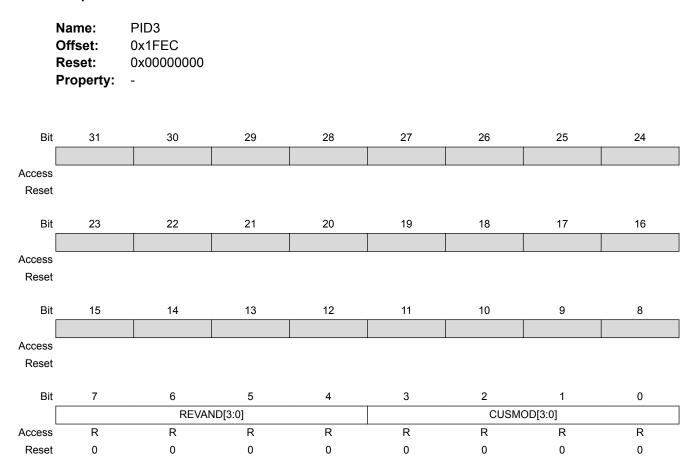


Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"


Details

2 0 0 0 0 0	
Product Status	Active
Core Processor	ARM® Cortex®-M0+
Core Size	32-Bit Single-Core
Speed	48MHz
Connectivity	I ² C, LINbus SBC, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	32
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	0V ~ 3.8V
Data Converters	A/D 13x12b; D/A 1x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TC)
Mounting Type	Surface Mount, Wettable Flank
Package / Case	48-VFQFN Exposed Pad
Supplier Device Package	48-VQFN (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/atsamha1g15a-mbt-bvao

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

15.13.18 Peripheral Identification 3

Bits 7:4 – REVAND[3:0] Revision Number These bits will always return 0x0 when read.

Bits 3:0 - CUSMOD[3:0] ARM CUSMOD

These bits will always return 0x0 when read.

15.13.19 Component Identification 0

	Name: Offset: Reset: Property:	CID0 0x1FF0 0x0000000D -						
Bit	31	30	29	28	27	26	25	24
Access								
Reset								
Bit	23	22	21	20	19	18	17	16
Access								
Reset								
Bit	15	14	13	12	11	10	9	8
DI	15	14	15	12	11	10	3	0
Access								
Reset								
Reber								
Bit	7	6	5	4	3	2	1	0
				PREAMB	LEB0[7:0]			
Access	R	R	R	R	R	R	R	R
Reset		0	0	0	1	1	0	1

Bits 7:0 – PREAMBLEB0[7:0] Preamble Byte 0 These bits will always return 0x000000D when read.

18.5.3 Clocks

The PM bus clock (CLK_PM_APB) can be enabled and disabled in the Power Manager, and the default state of CLK_PM_APB can be found in *Peripheral Clock Default State* table in the *Peripheral Clock Masking* section. If this clock is disabled in the Power Manager, it can only be re-enabled by a reset.

A generic clock (GCLK_MAIN) is required to generate the main clock. The clock source for GCLK_MAIN is configured by default in the Generic Clock Controller, and can be reconfigured by the user if needed. Refer to *GCLK* – *Generic Clock Controller* for details.

Related Links

Peripheral Clock Masking GCLK - Generic Clock Controller

18.5.3.1 Main Clock

The main clock (CLK_MAIN) is the common source for the synchronous clocks. This is fed into the common 8-bit prescaler that is used to generate synchronous clocks to the CPU, AHB and APBx modules.

18.5.3.2 CPU Clock

The CPU clock (CLK_CPU) is routed to the CPU. Halting the CPU clock inhibits the CPU from executing instructions.

18.5.3.3 AHB Clock

The AHB clock (CLK_AHB) is the root clock source used by peripherals requiring an AHB clock. The AHB clock is always synchronous to the CPU clock and has the same frequency, but may run even when the CPU clock is turned off. A clock gate is inserted from the common AHB clock to any AHB clock of a peripheral.

18.5.3.4 APBx Clocks

The APBx clock (CLK_APBX) is the root clock source used by modules requiring a clock on the APBx bus. The APBx clock is always synchronous to the CPU clock, but can be divided by a prescaler, and will run even when the CPU clock is turned off. A clock gater is inserted from the common APB clock to any APBx clock of a module on APBx bus.

18.5.4 DMA

Not applicable.

18.5.5 Interrupts

The interrupt request line is connected to the Interrupt Controller. Using the PM interrupt requires the Interrupt Controller to be configured first. Refer to *Nested Vector Interrupt Controller* for details.

Related Links

Nested Vector Interrupt Controller

18.5.6 Events

Not applicable.

18.5.7 Debug Operation

When the CPU is halted in debug mode, the PM continues normal operation. In sleep mode, the clocks generated from the PM are kept running to allow the debugger accessing any modules. As a consequence, power measurements are not possible in debug mode.

ATSAMHAXGXXA WDT – Watchdog Timer

NVM User Row Mapping

Name:	INTENCLR
Offset:	0x06
Reset:	0x00
Property:	Write-Protected

Bit	7	6	5	4	3	2	1	0
	OVF	SYNCRDY						CMP0
Access	R/W	R/W						R/W
Reset	0	0						0

Bit 7 – OVF Overflow Interrupt Enable Writing a zero to this bit has no effect.

Writing a one to this bit will clear the Overflow Interrupt Enable bit and disable the corresponding interrupt.

Value	Description
0	The Overflow interrupt is disabled.
1	The Overflow interrupt is enabled, and an interrupt request will be generated when the
	Overflow interrupt flag is set.

Bit 6 – SYNCRDY Synchronization Ready Interrupt Enable

Writing a zero to this bit has no effect.

Writing a one to this bit will clear the Synchronization Ready Interrupt Enable bit and disable the corresponding interrupt.

Value	Description
0	The Synchronization Ready interrupt is disabled.
1	The Synchronization Ready interrupt is enabled, and an interrupt request will be generated
	when the Synchronization Ready interrupt flag is set.

Bit 0 – CMP0 Compare 0 Interrupt Enable

Writing a zero to this bit has no effect.

Writing a one to this bit will clear the Compare 0 Interrupt Enable bit and disable the corresponding interrupt.

Value	Description
0	The Compare 0 interrupt is disabled.
1	The Compare 0 interrupt is enabled, and an interrupt request will be generated when the
	Compare x interrupt flag is set.

21.8.26 Alarm 0 Value - MODE2

Name:ALARM0Offset:0x18Reset:0x0000000Property:Write-Protected, Write-Synchronized

The 32-bit value of ALARM0 is continuously compared with the 32-bit CLOCK value, based on the masking set by MASKn.SEL. When a match occurs, the Alarm 0 interrupt flag in the Interrupt Flag Status and Clear register (INTFLAG.ALARMn) is set on the next counter cycle, and the counter is cleared if CTRL.MATCHCLR is one.

Bit	31	30	29	28	27	26	25	24
		YEAR[5:0]						ITH[3:2]
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	23	22	21	20	19	18	17	16
	MON	TH[1:0]			DAY[4:0]			HOUR[4:4]
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8
		HOU	R[3:0]		MINUTE[5:2]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
	MINU	TE[1:0]			SECO	ND[5:0]		
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 31:26 - YEAR[5:0] Year

The alarm year. Years are only matched if MASKn.SEL is 6.

Bits 25:22 - MONTH[3:0] Month

The alarm month. Months are matched only if MASKn.SEL is greater than 4.

Bits 21:17 - DAY[4:0] Day

The alarm day. Days are matched only if MASKn.SEL is greater than 3.

Bits 16:12 – HOUR[4:0] Hour

The alarm hour. Hours are matched only if MASKn.SEL is greater than 2.

Bits 11:6 - MINUTE[5:0] Minute

The alarm minute. Minutes are matched only if MASKn.SEL is greater than 1.

Bits 5:0 - SECOND[5:0] Second

The alarm second. Seconds are matched only if MASKn.SEL is greater than 0.

© 2017 Microchip Technology Inc.

DMAC – Direct Memory Access Controller

Offset	Name	Bit Pos.								
		31:24								
		7:0					LVLEXx	LVLEXx	LVLEXx	LVLEXx
020		15:8	ABUSY					ID[4:0]		1
0x30	ACTIVE	23:16				BTCN	IT[7:0]			
		31:24				BTCN	T[15:8]			
		7:0								
024		15:8								
0x34	BASEADDR	23:16								
		31:24								
		7:0								
0.00		15:8								
0x38	WRBADDR	23:16								
		31:24								
0x3C										
	Reserved									
0x3E										
0x3F	CHID	7:0						ID[3:0]	
0x40	CHCTRLA	7:0							ENABLE	SWRST
0x41										
	Reserved									
0x43										
		7:0		LV	L[1:0]	EVOE	EVIE		EVACT[2:0]	
0		15:8					TRIGS	RC[5:0]		
0x44	CHCTRLB	23:16	TRIGA	CT[1:0]						
		31:24	:24						CME	0[1:0]
0x48										
	Reserved									
0x4B										
0x4C	CHINTENCLR	7:0						SUSP	TCMPL	TERR
0x4D	CHINTENSET	7:0						SUSP	TCMPL	TERR
0x4E	CHINTFLAG	7:0						SUSP	TCMPL	TERR
0x4F	CHSTATUS	7:0						FERR	BUSY	PEND

22.8 Register Description

Registers can be 8, 16, or 32 bits wide. Atomic 8-, 16- and 32-bit accesses are supported. In addition, the 8-bit quarters and 16-bit halves of a 32-bit register, and the 8-bit halves of a 16-bit register can be accessed directly.

Some registers are optionally write-protected by the Peripheral Access Controller (PAC). Optional PAC write-protection is denoted by the "PAC Write-Protection" property in each individual register description. For details, refer to Register Access Protection.

Some registers are enable-protected, meaning they can only be written when the peripheral is disabled. Enable-protection is denoted by the "Enable-Protected" property in each individual register description. Some registers require synchronization when read and/or written. Synchronization is denoted by the "Read-Synchronized" and/or "Write-Synchronized" property in each individual register description.

Some registers are enable-protected, meaning they can only be written when the module is disabled. Enable-protection is denoted by the "Enable-Protected" property in each individual register description.

25.9.13 Pin Configuration

Name:	PINCFG
Offset:	0x40 + n*0x01 [n=031]
Reset:	0x00
Property:	PAC Write-Protection

Tip: The I/O pins are assembled in pin groups ("PORT groups") with up to 32 pins. Group 0 consists of the PA pins, group 1 is for the PB pins, etc. Each pin group has its own PORT registers, with a 0x80 address spacing. For example, the register address offset for the Data Direction (DIR) register for group 0 (PA00 to PA31) is 0x00, and the register address offset for the DIR register for group 1 (PB00 to PB31) is 0x80.

There are up to 32 Pin Configuration registers in each PORT group, one for each I/O line.

Bit	7	6	5	4	3	2	1	0
		DRVSTR				PULLEN	INEN	PMUXEN
Access		RW				RW	RW	RW
Reset		0				0	0	0

Bit 6 – DRVSTR Output Driver Strength Selection

This bit controls the output driver strength of an I/O pin configured as an output.

Value	Description
0	Pin drive strength is set to normal drive strength.
1	Pin drive strength is set to stronger drive strength.

Bit 2 - PULLEN Pull Enable

This bit enables the internal pull-up or pull-down resistor of an I/O pin configured as an input.

Value	Description
0	Internal pull resistor is disabled, and the input is in a high-impedance configuration.
1	Internal pull resistor is enabled, and the input is driven to a defined logic level in the absence of external input.

Bit 1 - INEN Input Enable

This bit controls the input buffer of an I/O pin configured as either an input or output.

Writing a zero to this bit disables the input buffer completely, preventing read-back of the physical pin state when the pin is configured as either an input or output.

Value	Description
0	Input buffer for the I/O pin is disabled, and the input value will not be sampled.
1	Input buffer for the I/O pin is enabled, and the input value will be sampled when required.

EVSYS – Event System

USER[7:0] User Multiplexer Description		Description	Path Type	
0x1C	PTC STCONV	PTC start conversion	Asynchronous path only	
0x1D-0x1F	Reserved		Reserved	

transferred to the two-level receive buffer. The transfer takes place in the same clock cycle as the last data bit is shifted in. And the Receive Complete Interrupt flag in the Interrupt Flag Status and Clear register (INTFLAG.RXC) will be set. The received data can be retrieved by reading DATA.

When the last character has been transmitted and there is no valid data in DATA, the Transmit Complete Interrupt flag in the Interrupt Flag Status and Clear register (INTFLAG.TXC) will be set. When the transaction is finished, the master must pull the \overline{SS} line high to notify the slave. If Master Slave Select Enable (CTRLB.MSSEN) is set to '0', the software must pull the \overline{SS} line high.

Slave

In slave mode (CTRLA.MODE=0x2), the SPI interface will remain inactive with the MISO line tri-stated as long as the \overline{SS} pin is pulled high. Software may update the contents of DATA at any time as long as the Data Register Empty flag in the Interrupt Status and Clear register (INTFLAG.DRE) is set.

When \overline{SS} is pulled low and SCK is running, the slave will sample and shift out data according to the transaction mode set. When the content of TxDATA has been loaded into the shift register, INTFLAG.DRE will be set, and new data can be written to DATA.

Similar to the master, the slave will receive one character for each character transmitted. A character will be transferred into the two-level receive buffer within the same clock cycle its last data bit is received. The received character can be retrieved from DATA when the Receive Complete interrupt flag (INTFLAG.RXC) is set.

When the master pulls the \overline{SS} line high, the transaction is done and the Transmit Complete Interrupt flag in the Interrupt Flag Status and Clear register (INTFLAG.TXC) will be set.

After DATA is written it takes up to three SCK clock cycles until the content of DATA is ready to be loaded into the shift register on the next character boundary. As a consequence, the first character transferred in a SPI transaction will not be the content of DATA. This can be avoided by using the preloading feature. Refer to Preloading of the Slave Shift Register.

When transmitting several characters in one SPI transaction, the data has to be written into DATA register with at least three SCK clock cycles left in the current character transmission. If this criteria is not met, the previously received character will be transmitted.

Once the DATA register is empty, it takes three CLK_SERCOM_APB cycles for INTFLAG.DRE to be set.

29.6.2.7 Receiver Error Bit

The SPI receiver has one error bit: the Buffer Overflow bit (BUFOVF), which can be read from the Status register (STATUS). Once an error happens, the bit will stay set until it is cleared by writing '1' to it. The bit is also automatically cleared when the receiver is disabled.

There are two methods for buffer overflow notification, selected by the immediate buffer overflow notification bit in the Control A register (CTRLA.IBON):

If CTRLA.IBON=1, STATUS.BUFOVF is raised immediately upon buffer overflow. Software can then empty the receive FIFO by reading RxDATA until the receiver complete interrupt flag in the Interrupt Flag Status and Clear register (INTFLAG.RXC) goes low.

If CTRLA.IBON=0, the buffer overflow condition travels with data through the receive FIFO. After the received data is read, STATUS.BUFOVF and INTFLAG.ERROR will be set along with INTFLAG.RXC, and RxDATA will be zero.

SERCOM SPI – SERCOM Serial Peripheral Interface

AMODE[1:0]	Name	Description
0x0	MASK	ADDRMASK is used as a mask to the ADDR register
0x1	2_ADDRS	The slave responds to the two unique addresses in ADDR and ADDRMASK
0x2	RANGE	The slave responds to the range of addresses between and including ADDR and ADDRMASK. ADDR is the upper limit
0x3	-	Reserved

Bit 13 – MSSEN Master Slave Select Enable

This bit enables hardware slave select (\overline{SS}) control.

Value	Description
0	Hardware SS control is disabled.
1	Hardware SS control is enabled.

Bit 9 – SSDE Slave Select Low Detect Enable

This bit enables wake up when the slave select (\overline{SS}) pin transitions from high to low.

Value	Description
0	SS low detector is disabled.
1	SS low detector is enabled.

Bit 6 – PLOADEN Slave Data Preload Enable

Setting this bit will enable preloading of the slave shift register when there is no transfer in progress. If the SS line is high when DATA is written, it will be transferred immediately to the shift register.

Bits 2:0 – CHSIZE[2:0] Character Size

CHSIZE[2:0]	Name	Description
0x0	8BIT	8 bits
0x1	9BIT	9 bits
0x2-0x7	-	Reserved

30.10.10 Data

	Name: Offset: Reset: Property:	DATA 0x18 0x0000 Write-Synchro	onized, Read-	Synchronized	1			
Bit	15	14	13	12	11	10	9	8
Access								
Reset								
Bit	7	6	5	4	3	2	1	0
				DATA	\ [7:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 7:0 - DATA[7:0] Data

The master data register I/O location (DATA) provides access to the master transmit and receive data buffers. Reading valid data or writing data to be transmitted can be successfully done only when SCL is held low by the master (STATUS.CLKHOLD is set). An exception is reading the last data byte after the stop condition has been sent.

Accessing DATA.DATA auto-triggers I²C bus operations. The operation performed depends on the state of CTRLB.ACKACT, CTRLB.SMEN and the type of access (read/write).

Writing or reading DATA.DATA when not in smart mode does not require synchronization.

31.8.4 Control B Set

Name:CTRLBSETOffset:0x05Reset:0x00Property:PAC Write-Protection, Read-synchronized, Write-Synchronized

This register allows the user to set bits in the CTRLB register without doing a read-modify-write operation. Changes in this register will also be reflected in the Control B Clear register (CTRLBCLR).

Bit	7	6	5	4	3	2	1	0
	CM	D[1:0]				ONESHOT		DIR
Access	R/W	R/W				R/W		R/W
Reset	0	0				0		0

Bits 7:6 – CMD[1:0] Command

These bits are used for software control of the TC. The commands are executed on the next prescaled GCLK_TC clock cycle. When a command has been executed, the CMD bit group will be read back as zero.

Writing 0x0 to these bits has no effect.

Writing a '1' to any of these bits will clear the pending command.

Value	Name	Description
0x0	NONE	No action
0x1	RETRIGGER	Force a start, restart or retrigger
0x2	STOP	Force a stop
0x3	-	Reserved

Table 31-9. Command

Bit 2 - ONESHOT One-Shot on Counter

This bit controls one-shot operation of the TC.

Writing a '0' to this bit has no effect

Writing a '1' to this bit will disable one-shot operation.

Value	Description
0	The TC will wrap around and continue counting on an overflow/underflow condition.
1	The TC will wrap around and stop on the next underflow/overflow condition.

Bit 0 – DIR Counter Direction

This bit is used to change the direction of the counter.

Writing a '0' to this bit has no effect.

Writing a '1' to this bit will clear the bit and make the counter count up.

TCC – Timer/Counter for Control Applications

CTRLA.RESOLUTION	Bits [n:0]
0x0 - NONE	-
0x1 - DITH4	3:0
0x2 - DITH5	4:0
0x3 - DITH6	5:0 (depicted)

Some registers are enable-protected, meaning they can only be written when the peripheral is disabled. Enable-protection is denoted by the "Enable-Protected" property in each individual register description.

34.8.2	Control B							
	Name: Offset: Reset: Property:	CTRLB 0x01 0x00 -						
Bi	t 7	6	5	4	3	2	1	0
							STARTx	STARTx
Access	S						R/W	R/W
Rese	t						0	0

Bits 1,0 – STARTx Comparator x Start Comparison Writing a '0' to this field has no effect.

Writing a '1' to STARTx starts a single-shot comparison on COMPx if both the Single-Shot and Enable bits in the Comparator x Control Register are '1' (COMPCTRLx.SINGLE and COMPCTRLx.ENABLE). If comparator x is not implemented, or if it is not enabled in single-shot mode, Writing a '1' has no effect.

This bit always reads as zero.

Electrical Characteristics

Parameter	Conditions	Symbol	Min.	Тур.	Max.	Unit
Internal ratiometric reference 1 ⁽²⁾	VDDANA > 2.0V	$V_{\text{REFINT}} V_{\text{CC1}}$	-	V _{DDANA} /2	-	V
Internal ratiometric reference 1 ⁽²⁾ error	2.0V < VDDANA < 3.63V	V _{REFINT} V _{CC1} Voltage Error	-1	-	1	%
Conversion range ⁽¹⁾	Differential mode		-V _{ref} / Gain	-	+V _{REF} /GAIN	V
	Single-ended mode		0	-	+V _{REF} /GAIN	V
Sampling capacitance ⁽²⁾		C _{SAMPLE}	-	3.5	-	pF
Input channel source resistance ⁽²⁾		R _{SAMPLE}	-	-	3.5	kΩ
DC supply current ⁽¹⁾	$f_{CLK_ADC} = 2.1 MHz^{(3)}$	I _{DD}	-	2.9	4.1	mA

- 1. These values are based on characterization. These values are not covered by test limits in production.
- 2. These values are based on simulation. These values are not covered by test limits in production or characterization.
- 3. In this condition and for a sample rate of 350ksps, 1 Conversion at gain 1x takes 6 clock cycles of the ADC clock.

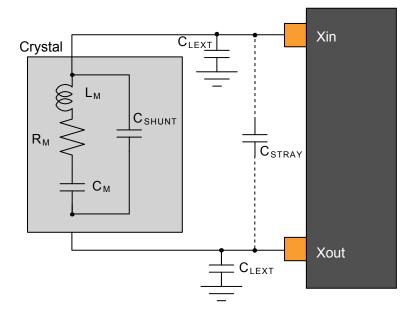

Parameter	Conditions	Symbol	Min.	Тур.	Max.	Unit
Effective Number Of Bits	With gain compensation	ENOB	-	10.4	10.8	bits
Total Unadjusted Error	1x Gain	TUE	1.2	7.0	38.0	LSB
Integral Nonlinearity	1x Gain	INL	0.7	1.30	5.6	LSB
Differential Nonlinearity	1x Gain	DNL	-	±0.7	±0.95	LSB
	Ext. Ref 1x		-	±3	±13	mV
Gain Error	$V_{REF} = V_{DDANA}/1.48$		-	±11	±55	mV
	Bandgap		-	±2	±35	mV
Gain Accuracy ⁽⁵⁾	Ext. Ref. 0.5x		-	±0.1	±0.8	%
	Ext. Ref. 2x to 16x		-	±0.6	±0.9	%
	Ext. Ref. 1x		-	±2	±35	mV
Offset Error	V _{REF} =V _{DDANA} /1.48		-	±3	±40	mV
	Bandgap		-	±3	±50	mV
Spurious Free Dynamic Range	1x Gain	SFDR	65	71.5	76	dB
Signal-to-Noise and Distortion	F _{CLK_ADC} = 2.1MHz	SINAD	58	65	67	dB
Signal-to-Noise Ratio	F _{IN} = 40kHz	SNR	60	66	68.6	dB

Table 37-27. Differential Mode

Electrical Characteristics

Parameter	Conditions	Symbol	Min.	Тур.	Max.	Unit
	AGC off					
	f = 32MHz,					
	C _L = 18pF,			EEE	776	
	XOSC.GAIN = 4,		-	555	776	
	AGC on					

Figure 37-6. Oscillator Connection

37.13.2 External 32 kHz Crystal Oscillator (XOSC32K) Characteristics

37.13.2.1 Digital Clock Characteristics

The following table describes the characteristics for the oscillator when a digital clock is applied on XIN32 pin.

Table 37-42. Digital Clock Characteristics

Parameter	Conditions	Symbol	Min.	Тур.	Max.	Unit
XIN32 clock frequency		f _{CPXIN32}	-	32.768	-	kHz
XIN32 clock duty cycle		DCxin	-	50	-	%

37.13.2.2 XOSC32K Characteristics

Figure 37-6 and the equation in XOSC Characteristics also apply to the 32 kHz oscillator connection. The user must choose a crystal oscillator where the crystal load capacitance C_L is within the range given in the table. The exact value of C_L can be found in the crystal datasheet.

Conventions

Symbol	Description
MHz	1 MHz = 10 ⁶ Hz = 1,000,000 Hz
GHz	1 GHz = 10 ⁹ Hz = 1,000,000,000 Hz
s	second
ms	millisecond
μs	microsecond
ns	nanosecond

41.4 Registers and Bits

Table 41-4. Register and Bit Mnemonics

Symbol	Description
R/W	Read/Write accessible register bit. The user can read from and write to this bit.
R	Read-only accessible register bit. The user can only read this bit. Writes will be ignored.
W	Write-only accessible register bit. The user can only write this bit. Reading this bit will return an undefined value.
BIT	Bit names are shown in uppercase. (Example ENABLE)
FIELD[n:m]	A set of bits from bit n down to m. (Example: PINA[3:0] = {PINA3, PINA2, PINA1, PINA0}
Reserved	Reserved bits are unused and reserved for future use. For compatibility with future devices, always write reserved bits to zero when the register is written. Reserved bits will always return zero when read.
	Reserved bit field values must not be written to a bit field. A reserved value won't be read from a read-only bit field.
PERIPHERALi	If several instances of a peripheral exist, the peripheral name is followed by a number to indicate the number of the instance in the range 0-n. PERIPHERAL0 denotes one specific instance.
Reset	Value of a register after a power Reset. This is also the value of registers in a peripheral after performing a software Reset of the peripheral, except for the Debug Control registers.
SET/CLR	Registers with SET/CLR suffix allows the user to clear and set bits in a register without doing a read-modify-write operation. These registers always come in pairs. Writing a '1' to a bit in the CLR register will clear the corresponding bit in both registers, while writing a '1' to a bit in the SET register will set the corresponding bit in both registers. Both registers will return the same value when read. If both registers are written simultaneously, the write to the CLR register will take precedence.