

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

⊡XFl

Product Status	Active
Core Processor	ARM® Cortex®-M0+
Core Size	32-Bit Single-Core
Speed	48MHz
Connectivity	I ² C, LINbus SBC, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	32
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	0V ~ 3.8V
Data Converters	A/D 13x12b; D/A 1x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 115°C (TC)
Mounting Type	Surface Mount, Wettable Flank
Package / Case	48-VFQFN Exposed Pad
Supplier Device Package	48-VQFN (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/atsamha0g15a-mzt-bvao

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

37.8. Power Consumption	827
37.9. Peripheral Power Consumption	829
37.10. HA1_I/O Pin Characteristics	831
37.11. Analog Characteristics	835
37.12. NVM Characteristics	844
37.13. Oscillators Characteristics	844
37.14. PTC Typical Characteristics	853
37.15. Timing Characteristics	
38. Schematic Checklist	
38.1. Introduction	
38.2. Power Supply	860
38.3. External Analog Reference Connections	861
38.4. External Reset Circuit	
38.5. Clocks and Crystal Oscillators	
38.6. Unused or Unconnected Pins	
38.7. Programming and Debug Ports	
39. Typical Application Diagram	871
40. Errata	
40.1. Die Revision F	
41. Conventions	875
41.1. Numerical Notation	
41.2. Memory Size and Type	
41.3. Frequency and Time	
41.4. Registers and Bits	
42. Acronyms and Abbreviations	877
12 Detection Lister	000
43. Datasneet Revision History	
43.1. Revision A - 12/2017	
44. Packaging Information	
44.1. Package Marking Information	
The Microchip Web Site	
Customer Change Notification Service	886
Customer Support	
Draduct Identification Queters	007
Product Identification System	
Microchip Devices Code Protection Feature	
Logal Nation	000
Legal Notice	888

ATSAMHAXGXXA

Processor And Architecture

Value	Description
0	Write-protection is disabled.
1	Write-protection is enabled.

Bit 3 – GCLK

Writing a zero to these bits has no effect.

Writing a one to these bits will clear the Write Protect bit for the corresponding peripherals.

Value	Description
0	Write-protection is disabled.
1	Write-protection is enabled.

Bit 2 – SYSCTRL

Writing a zero to these bits has no effect.

Writing a one to these bits will clear the Write Protect bit for the corresponding peripherals.

Value	Description
0	Write-protection is disabled.
1	Write-protection is enabled.

Bit 1 – PM

Writing a zero to these bits has no effect.

Writing a one to these bits will clear the Write Protect bit for the corresponding peripherals.

Value	Description
0	Write-protection is disabled.
1	Write-protection is enabled.

Write Protect Clear

Name:	WPCLR
Offset:	0x00
Reset:	0x00800000
Property:	-

Bit	31	30	29	28	27	26	25	24
Access								
Reset								
Bit	23	22	21	20	19	18	17	16
					PTC	DAC	AC	ADC
Access					R/W	R/W	R/W	R/W
Reset					0	0	0	0
Bit	15	14	13	12	11	10	9	8
	TC7	TC4	TC5	TC4	TC3	TCC2	TCC1	TCC0
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
			SERCO	DM[5:0]			EVSYS	
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Reset	0	0	0	0	0	0	0	

Bit 19 – PTC

Writing a zero to these bits has no effect.

Writing a one to these bits will clear the Write Protect bit for the corresponding peripherals.

Value	Description
0	Write-protection is disabled.
1	Write-protection is enabled.

Bit 18 – DAC

Writing a zero to these bits has no effect.

Writing a one to these bits will clear the Write Protect bit for the corresponding peripherals.

Value	Description
0	Write-protection is disabled.
1	Write-protection is enabled.

Bit 17 – AC

Writing a zero to these bits has no effect.

Writing a one to these bits will clear the Write Protect bit for the corresponding peripherals.

19.8.18 DPLL Ratio Control

Name:	DPLLRATIO
Offset:	0x48
Reset:	0x00000000
Property:	Write-Protected

Bits 19:16 – LDRFRAC[3:0] Loop Divider Ratio Fractional Part Write this field with the fractional part of the frequency multiplier.

Bits 11:0 – LDR[11:0] Loop Divider Ratio

Write this field with the integer part of the frequency multiplier.

SWRST

PEREO0 CMPEO0 CMP0 CMP0 CMP0

DBGRUN

21.7 Register Summary

The register mapping depends on the Operating Mode bits in the Control register (CTRL.MODE). The register summary is presented for each of the three modes.

Table 2	1-1. MODE0 -	Mode R	legister Su	mmary						
Offset	Name	Bit Pos.								
0x00	СТРІ	7:0	MATCHCLR				MOD	E[1:0]	ENABLE	Γ
0x01	CIRL	15:8						PRESCA	LER[3:0]	_
0x02	READREO	7:0					ADD	R[5:0]		
0x03	READREQ	15:8	RREQ	RCONT						Γ
0x04	EVICTER	7:0	PEREO7	PEREO6	PEREO5	PEREO4	PEREO3	PEREO2	PEREO1	Γ
0x05	EVCIRL	15:8	OVFEO							T
0x06	INTENCLR	7:0	OVF	SYNCRDY						ſ
0x07	INTENSET	7:0	OVF	SYNCRDY						ſ
0x08	INTFLAG	7:0	OVF	SYNCRDY						ſ
0x09	Reserved									Γ
0x0A	STATUS	7:0	SYNCBUSY							Γ
0x0B	DBGCTRL	7:0								Γ
0x0C	FREQCORR	7:0	SIGN				VALUE[6:0]	1		
0x0D										Γ
	Reserved									
0x0F										
0x10		7:0				COU	NT[7:0]			
0x11	COUNT	15:8				COUN	IT[15:8]			
0x12	COONT	23:16				COUN	T[23:16]			
0x13		31:24		COUNT[31:24]						
0x14										Γ
	Reserved									
0x17										
0x18		7:0	7:0 COMP[7:0]							
0x19	COMPO	15:8				COM	P[15:8]			
0x1A	COMPU	23:16				COMF	23:16]			

Table 21-1. MODE0 - Mode Register Summary

Table 21-2. MODE1 - Mode Register Summary

31:24

0x1B

Offset	Name	Bit Pos.								
0x00	СТРІ	7:0					MOD	E[1:0]	ENABLE	SWRST
0x01	OTTE	15:8						PRESCA	LER[3:0]	
0x02	PEADPEO	7:0					ADDI	R[5:0]		
0x03	READREQ	15:8	RREQ	RCONT						
0x04	EVICTE	7:0	PEREO7	PEREO6	PEREO5	PEREO4	PEREO3	PEREO2	PEREO1	PEREO0
0x05	EVOINE	15:8	OVFEO						CMPEO1	CMPEO0
0x06	INTENCLR	7:0	OVF	SYNCRDY					CMP1	CMP0
0x07	INTENSET	7:0	OVF	SYNCRDY					CMP1	CMP0

COMP[31:24]

21.8.13 Interrupt Enable Set - MODE2

Name:	INTENSET
Offset:	0x07
Reset:	0x00
Property:	Write-Protected

Bit	7	6	5	4	3	2	1	0
ſ	OVF	SYNCRDY						ALARM0
Access	R/W	R/W						R/W
Reset	0	0						0

Bit 7 – OVF Overflow Interrupt Enable Writing a zero to this bit has no effect.

Writing a one to this bit will set the Overflow Interrupt Enable bit and enable the Overflow interrupt.

Value	Description
0	The overflow interrupt is disabled.
1	The overflow interrupt is enabled.

Bit 6 – SYNCRDY Synchronization Ready Interrupt Enable

Writing a zero to this bit has no effect.

Writing a one to this bit will set the Synchronization Ready Interrupt bit and enable the Synchronization Ready interrupt.

Value	Description
0	The synchronization ready interrupt is disabled.
1	The synchronization ready interrupt is enabled.

Bit 0 – ALARM0 Alarm 0 Interrupt Enable

Writing a zero to this bit has no effect.

Writing a one to this bit will set the Alarm 0 Interrupt Enable bit and enable the Alarm 0 interrupt.

Value	Description
0	The alarm 0 interrupt is disabled.
1	The alarm 0 interrupt is enabled.

22.8.4 CRC Checksum

Name:	CRCCHKSUM
Offset:	0x08
Reset:	0x0000000
Property:	PAC Write-Protection, Enable-Protected

The CRCCHKSUM represents the 16- or 32-bit checksum value and the generated CRC. The register is reset to zero by default, but it is possible to reset all bits to one by writing the CRCCHKSUM register directly. It is possible to write this register only when the CRC module is disabled. If CRC-32 is selected and the CRC Status Busy flag is cleared (i.e., CRC generation is completed or aborted), the bit reversed (bit 31 is swapped with bit 0, bit 30 with bit 1, etc.) and complemented result will be read from CRCCHKSUM. If CRC-16 is selected or the CRC Status Busy flag is set (i.e., CRC generation is ongoing), CRCCHKSUM will contain the actual content.

Bit	31	30	29	28	27	26	25	24
Γ				CRCCHKS	SUM[31:24]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	23	22	21	20	19	18	17	16
Γ				CRCCHKS	SUM[23:16]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8
Γ				CRCCHK	SUM[15:8]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
Γ				CRCCHK	(SUM[7:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 31:0 – CRCCHKSUM[31:0] CRC Checksum

These bits store the generated CRC result. The 16 MSB bits are always read zero when CRC-16 is enabled.

25.9.4 Data Direction Toggle

Name:	DIRTGL
Offset:	0x0C
Reset:	0x0000000
Property:	PAC Write-Protection

This register allows the user to toggle the direction of one or more I/O pins, without doing a read-modifywrite operation. Changes in this register will also be reflected in the Data Direction (DIR), Data Direction Set (DIRSET) and Data Direction Clear (DIRCLR) registers.

Tip: The I/O pins are assembled in pin groups ("PORT groups") with up to 32 pins. Group 0 consists of the PA pins, group 1 is for the PB pins, etc. Each pin group has its own PORT registers, with a 0x80 address spacing. For example, the register address offset for the Data Direction (DIR) register for group 0 (PA00 to PA31) is 0x00, and the register address offset for the DIR register for group 1 (PB00 to PB31) is 0x80.

Bit	31	30	29	28	27	26	25	24
Γ	DIRTGL[31:24]							
Access	RW	RW	RW	RW	RW	RW	RW	RW
Reset	0	0	0	0	0	0	0	0
Bit	23	22	21	20	19	18	17	16
				DIRTG	_[23:16]			
Access	RW	RW	RW	RW	RW	RW	RW	RW
Reset	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8
Γ				DIRTG	L[15:8]			
Access	RW	RW	RW	RW	RW	RW	RW	RW
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
Γ				DIRTO	GL[7:0]			
Access	RW	RW	RW	RW	RW	RW	RW	RW
Reset	0	0	0	0	0	0	0	0

Bits 31:0 - DIRTGL[31:0] Port Data Direction Toggle

Writing '0' to a bit has no effect.

Writing '1' to a bit will toggle the corresponding bit in the DIR register, which reverses the direction of the I/O pin.

Value	Description
0	The corresponding I/O pin in the PORT group will keep its configuration.
1	The direction of the corresponding I/O pin is toggled.

25.9.11 Write Configuration

Name:	WRCONFIG
Offset:	0x28
Reset:	0x0000000
Property:	PAC Write-Protection

Tip: The I/O pins are assembled in pin groups ("PORT groups") with up to 32 pins. Group 0 consists of the PA pins, group 1 is for the PB pins, etc. Each pin group has its own PORT registers, with a 0x80 address spacing. For example, the register address offset for the Data Direction (DIR) register for group 0 (PA00 to PA31) is 0x00, and the register address offset for the DIR register for group 1 (PB00 to PB31) is 0x80.

This write-only register is used to configure several pins simultaneously with the same configuration and/or peripheral multiplexing.

In order to avoid side effect of non-atomic access, 8-bit or 16-bit writes to this register will have no effect. Reading this register always returns zero.

Bit	31	30	29	28	27	26	25	24
Γ	HWSEL	WRPINCFG		WRPMUX		PMU	< [3:0]	
Access	W	W		W	W	W	W	W
Reset	0	0		0	0	0	0	0
Bit	23	22	21	20	19	18	1/	16
		DRVSTR				PULLEN	INEN	PMUXEN
Access		W				W	W	W
Reset		0				0	0	0
Bit	15	14	13	12	11	10	9	8
				PINMAS	SK[15:8]			
Access	W	W	W	W	W	W	W	W
Reset	0	0	0	0	0	0	0	0
D :4	7	C C	r	4	2	0	4	0
BIC	1	0	5	4	3	2	1	0
				PINMA	SK[7:0]			
Access	W	W	W	W	W	W	W	W
Reset	0	0	0	0	0	0	0	0

Bit 31 – HWSEL Half-Word Select

This bit selects the half-word field of a 32-PORT group to be reconfigured in the atomic write operation.

This bit will always read as zero.

Value	Description
0	The lower 16 pins of the PORT group will be configured.
1	The upper 16 pins of the PORT group will be configured.

Resynchronized Path

The resynchronized path should be used when the event generator and the event channel do not share the same generic clock generator. When the resynchronized path is used, resynchronization of the event from the event generator is done in the channel. For details on generic clock generators, refer to *GCLK* - *Generic Clock Controller*.

When the resynchronized path is used, the channel is able to generate interrupts. The channel status bits in the Channel Status register (CHSTATUS) are also updated and available for use.

If the Generic Clocks Request bit in the Control register is zero (CTRL.GCLKREQ=0), the channel operates in SleepWalking mode and requests the configured generic clock only when an event is to be propagated through the channel. If CTRL.GCLKREQ=1, the generic clock will always be on for the configured channel.

Related Links

GCLK - Generic Clock Controller

26.6.2.6 Edge Detection

When synchronous or resynchronized paths are used, edge detection must be used. The event system can perform edge detection in three different ways:

- Generate an event only on the rising edge
- · Generate an event only on the falling edge
- Generate an event on rising and falling edges

Edge detection is selected by writing to the Edge Selection bit group in the Channel register (CHANNEL.EDGSEL).

If the generator event is a pulse, both edges cannot be selected. Use the rising edge or falling edge detection methods, depending on the generator event default level.

26.6.2.7 Event Generators

Each event channel can receive the events form all event generators. All event generators are listed in the statement of CHANNEL.EVGEN. For details on event generation, refer to the corresponding module chapter. The channel event generator is selected by the Event Generator bit group in the Channel register (CHANNEL.EVGEN). By default, the channels are not connected to any event generators (ie, CHANNEL.EVGEN = 0)

26.6.2.8 Channel Status

The Channel Status register (CHSTATUS) shows the status of the channels when using a synchronous or resynchronized path. There are two different status bits in CHSTATUS for each of the available channels:

- The CHSTATUS.CHBUSYn bit will be set when an event on the corresponding channel n has not been handled by all event users connected to that channel.
- The CHSTATUS.USRRDYn bit will be set when all event users connected to the corresponding channel are ready to handle incoming events on that channel.

26.6.2.9 Software Event

A software event can be initiated on a channel by setting the Software Event bit in the Channel register (CHANNEL.SWEVT) to '1' at the same time as writing the Channel bits (CHANNEL.CHANNEL). This will generate a software event on the selected channel.

The software event can be used for application debugging, and functions like any event generator. To use the software event, the event path must be configured to either a synchronous path or resynchronized path (CHANNEL.PATH = 0x0 or 0x1), edge detection must be configured to rising-edge detection (CHANNEL.EDGSEL= 0x1) and the Generic Clock Request bit must be set to '1' (CTRL.GCLKREQ=0x1).

- Data register (DATA)
- Address register (ADDR)

Optional write-protection by the Peripheral Access Controller (PAC) is denoted by the "PAC Write-Protection" property in each individual register description.

PAC write-protection does not apply to accesses through an external debugger.

Related Links

PAC - Peripheral Access Controller

27.5.9 Analog Connections

Not applicable.

27.6 Functional Description

27.6.1 Principle of Operation

The basic structure of the SERCOM serial engine is shown in Figure 27-2. Labels in capital letters are synchronous to the system clock and accessible by the CPU; labels in lowercase letters can be configured to run on the GCLK_SERCOMx_CORE clock or an external clock.

Figure 27-2. SERCOM Serial Engine

The transmitter consists of a single write buffer and a shift register.

The receiver consists of a one-level (I²C), two-level (USART, SPI) receive buffer and a shift register.

The baud-rate generator is capable of running on the GCLK_SERCOMx_CORE clock or an external clock.

Address matching logic is included for SPI and I²C operation.

Figure 27-3. Baud Rate Generator

Table 27-2 contains equations for the baud rate (in bits per second) and the BAUD register value for each operating mode.

For asynchronous operation, there is one mode: *arithmetic mode*, the BAUD register value is 16 bits (0 to 65,535).*fractional mode*, the BAUD register value is 13 bits, while the fractional adjustment is 3 bits. In this mode the BAUD setting must be greater than or equal to 1.

For synchronous operation, the BAUD register value is 8 bits (0 to 255).

Operating Mode	Condition	Baud Rate (Bits Per Second)	BAUD Register Value Calculation
Asynchronous Arithmetic	$f_{BAUD} \le \frac{fref}{16}$	$f_{BAUD} = \frac{f_{ref}}{16} \left(1 - \frac{BAUD}{65536} \right)$	$BAUD = 65536 \cdot \left(1 - 16 \cdot \frac{f_{BAUD}}{f_{ref}}\right)$
Asynchronous Fractional	$f_{BAUD} \le \frac{fref}{S}$	$f_{BAUD} = \frac{f_{ref}}{S \cdot \left(BAUD + \frac{FP}{8}\right)}$	$BAUD = \frac{f_{ref}}{S \cdot f_{BAUD}} - \frac{FP}{8}$
Synchronous	$f_{BAUD} \le \frac{fref}{2}$	$f_{BAUD} = \frac{f_{ref}}{2 \cdot (BAUD + 1)}$	$BAUD = \frac{f_{ref}}{2 \cdot f_{BAUD}} - 1$

Table 27-2. Baud Rate Equations

S - Number of samples per bit, which can be 16, 8, or 3.

The Asynchronous Fractional option is used for auto-baud detection.

The baud rate error is represented by the following formula:

 $Error = 1 - \left(\frac{ExpectedBaudRate}{ActualBaudRate}\right)$

Asynchronous Arithmetic Mode BAUD Value Selection

The formula given for f_{BAUD} calculates the average frequency over 65536 f_{ref} cycles. Although the BAUD register can be set to any value between 0 and 65536, the actual average frequency of f_{BAUD} over a single frame is more granular. The BAUD register values that will affect the average frequency over a single frame lead to an integer increase in the cycles per frame (CPF)

$$CPF = \frac{f_{ref}}{f_{BAUD}}(D+S)$$

Related Links Register Synchronization • Match pulse-width modulation (MPWM)

When using NPWM or NFRQ configuration, the TOP will be determined by the counter resolution. In 8-bit counter mode, the Period register (PER) is used as TOP, and the TOP can be changed by writing to the PER register. In 16- and 32-bit counter mode, TOP is fixed to the maximum (MAX) value of the counter.

Related Links

PORT - I/O Pin Controller

Frequency Operation

Normal Frequency Generation (NFRQ)

For Normal Frequency Generation, the period time (T) is controlled by the period register (PER) for 8-bit counter mode and MAX for 16- and 32-bit mode. The waveform generation output (WO[x]) is toggled on each compare match between COUNT and CCx, and the corresponding Match or Capture Channel x Interrupt Flag (INTFLAG.MCx) will be set.

Figure 31-4. Normal Frequency Operation

Match Frequency Generation (MFRQ)

For Match Frequency Generation, the period time (T) is controlled by the CC0 register instead of PER or MAX. WO[0] toggles on each update condition.

Figure 31-5. Match Frequency Operation

PWM Operation

Normal Pulse-Width Modulation Operation (NPWM)

NPWM uses single-slope PWM generation.

For single-slope PWM generation, the period time (T) is controlled by the TOP value, and CCx controls the duty cycle of the generated waveform output. When up-counting, the WO[x] is set at start or compare match between the COUNT and TOP values, and cleared on compare match between COUNT and CCx

TCC – Timer/Counter for Control Applications

Value	Description
0	Fault n restart action is disabled.
1	Fault n restart action is enabled.

Bits 6:5 – BLANK[1:0] Recoverable Fault n Blanking Operation

These bits, select the blanking start point for recoverable Fault n.

Value	Name	Description
0x0	START	Blanking applied from start of the Ramp period
0x1	RISE	Blanking applied from rising edge of the waveform output
0x2	FALL	Blanking applied from falling edge of the waveform output
0x3	BOTH	Blanking applied from each toggle of the waveform output

Bit 4 – QUAL Recoverable Fault n Qualification

Setting this bit enables the recoverable Fault n input qualification.

Value	Description
0	The recoverable Fault n input is not disabled on CMPx value condition.
1	The recoverable Fault n input is disabled when output signal is at inactive level (CMPx == 0).

Bit 3 – KEEP Recoverable Fault n Keep

Setting this bit enables the Fault n keep action.

Value	Description
0	The Fault n state is released as soon as the recoverable Fault n is released.
1	The Fault n state is released at the end of TCC cycle.

Bits 1:0 - SRC[1:0] Recoverable Fault n Source

These bits select the TCC event input for recoverable Fault n.

Event system channel connected to MCEx event input, must be configured to route the event asynchronously, when used as a recoverable Fault n input.

Value	Name	Description
0x0	DISABLE	Fault input disabled
0x1	ENABLE	MCEx (x=0,1) event input
0x2	INVERT	Inverted MCEx (x=0,1) event input
0x3	ALTFAULT	Alternate fault (A or B) state at the end of the previous period.

ATSAMHAXGXXA

Electrical Characteristics

Mode	Conditions	T _{VJ}	V _{cc}	Тур.	Max.	Unit	
	CDU rupping a Fibanagai algorithm	25°C	3.3V	4.03	4.35	~^^	
			3.3V	4.29	4.76	IIIA	
	CPU running a Fibonacci algorithm,	25°C	3.3V	79 × Freq + 110	85 × Freq + 133	µA (with freq	
	with GCLKIN as reference	105°C	3.3V	80 × Freq + 346	81 × Freq + 771	in MHz)	
	CPU running a CoreMark algorithm	25°C	3.3V	5.08	5.63	m۸	
		105°C	3.3V	5.41	5.95	IIIA	
	CPU running a CoreMark	25°C	3.3V	101 × Freq + 113	110 × Freq + 132	μA (with freq	
	reference	105°C	3.3V	103 × Freq + 347	104 × Freq + 748	in MHz)	
	Default operating conditions	25°C	3.3V	2.24	2.41		
IDLLU	Delault operating conditions	105°C	3.3V	2.49	2.92	mA	
	Default operating conditions	25°C	3.3V	1.69	1.82		
	Delaur operating conditions	105°C	3.3V	1,91	2.33		
IDI F2	Default operating conditions	25°C	3.3V	1.23	1.32		
	Boladit oporating conditione	105°C	3.3V	1.44	1.85		
	XOSC32K running	25°C	3.3V	4.6	15.0		
	RTC running at 1kHz	105°C	3.3V	95.0	390.0	uΔ	
STANDER	VOSC22K and DTC atomned	25°C	3.3V	3.4	14.0	μΛ	
	XUSU32K and KTC stopped	105°C	3.3V	94.0	388.0		
	XOSC32K running	25°C	3.3V	61.0	72.0		
	RTC running at 1kHz	105°C	3.3V	174.0	452.0		
STANDDT ⁽²⁾	XOSC32K and RTC stopped	25°C	3.3V	60.0	71.0	μΑ	
		105°C	3.3V	173.0	450.0		

1. Measurements done with SYSCTRL.VREG.RUNSTDBY=0 (low power configuration).

2. Measurements done with SYSCTRL.VREG.RUNSTDBY=1 (normal configuration).

Table 37-14. Wake-up Time⁽¹⁾

Mode	т _с	Тур.	Unit
IDLE0		2.3	
IDLE1	25°C	21.1	μs
IDLE2		22.0	-

a capacitor (C_{SAMPLE}). In addition, the source resistance (R_{SOURCE}) must be taken into account when calculating the required sample and hold time. The next figure shows the ADC input channel equivalent circuit.

Figure 37-5. ADC Input

To achieve n bits of accuracy, the C_{SAMPLE} capacitor must be charged at least to a voltage of

 $V_{\text{CSAMPLE}} \ge V_{\text{IN}} \times \left(1 + -2^{-(n+1)}\right)$

The minimum sampling time $t_{\text{SAMPLEHOLD}}$ for a given R_{SOURCE} can be found using this formula:

 $t_{\text{SAMPLEHOLD}} \ge (R_{\text{SAMPLE}} + R_{\text{SOURCE}}) \times (C_{\text{SAMPLE}}) \times (n+1) \times \ln(2)$

for a 12 bits accuracy: $t_{\text{SAMPLEHOLD}} \ge (R_{\text{SAMPLE}} + R_{\text{SOURCE}}) \times (C_{\text{SAMPLE}}) \times 9.02$

where

$$t_{\text{SAMPLEHOLD}} = \frac{1}{2 \times f_{\text{ADC}}}$$

37.11.5 Digital-to-Analog Converter (DAC) Characteristics Table 37-31. Operating Conditions⁽¹⁾

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
V _{DDANA}	Analog supply voltage		2.7	-	3.63	V
AV _{REF}	External reference voltage		1.0	-	$V_{DDANA} - 0.6$	V
	Internal reference voltage 1		-	1	-	V
	Internal reference voltage 2		-	V _{DDANA}	-	V
	Linear output voltage range		0.05	-	$V_{DDANA} - 0.05$	V
	Minimum resistive load		5	-	-	kΩ
	Maximum capacitance load		-	-	100	pF
I _{DD}	DC supply current ⁽²⁾	Voltage pump disabled	-	175	256	μA

- 1. These values are based on specifications otherwise noted.
- 2. These values are based on characterization. These values are not covered by test limits in production.

ATSAMHAXGXXA

Electrical Characteristics

Parameter	Conditions	Symbol	Min.	Тур.	Max.	Unit
Average Output frequency	f _{REF} = XTAL, 32.768kHz, 100ppm DFLLMUL = 1464	f _{CloseOUT}	47.963	47.972	47.981	MHz
Reference frequency		f _{REF}	0.732	32.768	33	kHz
Cycle to Cycle jitter	f _{REF} = XTAL, 32.768kHz, 100ppm DFLLMUL = 1464	Jitter	-	-	0.42	ns
Power consumption on V_{DDIN} f_{REF} = XTAL, 32.768kHz, 100ppm		I _{DFLL}	-	403	453	μA
Lock time	f _{REF} = XTAL, 32.768kHz, 100ppm DFFLMUL = 1464 DFLLVAL.COARSE = DFLL48M COARSE CAL DFLLVAL.FINE = 512 DFLLCTRL.BPLCKC = 1 DFLLCTRL.QLDIS = 0 DFLLCTRL.CCDIS = 1 DFLLMUL.FSTEP = 10	t _{LOCK}	_	350	1500	ha

Table 37-45. DFLL48M Characteristics - Closed Loop Mode⁽¹⁾

Note:

1. To ensure that the device stays within the maximum allowed clock frequency, any reference clock for DFLL in close loop must be within a 2% error accuracy.

37.13.4 Ultra Low Power Internal 32kHz RC Oscillator (OSCULP32K) Characteristics Table 37-46. Ultra Low Power Internal 32kHz RC Oscillator Characteristics

Parameter	Conditions	Symbol	Min.	Тур.	Max.	Unit
Output frequency	All temperatures T _C	f _{оит}	24.576	32.768	40.960	kHz
	Calibrated against a 32.768kHz reference					
	at 25°C,					
	over [–40, +105]°C, over [2.7, 3.63]V					
	Calibrated against a 32.768kHz reference		31.457	32.768	34.078	
	at 25°C,					
	at VDD = 3.3V					

42. Acronyms and Abbreviations

The below table contains acronyms and abbreviations used in this document.

Table 42-1. Acronyms and Abbreviations

Abbreviation	Description		
AC	Analog Comparator		
ADC	Analog-to-Digital Converter		
ADDR	Address		
AES	Advanced Encryption Standard		
AHB	AMBA Advanced High-performance Bus		
AMBA®	Advanced Microcontroller Bus Architecture		
APB	AMBA Advanced Peripheral Bus		
AREF	Analog reference voltage		
BLB	Boot Lock Bit		
BOD	Brown-out detector		
CAL	Calibration		
CC	Compare/Capture		
CCL	Configurable Custom Logic		
CLK	Clock		
CRC	Cyclic Redundancy Check		
CTRL	Control		
DAC	Digital-to-Analog Converter		
DAP	Debug Access Port		
DFLL	Digital Frequency Locked Loop		
DPLL	Digital Phase Locked Loop		
DMAC	DMA (Direct Memory Access) Controller		
DSU	Device Service Unit		
EEPROM	Electrically Erasable Programmable Read-Only Memory		
EIC	External Interrupt Controller		
EVSYS	Event System		
FDPLL	Fractional Digital Phase Locked Loop, also DPLL		
GCLK	Generic Clock Controller		
GND	Ground		

- ATSAMHA1G14A-MBT-B: Low-power SIP, 32 bit ARM Cortex M0+ processor, 48L-VQFN package, 16kB Flash
- ATSAMHA1G15A-MBT-B: Low-power SIP, 32 bit ARM Cortex M0+ processor, 48L-VQFN package, 32kB Flash
- ATSAMHA1G16A-MBT-B: Low-power SIP, 32 bit ARM Cortex M0+ processor, 48L-VQFN package, 64kB Flash
- ATSAMHA1G14A-MZT-B: Low-power SIP, 32 bit ARM Cortex M0+ processor, 48L-VQFN package, 16kB Flash, 115°C Tc
- ATSAMHA1G15A-MZT-B: Low-power SIP, 32 bit ARM Cortex M0+ processor, 48L-VQFN package, 32kB Flash, 115°C Tc
- ATSAMHA1G16A-MZT-B: Low-power SIP, 32 bit ARM Cortex M0+ processor, 48L-VQFN package, 64kB Flash, 115°C Tc

Note:

- 1. Tape and Reel identifier only appears in the catalog part number description. This identifier is used for ordering purposes and is not printed on the device package. Check with your Microchip Sales Office for package availability with the Tape and Reel option.
- 2. Small form-factor packaging options may be available. Please check http://www.microchip.com/ packaging for small-form factor package availability, or contact your local Sales Office.

Microchip Devices Code Protection Feature

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Legal Notice

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life

© 2017 Microchip Technology Inc.