

7.4.1  I/O Port Routing

There are a total of 20 DSI routes to a typical 8-bit I/O port, 16 
for data and four for drive strength control.

When an I/O pin is connected to the routing, there are two 
primary connections available, an input and an output. In 
conjunction with drive strength control, this can implement a 
bidirectional I/O pin. A data output signal has the option to be 
single synchronized (pipelined) and a data input signal has the 
option to be double synchronized. The synchronization clock is 

the system clock (see Figure 6-1). Normally all inputs from pins 
are synchronized as this is required if the CPU interacts with the 
signal or any signal derived from it. Asynchronous inputs have 
rare uses. An example of this is a feed through of combinational 
PLD logic from input pins to output pins.

Figure 7-8. I/O Pin Synchronization Routing

Figure 7-9. I/O Pin Output Connectivity 

There are four more DSI connections to a given I/O port to 
implement dynamic output enable control of pins. This 
connectivity gives a range of options, from fully ganged 8-bits 
controlled by one signal, to up to four individually controlled pins. 
The output enable signal is useful for creating tri-state 
bidirectional pins and buses.

Figure 7-10. I/O Pin Output Enable Connectivity
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7.8  Digital Filter Block

Some devices in the CY8C55 family of devices have a dedicated 
HW accelerator block used for digital filtering. The DFB has a 
dedicated multiplier and accumulator that calculates a 24-bit by 
24-bit multiply accumulate in one system clock cycle. This 
enables the mapping of a direct form FIR filter that approaches 
a computation rate of one FIR tap for each clock cycle. The MCU 
can implement any of the functions performed by this block, but 
at a slower rate that consumes significant MCU bandwidth.

The PSoC Creator interface provides a wizard to implement FIR 
and IIR digital filters with coefficients for LPF, BPF, HPF, Notch 
and arbitrary shape filters. 64 pairs of data and coefficients are 
stored. This enables a 64 tap FIR filter or up to 4 16 tap filters of 
either FIR or IIR formulation.

Figure 7-14.   DFB Application Diagram (pwr/gnd not shown)

The typical use model is for data to be supplied to the DFB over 
the system bus from another on-chip system data source such 
as an ADC. The data typically passes through main memory or 
is directly transferred from another chip resource through DMA. 
The DFB processes this data and passes the result to another 
on chip resource such as a DAC or main memory through DMA 
on the system bus.

Data movement in or out of the DFB is typically controlled by the 
system DMA controller but can be moved directly by the MCU.

8.  Analog Subsystem

The analog programmable system creates application specific 
combinations of both standard and advanced analog signal 
processing blocks. These blocks are then interconnected to 
each other and also to any pin on the device, providing a high 
level of design flexibility and IP security. The features of the 
analog subsystem are outlined here to provide an overview of 
capabilities and architecture.

■ Flexible, configurable analog routing architecture provided by 
analog globals, analog mux bus, and analog local buses

■ High resolution Delta-Sigma ADC

■ Two successive approximation (SAR) ADCs

■ Four 8-bit DACs that provide either voltage or current output

■ Four comparators with optional connection to configurable LUT 
outputs

■ Four configurable switched capacitor/continuos time (SC/CT) 
blocks for functions that include opamp, unity gain buffer, 
programmable gain amplifier, transimpedance amplifier, and 
mixer

■ Four opamps for internal use and connection to GPIO that can 
be used as high current output buffers

■ CapSense subsystem to enable capacitive touch sensing

■ Precision reference for generating an accurate analog voltage 
for internal analog blocks
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Figure 8-1. Analog Subsystem Block Diagram

The PSoC Creator software program provides a user friendly interface to configure the analog connections between the GPIO and 
various analog resources and also connections from one analog resource to another. PSoC Creator also provides component libraries 
that allow you to configure the various analog blocks to perform application specific functions (PGA, transimpedance amplifier, voltage 
DAC, current DAC, and so on). The tool also generates API interface libraries that allow you to write firmware that allows the 
communication between the analog peripheral and CPU/Memory.
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Figure 8-12.  DAC Block Diagram

8.10.1  Current DAC

The current DAC (IDAC) can be configured for the ranges 0 to 
31.875 µA, 0 to 255 µA, and 0 to 2.04 mA. The IDAC can be 
configured to source or sink current.

8.10.2  Voltage DAC

For the voltage DAC (VDAC), the current DAC output is routed 
through resistors. The two ranges available for the VDAC are 0 
to 1.02 V and 0 to 4.08 V. In voltage mode any load connected 
to the output of a DAC should be purely capacitive (the output of 
the VDAC is not buffered).

8.11  Up/Down Mixer

In continuous time mode, the SC/CT block components are used 
to build an up or down mixer. Any mixing application contains an 
input signal frequency and a local oscillator frequency. The 
polarity of the clock, Fclk, switches the amplifier between 
inverting or noninverting gain. The output is the product of the 
input and the switching function from the local oscillator, with 
frequency components at the local oscillator plus and minus the 
signal frequency (Fclk + Fin and Fclk - Fin) and reduced-level 
frequency components at odd integer multiples of the local 
oscillator frequency. The local oscillator frequency is provided by 
the selected clock source for the mixer. 

Continuous time up and down mixing works for applications with 
input signals and local oscillator frequencies up to 1 MHz.

Figure 8-13.  Mixer Configuration

8.12  Sample and Hold

The main application for a sample and hold, is to hold a value 
stable while an ADC is performing a conversion. Some 
applications require multiple signals to be sampled 
simultaneously, such as for power calculations (V and I).

Figure 8-14.  Sample and Hold Topology 
(1 and 2 are opposite phases of a clock)

8.12.1  Down Mixer

The S+H can be used as a mixer to down convert an input signal. 
This circuit is a high bandwidth passive sample network that can 
sample input signals up to 14 MHz. This sampled value is then 
held using the opamp with a maximum clock rate of 4 MHz. The 
output frequency is at the difference between the input frequency 
and the highest integer multiple of the Local Oscillator that is less 
than the input. 

8.12.2  First Order Modulator - SC Mode

A first order modulator is constructed by placing the switched 
capacitor block in an integrator mode and using a comparator to 
provide a 1-bit feedback to the input. Depending on this bit, a 
reference voltage is either subtracted or added to the input 
signal. The block output is the output of the comparator and not 
the integrator in the modulator case. The signal is downshifted 
and buffered and then processed by a decimator to make a 
delta-sigma converter or a counter to make an incremental 
converter. The accuracy of the sampled data from the first-order 
modulator is determined from several factors. The main 
application for this modulator is for a low frequency ADC with 
high accuracy. Applications include strain gauges, 
thermocouples, precision voltage, and current measurement.
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9.3  Debug Features
The CY8C55 supports the following debug features: 
■ Halt and single-step the CPU
■ View and change CPU and peripheral registers, and RAM 

addresses
■ Six program address breakpoints and two literal access 

breakpoints
■ Data watchpoint events to CPU
■ Patch and remap instruction from flash to SRAM
■ Debugging at the full speed of the CPU
■ Compatible with PSoC Creator and MiniProg3 programmer and 

debugger

9.4  Trace Features
The following trace features are supported:
■ Data watchpoint on access to data address, address range, or 

data value
■ Software event monitoring, “printf-style” debugging

9.5  SWV Interface

The SWV interface provides trace data to a debug host via the 
Cypress MiniProg3 or an external trace port analyzer. 

9.6  Programming Features
The SWD interface provides full programming support. The 
entire device can be erased, programmed, and verified. 
Designers can increase flash protection levels to protect 
firmware IP. Flash protection can only be reset after a full device 
erase. Individual flash blocks can be erased, programmed, and 
verified, if block security settings permit. 

9.7  Device Security
PSoC 5 offers an advanced security feature called device 
security, which permanently disables all test, programming, and 
debug ports, protecting your application from external access. 
The device security is activated by programming a 32-bit key 
(0x50536F43) to a Write Once Latch (WOL). The WOL must be 
programmed at VDDD  3.3 V and TJ = 25 °C ±15 °C.
The WOL is a type of nonvolatile latch (NVL). The cell itself is an 
NVL with additional logic wrapped around it. Each WOL device 
contains four bytes (32 bits) of data. The wrapper outputs a ‘1’ if 
a super-majority (28 of 32) of its bits match a pre-determined 
pattern (0x50536F43); it outputs a ‘0’ if this majority is not 

reached. When the output is 1, the Write Once NV latch locks the 
part out of Debug and Test modes; it also permanently gates off 
the ability to erase or alter the contents of the latch. Matching all 
bits is intentionally not required, so that single (or few) bit failures 
do not deassert the WOL output. The state of the NVL bits after 
wafer processing is truly random with no tendency toward 1 or 0.
The WOL only locks the part after the correct 32-bit key 
(0x50536F43) is loaded into the NVL's volatile memory, 
programmed into the NVL's nonvolatile cells, and the part is 
reset. The output of the WOL is only sampled on reset and used 
to disable the access. This precaution prevents anyone from 
reading, erasing, or altering the contents of the internal memory.
The user can write the key into the WOL to lock out external 
access only if no flash protection is set (see “Flash Security” 
section on page 16). However, after setting the values in the 
WOL, a user still has access to the part until it is reset. Therefore, 
a user can write the key into the WOL, program the flash 
protection data, and then reset the part to lock it.
If the device is protected with a WOL setting, Cypress cannot 
perform failure analysis and, therefore, cannot accept RMAs 
from customers. The WOL can be read out via SWD port to 
electrically identify protected parts. The user can write the key in 
WOL to lock out external access only if no flash protection is set. 
For more information on how to take full advantage of the 
security features in PSoC see the PSoC 5 TRM.
Disclaimer
Note the following details of the flash code protection features on 
Cypress devices. 
Cypress products meet the specifications contained in their 
particular Cypress datasheets. Cypress believes that its family of 
products is one of the most secure families of its kind on the 
market today, regardless of how they are used. There may be 
methods, unknown to Cypress, that can breach the code 
protection features. Any of these methods, to our knowledge, 
would be dishonest and possibly illegal. Neither Cypress nor any 
other semiconductor manufacturer can guarantee the security of 
their code. Code protection does not mean that we are 
guaranteeing the product as “unbreakable.” 
Cypress is willing to work with the customer who is concerned 
about the integrity of their code. Code protection is constantly 
evolving. We at Cypress are committed to continuously 
improving the code protection features of our products.
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Figure 11-5. GPIO Output High Voltage and Current Figure 11-6. GPIO Output Low Voltage and Current

CIN Input capacitance[24] GPIOs not shared with opamp outputs or 
kHzECO or SAR ADC external reference 
inputs

– 4 7 pF

GPIOs shared with kHzECO[25] – 5 7 pF

GPIOs shared with opamp outputs – – 18 pF

GPIOs shared with SAR ADC external 
reference inputs

– – 30 pF

VH Input voltage hysteresis 
(Schmitt-Trigger)[27]

– 150 – mV

Idiode Current through protection diode 
to VDDIO and VSSIO

– – 100 µA

Rglobal Resistance pin to analog global 
bus 

25 °C, VDDIO = 3.0 V – 320 – 

Rmux Resistance pin to analog mux bus 25 °C, VDDIO = 3.0 V – 220 – 

Table 11-6.  GPIO DC Specifications (continued)

Parameter Description Conditions Min Typ Max Units

Note
27. Based on device characterization (Not production tested).

Table 11-7.  GPIO AC Specifications

Parameter Description Conditions Min Typ Max Units

TriseF Rise time in Fast Strong Mode[27] 3.3 V VDDIO Cload = 25 pF – – 12 ns

TfallF Fall time in Fast Strong Mode[27] 3.3 V VDDIO Cload = 25 pF – – 12 ns

TriseS Rise time in Slow Strong Mode[27] 3.3 V VDDIO Cload = 25 pF – – 60 ns

TfallS Fall time in Slow Strong Mode[27] 3.3 V VDDIO Cload = 25 pF – – 60 ns

Fgpioout

GPIO output operating frequency

Fast strong drive mode 90/10% VDDIO into 25 pF – – 33 MHz

3.3 V < VDDIO < 5.5 V, slow strong drive mode 90/10% VDDIO into 25 pF – – 7 MHz

2.7 V < VDDIO < 3.3 V, slow strong drive mode 90/10% VDDIO into 25 pF – – 3.5 MHz

Fgpioin
GPIO input operating frequency

2.7 V < VDDIO < 5.5 V 90/10% VDDIO – – 66 MHz
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11.5.4  SAR ADC

Unless otherwise specified, operating conditions are:

■ Operation in continuous sample mode

■ Fclk = 14 MHz

■ Input range = ± VREF

■ Bypass capacitor of 10 µF

Figure 11-26.  SAR ADC DNL vs Output Code, 
Bypassed Internal Reference Mode

Figure 11-27.  SAR ADC INL vs Output Code, 
Bypassed Internal Reference Mode

Table 11-25.  SAR ADC DC Specifications

Parameter Description Conditions Min Typ Max Units

Resolution – – 12 bits

Number of channels – single-ended – – No of 
GPIO

Number of channels – differential Differential pair is formed using a 
pair of neighboring GPIO.

– – No of 
GPIO/2

Monotonicity[39] Yes – –

Ge Gain error External reference – – ±0.2 %

VOS Input offset voltage VCM = 0 V – – ±2 mV

VCM = VDD/2 ±6

IDD Current consumption – – 1 mA

Input voltage range – 
single-ended[39]

VSSA – VDDA V

Input voltage range – differential[39] VSSA – VDDA V

PSRR Power supply rejection ratio[39] 70 – – dB

CMRR Common mode rejection ratio 35 – – dB

INL Integral non linearity[39] Internal reference from VBG – – ±2 LSB

DNL Differential non linearity[39] Internal reference from VBG – – ±2 LSB
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11.5.7  Current Digital-to-analog Converter (IDAC)

All specifications are based on use of the low-resistance IDAC output pins (see Pin Descriptions on page 9 for details). See the IDAC 
component data sheet in PSoC Creator for full electrical specifications and APIs.

Unless otherwise specified, all charts and graphs show typical values.

Table 11-30.  IDAC DC Specifications

Parameter Description Conditions Min Typ Max Units

Resolution – – 8 bits

IOUT Output current at code = 255 Range = 2.04 mA, code = 255, Rload = 
600 

– 2.04 – mA

Range = 255 µA, code = 255, Rload = 
600 

– 255 – µA

Range = 31.875 µA, code = 255, Rload = 
600 

– 31.875 – µA

Monotonicity – – Yes

Ezs Zero scale error – 0 ±2.5 LSB

Eg Gain error – – ±5 %

TC_Eg Temperature coefficient of gain 
error

Range = 2.04 mA – – 0.04 % / °C

Range = 255 µA – – 0.04 % / °C

Range = 31.875 µA – – 0.05 % / °C

INL Integral nonlinearity Range = 255 µA, Codes 8 – 255, Rload = 
600 , Cload = 15 pF

– – ±3 LSB

DNL Differential nonlinearity, 
non-monotonic

Range = 255 µA, Rload = 600 , Cload = 
15 pF

– – ±1.6 LSB

Vcompliance Dropout voltage, source or sink 
mode

Voltage headroom at max current, Rload 
to VDDA or Rload to VSSA, VDIFF from VDDA

1 – – V

IDD Operating current, code = 0 Slow mode, source mode, range = 
31.875 µA

– 44 100 µA

Slow mode, source mode, range = 255 µA, – 33 100 µA

Slow mode, source mode, range = 2.04 
mA

– 33 100 µA

Slow mode, sink mode, range = 31.875 µA – 36 100 µA

Slow mode, sink mode, range = 255 µA – 33 100 µA

Slow mode, sink mode, range = 2.04 mA – 33 100 µA

Fast mode, source mode, range = 
31.875 µA

– 310 500 µA

Fast mode, source mode, range = 255 µA – 305 500 µA

Fast mode, source mode, range = 2.04 mA – 305 500 µA

Fast mode, sink mode, range = 31.875 µA – 310 500 µA

Fast mode, sink mode, range = 255 µA – 300 500 µA

Fast mode, sink mode, range = 2.04 mA – 300 500 µA
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Figure 11-42. IDAC Step Response, Codes 0x40 - 0xC0, 
255 µA Mode, Source Mode, Fast Mode, VDDA = 5 V

Figure 11-43. IDAC PSRR vs Frequency

Figure 11-44. IDAC Glitch Response, Codes 0x7F - 0x80, 
255 µA Mode, Source Mode, Fast Mode, VDDA = 5 V

Figure 11-45. IDAC Current Noise, 255 µA Mode, 
Source Mode, Fast Mode, VDDA = 5 V

Table 11-31.  IDAC AC Specifications

Parameter Description Conditions Min Typ Max Units

FDAC Update rate – – 5.5 Msps

TSETTLE Settling time to 0.5 LSB Range = 31.875 µA or 255 µA, full 
scale transition, fast mode, 600  
15-pF load

– – 180 ns

Current noise Range = 255 µA, source mode, fast 
mode, VDDA = 5 V, 10 kHz

– 340 – pA/sqrtHz
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11.5.11  Programmable Gain Amplifier

The PGA is created using a SC/CT analog block; see the PGA component data sheet in PSoC Creator for full electrical specifications 
and APIs.

Unless otherwise specified, operating conditions are:

■ Operating temperature = 25 °C for typical values

■ Unless otherwise specified, all charts and graphs show typical values

Table 11-38.  PGA DC Specifications

Parameter Description Conditions Min Typ Max Units

Vin Input voltage range Power mode = minimum VSSA – VDDA V

Vos Input offset voltage Power mode = high, 
gain = 1

– – 20 mV

TCVos Input offset voltage drift 
with temperature

Power mode = high, 
gain = 1

– – ±30 µV/°C

Ge1 Gain error, gain = 1 – – ±2 %

Ge16 Gain error, gain = 16 – – ±8 %

Ge50 Gain error, gain = 50 – – ±10 %

Vonl DC output nonlinearity Gain = 1 – – ±0.1 % of 
FSR

Cin Input capacitance – – 7 pF

Voh Output voltage swing Power mode = high, 
gain = 1, Rload = 100 k 
to VDDA / 2

VDDA – 0.15 – – V

Vol Output voltage swing Power mode = high, 
gain = 1, Rload = 100 k 
to VDDA / 2

– – VSSA + 0.15 V

Vsrc Output voltage under load Iload = 250 µA, power 
mode = high

– – 300 mV

Idd Operating current Power mode = high – 1.5 1.65 mA

PSRR Power supply rejection 
ratio

48 – – dB

Table 11-39.  PGA AC Specifications

Parameter Description Conditions Min Typ Max Units

BW1 –3 dB bandwidth Power mode = high, 
gain = 1, noninverting 
mode, 300 mV VIN  
VDDA – 1.2 V, Cl  25 pF

6 8 –  MHz

SR1 Slew rate Power mode = high, 
gain = 1, 20% to 80%

3 – – V/µs

en Input noise density Power mode = high, 
VDDA = 5 V, at 100 kHz

– 43 – nV/sqrtHz
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11.6.7  Universal Digital Blocks (UDBs)

PSoC Creator provides a library of pre-built and tested standard digital peripherals (UART, SPI, LIN, PRS, CRC, timer, counter, PWM, 
AND, OR, and so on) that are mapped to the UDB array. See the component datasheets in PSoC Creator for full AC/DC specifications, 
APIs, and example code.

Figure 11-60.  Clock to Output Performance

Table 11-53.  UDB AC Specifications

Parameter Description Conditions Min Typ Max Units

Datapath Performance

FMAX_TIMER Maximum frequency of 16-bit timer in 
a UDB pair

– – 67.01 MHz

FMAX_ADDER Maximum frequency of 16-bit adder in 
a UDB pair

– – 67.01 MHz

FMAX_CRC Maximum frequency of 16-bit 
CRC/PRS in a UDB pair

– – 67.01 MHz

PLD Performance

FMAX_PLD Maximum frequency of a two-pass 
PLD function in a UDB pair

– – 67.01 MHz

Clock to Output Performance

tCLK_OUT Propagation delay for clock in to data 
out, see Figure 11-60.

25 °C – 20 28 ns

tCLK_OUT Propagation delay for clock in to data 
out, see Figure 11-60.

Worst-case placement, routing, 
and pin selection

– – 55 ns
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11.9.3  Internal Low Speed Oscillator 

Figure 11-65. ILO Frequency Variation vs. Temperature Figure 11-66. ILO Frequency Variation vs. VDD

11.9.4  MHz External Crystal Oscillator (MHzECO)

For more information on crystal or ceramic resonator selection for the MHzECO, refer to application note AN54439: PSoC 3 and 
PSoC 5 External Oscillators. 

Table 11-70.  ILO AC Specifications

Parameter Description Conditions Min Typ Max Units

Startup time, all frequencies Turbo mode – – 2.5 ms

FILO

ILO frequencies (trimmed)

100 kHz 45 100 200 kHz

1 kHz 0.5 1 2 kHz

ILO frequencies (untrimmed)

100 kHz 30 100 300 kHz

1 kHz 0.3 1 3.5 kHz

Table 11-71.  MHzECO Crystal Specifications

Parameter Description Conditions Min Typ Max Units

F Crystal frequency 4 – 25 MHz

CL Crystal load capacitance – – 20 pF

C0 Crystal shunt capacitance – – 7 pF

ESR Crystal effective series resistance 4 MHz ≤ F < 8 MHz – – 125 Ω

8 MHz ≤ F < 12 MHz – – 75 Ω

12 MHz ≤ F ≤ 25 MHz – – 50 Ω

DL Crystal drive level tolerance No Rs, see AN54439 500 – – μW

CIN Capacitance at Pins MHz-XTAL:Xi and 
MHz-XTAL:Xo[50]

– 4 – pF

Note
50. Based on device characterization (Not production tested).

http://www.cypress.com/?rID=37884
http://www.cypress.com/?rID=37884
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16.  Document Conventions

16.1  Units of Measure

Table 16-1.  Units of Measure

Symbol Unit of Measure

°C degrees Celsius

dB decibels

fF femtofarads

Hz hertz

KB 1024 bytes

kbps kilobits per second

Khr kilohours

kHz kilohertz

k kilohms

ksps kilosamples per second

LSB least significant bit

Mbps megabits per second

MHz megahertz

M megaohms

Msps megasamples per second

µA microamperes

µF microfarads

µH microhenrys

µs microseconds

µV microvolts

µW microwatts

mA milliamperes

ms milliseconds

mV millivolts

nA nanoamperes

ns nanoseconds

nV nanovolts

 ohms

pF picofarads

ppm parts per million

ps picoseconds

s seconds

sps samples per second

sqrtHz square root of hertz

V volts


