E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M0
Core Size	32-Bit Single-Core
Speed	48MHz
Connectivity	CANbus, HDMI-CEC, I ² C, IrDA, LINbus, SPI, UART/USART, USB
Peripherals	DMA, I ² S, POR, PWM, WDT
Number of I/O	16
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	6K x 8
Voltage - Supply (Vcc/Vdd)	1.65V ~ 3.6V
Data Converters	A/D 12x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-TSSOP (0.173", 4.40mm Width)
Supplier Device Package	20-TSSOP
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f042f6p6tr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

List of tables

Table 1.	Device summary	1
Table 2.	STM32F042x4/x6 device features and peripheral counts	11
Table 3.	Temperature sensor calibration values.	19
Table 4.	Internal voltage reference calibration values	19
Table 5.	Capacitive sensing GPIOs available on STM32F042x4/x6 devices	20
Table 6.	No. of capacitive sensing channels available on STM32F042x devices	21
Table 7.	Timer feature comparison	21
Table 8.	Comparison of I ² C analog and digital filters	24
Table 9.	STM32F042x4/x6 I ² C implementation	25
Table 10.	STM32F042x4/x6 USART implementation	25
Table 11.	STM32F042x4/x6 SPI/I ² S implementation	26
Table 12.	Legend/abbreviations used in the pinout table	31
Table 13.	STM32F042x pin definitions	32
Table 14.	Alternate functions selected through GPIOA AFR registers for port A	37
Table 15.	Alternate functions selected through GPIOB AFR registers for port B	38
Table 16.	Alternate functions selected through GPIOF AFR registers for port F	38
Table 17.	STM32F042x4/x6 peripheral register boundary addresses	40
Table 18.	Voltage characteristics	45
Table 19.	Current characteristics	46
Table 20.	Thermal characteristics.	46
Table 21.	General operating conditions	47
Table 22.	Operating conditions at power-up / power-down	48
Table 23.	Embedded reset and power control block characteristics.	48
Table 24.	Programmable voltage detector characteristics	48
Table 25.	Embedded internal reference voltage	49
Table 26.	Typical and maximum current consumption from V_{DD} supply at V_{DD} = 3.6 V	50
Table 27.	Typical and maximum current consumption from the V _{DDA} supply	52
Table 28.	Typical and maximum consumption in Stop and Standby modes	53
Table 29.	Typical and maximum current consumption from the V _{BAT} supply	54
Table 30.	Typical current consumption, code executing from Flash memory,	
	running from HSE 8 MHz crystal	55
Table 31.	Switching output I/O current consumption	57
Table 32.	Peripheral current consumption	58
Table 33.	Low-power mode wakeup timings	60
Table 34.	High-speed external user clock characteristics.	60
Table 35.	Low-speed external user clock characteristics	61
Table 36.	HSE oscillator characteristics	62
Table 37.	LSE oscillator characteristics (f _{LSE} = 32.768 kHz)	63
Table 38.	HSI oscillator characteristics	65
Table 39.	HSI14 oscillator characteristics.	66
Table 40.	HSI48 oscillator characteristics.	67
Table 41.	LSI oscillator characteristics	68
Table 42.	PLL characteristics	68
Table 43.	Flash memory characteristics	68
Table 44.	Flash memory endurance and data retention	69
Table 45.	EMS characteristics	69
Table 46.	EMI characteristics	70
Table 47.	ESD absolute maximum ratings	71

2 Description

The STM32F042x4/x6 microcontrollers incorporate the high-performance ARM[®] Cortex[®]-M0 32-bit RISC core operating at up to 48 MHz frequency, high-speed embedded memories (up to 32 Kbytes of Flash memory and 6 Kbytes of SRAM), and an extensive range of enhanced peripherals and I/Os. All devices offer standard communication interfaces (one I²C, two SPIs/one I²S, one HDMI CEC and two USARTs), one USB Full-speed device (crystal-less), one CAN, one 12-bit ADC, four 16-bit timers, one 32-bit timer and an advanced-control PWM timer.

The STM32F042x4/x6 microcontrollers operate in the -40 to +85 °C and -40 to +105 °C temperature ranges, from a 2.0 to 3.6 V power supply. A comprehensive set of power-saving modes allows the design of low-power applications.

The STM32F042x4/x6 microcontrollers include devices in seven different packages ranging from 20 pins to 48 pins with a die form also available upon request. Depending on the device chosen, different sets of peripherals are included.

These features make the STM32F042x4/x6 microcontrollers suitable for a wide range of applications such as application control and user interfaces, hand-held equipment, A/V receivers and digital TV, PC peripherals, gaming and GPS platforms, industrial applications, PLCs, inverters, printers, scanners, alarm systems, video intercoms and HVACs.

threshold. The interrupt service routine can then generate a warning message and/or put the MCU into a safe state. The PVD is enabled by software.

3.5.3 Voltage regulator

The regulator has two operating modes and it is always enabled after reset.

- Main (MR) is used in normal operating mode (Run).
- Low power (LPR) can be used in Stop mode where the power demand is reduced.

In Standby mode, it is put in power down mode. In this mode, the regulator output is in high impedance and the kernel circuitry is powered down, inducing zero consumption (but the contents of the registers and SRAM are lost).

3.5.4 Low-power modes

The STM32F042x4/x6 microcontrollers support three low-power modes to achieve the best compromise between low power consumption, short startup time and available wakeup sources:

Sleep mode

In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can wake up the CPU when an interrupt/event occurs.

Stop mode

Stop mode achieves very low power consumption while retaining the content of SRAM and registers. All clocks in the 1.8 V domain are stopped, the PLL, the HSI RC and the HSE crystal oscillators are disabled. The voltage regulator can also be put either in normal or in low power mode.

The device can be woken up from Stop mode by any of the EXTI lines. The EXTI line source can be one of the 16 external lines, the PVD output, RTC, I2C1 USART1, USB or the CEC.

The CEC, USART1 and I2C1 peripherals can be configured to enable the HSI RC oscillator so as to get clock for processing incoming data. If this is used when the voltage regulator is put in low power mode, the regulator is first switched to normal mode before the clock is provided to the given peripheral.

Standby mode

The Standby mode is used to achieve the lowest power consumption. The internal voltage regulator is switched off so that the entire 1.8 V domain is powered off. The PLL, the HSI RC and the HSE crystal oscillators are also switched off. After entering Standby mode, SRAM and register contents are lost except for registers in the RTC domain and Standby circuitry.

The device exits Standby mode when an external reset (NRST pin), an IWDG reset, a rising edge on the WKUP pins, or an RTC event occurs.

Note: The RTC, the IWDG, and the corresponding clock sources are not stopped by entering Stop or Standby mode.

3.6 Clocks and startup

System clock selection is performed on startup, however the internal RC 8 MHz oscillator is selected as default CPU clock on reset. An external 4-32 MHz clock can be selected, in which case it is monitored for failure. If failure is detected, the system automatically switches back to the internal RC oscillator. A software interrupt is generated if enabled. Similarly, full interrupt management of the PLL clock entry is available when necessary (for example on failure of an indirectly used external crystal, resonator or oscillator).

Several prescalers allow the application to configure the frequency of the AHB and the APB domains. The maximum frequency of the AHB and the APB domains is 48 MHz.

Additionally, also the internal RC 48 MHz oscillator can be selected for system clock or PLL input source. This oscillator can be automatically fine-trimmed by the means of the CRS peripheral using the external synchronization.

3.10.3 V_{BAT} battery voltage monitoring

This embedded hardware feature allows the application to measure the V_{BAT} battery voltage using the internal ADC channel ADC_IN18. As the V_{BAT} voltage may be higher than V_{DDA}, and thus outside the ADC input range, the V_{BAT} pin is internally connected to a bridge divider by 2. As a consequence, the converted digital value is half the V_{BAT} voltage.

3.11 Touch sensing controller (TSC)

The STM32F042x4/x6 devices provide a simple solution for adding capacitive sensing functionality to any application. These devices offer up to 14 capacitive sensing channels distributed over 5 analog I/O groups.

Capacitive sensing technology is able to detect the presence of a finger near a sensor which is protected from direct touch by a dielectric (glass, plastic...). The capacitive variation introduced by the finger (or any conductive object) is measured using a proven implementation based on a surface charge transfer acquisition principle. It consists in charging the sensor capacitance and then transferring a part of the accumulated charges into a sampling capacitor until the voltage across this capacitor has reached a specific threshold. To limit the CPU bandwidth usage, this acquisition is directly managed by the hardware touch sensing controller and only requires few external components to operate. For operation, one capacitive sensing GPIO in each group is connected to an external capacitor and cannot be used as effective touch sensing channel.

The touch sensing controller is fully supported by the STMTouch touch sensing firmware library, which is free to use and allows touch sensing functionality to be implemented reliably in the end application.

Group	Capacitive sensing signal name	Pin name
	TSC_G1_IO1	PA0
1	TSC_G1_IO2	PA1
1	TSC_G1_IO3	PA2
	TSC_G1_IO4	PA3
	TSC_G2_IO1	PA4
2	TSC_G2_IO2	PA5
2	TSC_G2_IO3	PA6
	TSC_G2_IO4	PA7
	TSC_G3_IO2	PB0
3	TSC_G3_IO3	PB1
	TSC_G3_IO4	PB2

Group	Capacitive sensing signal name	Pin name					
	TSC_G4_IO1	PA9					
	TSC_G4_IO2	PA10					
4	TSC_G4_IO3	PA11					
	TSC_G4_IO4	PA12					
	TSC_G5_IO1	PB3					
5	TSC_G5_IO2	PB4					
5	TSC_G5_IO3	PB6					
	TSC_G5_IO4	PB7					

Table 5. Capacitive sensing GPIOs available on STM32F042x4/x6 devices

	Number of capacitive sensing channels									
Analog I/O group	STM32F042Cx LQPF48 UQFPN48 WLCSP36		STM32F042Kx LQFP32 UQFPN32	STM32F042Gx UQFPN28	STM32F042Fx TSSOP20					
G1	3	3	3	3	3					
G2	3	3	3	3	3					
G3	2	2	1 2	1	0					
G4	3	3	3	1	1					
G5	3	3	3	3	0					
Number of capacitive sensing channels	14	14	13 14	11	7					

Table 6. No. of capacitive sensing channels available on STM32F042x devices

3.12 Timers and watchdogs

The STM32F042x4/x6 devices include up to five general-purpose timers and an advanced control timer.

Table 7 compares the features of the different timers.

Timer type	Timer	Counter resolution	Counter type	Prescaler factor	DMA request generation	Capture/compare channels	Complementary outputs
Advanced control	TIM1	16-bit	Up, down, up/down	integer from 1 to 65536	Yes	4	3
	TIM2	32-bit	Up, down, up/down	integer from 1 to 65536	Yes	4	-
General	TIM3	16-bit	Up, down, up/down	integer from 1 to 65536	Yes	4	-
purpose	TIM14	16-bit	Up	integer from 1 to 65536	No	1	-
	TIM16 TIM17	16-bit	Up	integer from 1 to 65536	Yes	1	1

Table 7. Timer feature comparison

3.12.1 Advanced-control timer (TIM1)

The advanced-control timer (TIM1) can be seen as a three-phase PWM multiplexed on six channels. It has complementary PWM outputs with programmable inserted dead times. It

Pinouts and pin descriptions

Figure 7. UFQFPN32 package pinout

1. Pin pair PA11/12 can be remapped in place of pin pair PA9/10 using the SYSCFG_CFGR1 register.

	l	Pin n	umbe	rs						Pin functions		
LQFP48/UFQFPN48	WLCSP36	LQFP32	UFQFPN32	UFQFPN28	TSSPOP20	Pin name (function upon reset)	Pin type	I/O structure	Notes	Alternate function	Additional functions	
26	-	-	-	-	-	PB13	I/O	FTf	-	SPI2_SCK, TIM1_CH1N, I2C1_SCL	-	
27	-	-	-	-	-	PB14	I/O	FTf	-	SPI2_MISO, TIM1_CH2N, I2C1_SDA	-	
28	-	-	-	-	-	PB15	I/O	FT	-	SPI2_MOSI, TIM1_CH3N	WKUP7, RTC_REFIN	
29	E2	18	18	-	-	PA8	I/O	FT	(4)	USART1_CK, TIM1_CH1, EVENTOUT, MCO, CRS_SYNC	-	
30	D1	19	19	19	17	PA9	I/O	FTf	(4)	USART1_TX, TIM1_CH2, TSC_G4_IO1, I2C1_SCL	-	
31	C1	20	20	20	18	PA10	I/O	FTf	(4)	USART1_RX, TIM1_CH3, TIM17_BKIN, TSC_G4_IO2, I2C1_SDA	-	
32	C2	21	21	19 ⁽⁵⁾	17 ⁽⁵⁾	PA11	I/O	FTf	(4)	CAN_RX, USART1_CTS, TIM1_CH4, TSC_G4_IO3, EVENTOUT, I2C1_SCL	USB_DM	
33	A1	22	22	20 ⁽⁵⁾	18 ⁽⁵⁾	PA12	I/O	FTf	(4)	CAN_TX,USART1_RTS, TIM1_ETR, TSC_G4_IO4, EVENTOUT, I2C1_SDA	USB_DP	
34	B1	23	23	21	19	PA13	I/O	FT	(4) (6)	IR_OUT, SWDIO USB_NOE	-	
35	-	-	-	-	-	VSS	S	-	-	Ground		
36	E1	17	17	18	16	VDDIO2	S	-	-	Digital power su	upply	
37	B2	24	24	22	20	PA14	I/O	FT	(4) (6)	USART2_TX, SWCLK	-	

Table 13.	STM32F042x	nin	definitions	(continued)
		piii	acimitions	Commuca

		Pin n	umbe	rs						Pin functions		
LQFP48/UFQFPN48	WLCSP36	LQFP32	UFQFPN32	UFQFPN28	TSSPOP20	Pin name (function upon reset)	Pin type	I/O structure	Notes	Alternate function	Additional functions	
38	A2	25	25	23	-	PA15 I/O FT ⁽⁴⁾ SPI1_NSS, I2S1_WS, USART2_RX, TIM2_CH1_ETR, EVENTOUT, USB_NOE		-				
39	В3	26	26	24	-	PB3	PB3 I/O FT - SPI1_SCK, I2S1_CK, TIM2_CH2, TSC_G5_IO1, EVENTOUT		-			
40	A3	27	27	25	-	PB4	I/O	FT	-	SPI1_MISO, I2S1_MCK, TIM17_BKIN, TIM3_CH1, TSC_G5_IO2, EVENTOUT	-	
41	E6	28	28	26	-	PB5	I/O	FT	-	SPI1_MOSI, I2S1_SD, I2C1_SMBA, TIM16_BKIN, TIM3_CH2	WKUP6	
42	C4	29	29	27	-	PB6	I/O	FTf	-	I2C1_SCL, USART1_TX, TIM16_CH1N, TSC_G5_I03	-	
43	A4	30	30	28	-	PB7	I/O	FTf	-	I2C1_SDA, USART1_RX, TIM17_CH1N, TSC_G5_IO4	-	
44	-	-	31	-	-	PF11-BOOT0	I/O	FT	-	-	Boot memory selection	
-	B4	31	-	1	1	PB8-BOOT0	I/O	FTf	-	I2C1_SCL, CEC, TIM16_CH1, TSC_SYNC, CAN_RX	Boot memory selection	
45	-	-	32	-	-	PB8	I/O	FTf	-	I2C1_SCL, CEC, TIM16_CH1, TSC_SYNC, CAN_RX	-	

Table 13. STM32F042x pin definitions (continued)

5 Memory mapping

To the difference of STM32F042x6 memory map in *Figure 10*, the two bottom code memory spaces of STM32F042x4 end at 0x0000 3FFF and 0x0800 3FFF, respectively.

DocID025832 Rev 5

6.1.6 Power supply scheme

Figure 13. Power supply scheme

Caution: Each power supply pair (V_{DD}/V_{SS}, V_{DDA}/V_{SSA} etc.) must be decoupled with filtering ceramic capacitors as shown above. These capacitors must be placed as close as possible to, or below, the appropriate pins on the underside of the PCB to ensure the good functionality of the device.

-	ter				Тур	@V _{DD} (V _{DD} = V	DDA)			Max ⁽¹⁾)	
Symbo	Parame		Conditions	2.0 V	2.4 V	2.7 V	3.0 V	3.3 V	3.6 V	T _A = 25°C	T _A = 85°C	T _A = 105°C	Unit
	Supply	Reg mod osc	gulator in run de, all illators OFF	14.3	14.5	14.6	14.7	14.8	14.9	21.0	47.0	64.0	
I _{DD}	Stop mode	Reg pow osc	gulator in low- ver mode, all illators OFF	2.9	3.1	3.2	3.3	3.4	3.5	6.5	32.0	44.0	
	Supply current in	LSI ON	ON and IWDG	0.8	0.9	1.1	1.2	1.3	1.5	-	-	-	
	Standby mode	LSI OFI	OFF and IWDG	0.6	0.7	0.8	0.9	1.0	1.1	2.0	2.5	3.0	
	Supply	z	Regulator in run mode, all oscillators OFF	2.0	2.1	2.2	2.4	2.5	2.7	3.5	3.5	4.5	
	current in Stop mode	rent in p mode p mode	Regulator in low-power mode, all oscillators OFF	2.0	2.1	2.2	2.4	2.5	2.7	3.5	3.5	4.5	μA
	Supply current in	V _{DC}	LSI ON and IWDG ON	2.4	2.6	2.8	3.0	3.1	3.4	-	-	-	
	Standby mode		LSI OFF and IWDG OFF	1.9	2.0	2.1	2.3	2.4	2.5	3.4	3.5	4.5	
JUDA	Supply	Ц	Regulator in run mode, all oscillators OFF	1.3	1.3	1.3	1.4	1.4	1.5	-	-	-	
	current in Stop mode	A monitoring OI	Regulator in low-power mode, all oscillators OFF	1.3	1.3	1.3	1.4	1.4	1.5	-	-	-	
	Supply current in	V _{DD}	LSI ON and IWDG ON	1.7	1.8	1.8	2.0	2.1	2.2	-	-	-	
	Standby mode		LSI OFF and IWDG OFF	1.1	1.2	1.2	1.3	1.3	1.4	-	-	-	

Table 28. Typical and maximum	consumption in Stop	and Standby modes
-------------------------------	---------------------	-------------------

1. Data based on characterization results, not tested in production unless otherwise specified.

High-speed internal 14 MHz (HSI14) RC oscillator (dedicated to ADC)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{HSI14}	Frequency	-	-	14	-	MHz
TRIM	HSI14 user-trimming step	-	-	-	1 ⁽²⁾	%
DuCy _(HSI14)	Duty cycle	-	45 ⁽²⁾	-	55 ⁽²⁾	%
		-4.2 ⁽³⁾	-	5.1 ⁽³⁾	%	
ACC	Accuracy of the HSI14 oscillator (factory calibrated)	T _A = −10 to 85 °C	-3.2 ⁽³⁾	-	3.1 ⁽³⁾	%
ACC _{HSI14}		T _A = 0 to 70 °C	-2.5 ⁽³⁾	-	2.3 ⁽³⁾	%
		T _A = 25 °C	-1	-	1	%
t _{su(HSI14)}	HSI14 oscillator startup time	-	1 ⁽²⁾	-	2 ⁽²⁾	μs
I _{DDA(HSI14)}	HSI14 oscillator power consumption	-	-	100	150 ⁽²⁾	μA

Table 39. HSI14 oscillator characteristics⁽¹⁾

1. V_{DDA} = 3.3 V, T_A = -40 to 105 °C unless otherwise specified.

2. Guaranteed by design, not tested in production.

3. Data based on characterization results, not tested in production.

Figure 20. HSI14 oscillator accuracy characterization results

4

Figure 22. TC and TTa I/O input characteristics

Figure 23. Five volt tolerant (FT and FTf) I/O input characteristics

DocID025832 Rev 5

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{hys(NRST)}	NRST Schmitt trigger voltage hysteresis	-	-	200	-	mV
R _{PU}	Weak pull-up equivalent resistor ⁽²⁾	V _{IN} = V _{SS}	25	40	55	kΩ
V _{F(NRST)}	NRST input filtered pulse	-	-	-	100 ⁽¹⁾	ns
V _{NF(NRST)}	NRST input not filtered pulse	$2.7 < V_{DD} < 3.6$	300 ⁽³⁾	-	-	ne
		2.0 < V _{DD} < 3.6	500 ⁽³⁾	-	-	115

Table 53. NRST pin characteristics (continued)

1. Data based on design simulation only. Not tested in production.

 The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution to the series resistance is minimal (~10% order).

3. Data based on design simulation only. Not tested in production.

- 1. The external capacitor protects the device against parasitic resets.
- The user must ensure that the level on the NRST pin can go below the V_{IL(NRST)} max level specified in Table 53: NRST pin characteristics. Otherwise the reset will not be taken into account by the device.

6.3.16 12-bit ADC characteristics

Unless otherwise specified, the parameters given in *Table 54* are derived from tests performed under the conditions summarized in *Table 21: General operating conditions*.

Note: It is recommended to perform a calibration after each power-up.

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
V _{DDA}	Analog supply voltage for ADC ON	-	2.4	-	3.6	V
I _{DDA (ADC)}	Current consumption of the ADC ⁽¹⁾	V _{DDA} = 3.3 V	-	0.9	-	mA
f _{ADC}	ADC clock frequency	-	0.6	-	14	MHz
f _S ⁽²⁾	Sampling rate	12-bit resolution	0.043	-	1	MHz

Symbol	Parameter	Conditions	Min Typ Max		Unit	
f _{TRIG} ⁽²⁾	External trigger frequency	f _{ADC} = 14 MHz, 12-bit resolution	-	-	823	kHz
		12-bit resolution	-	-	17	1/f _{ADC}
V _{AIN}	Conversion voltage range	-	0	-	V _{DDA}	V
R _{AIN} ⁽²⁾	External input impedance	See <i>Equation 1</i> and <i>Table 55</i> for details	-	-	50	kΩ
R _{ADC} ⁽²⁾	Sampling switch resistance	-	-	-	1	kΩ
C _{ADC} ⁽²⁾	Internal sample and hold capacitor	-	8		8	pF
+ (2)(3)	Calibration time	f _{ADC} = 14 MHz	5.9		μs	
'CAL'		-		83		1/f _{ADC}
		ADC clock = HSI14	1.5 ADC cycles + 2 f _{PCLK} cycles	-	1.5 ADC cycles + 3 f _{PCLK} cycles	-
W _{LATENCY} ⁽²⁾⁽⁴⁾	ADC_DR register ready latency	ADC clock = PCLK/2	-	4.5	-	f _{PCLK} cycle
		ADC clock = PCLK/4	-	8.5	-	f _{PCLK} cycle
		$f_{ADC} = f_{PCLK}/2 = 14 \text{ MHz}$	0.196			μs
		$f_{ADC} = f_{PCLK}/2$	5.5			1/f _{PCLK}
t _{latr} ⁽²⁾	Trigger conversion latency	$f_{ADC} = f_{PCLK}/4 = 12 \text{ MHz}$	0.219			μs
		$f_{ADC} = f_{PCLK}/4$	10.5		1/f _{PCLK}	
		$f_{ADC} = f_{HSI14} = 14 \text{ MHz}$	0.179	-	0.250	μs
Jitter _{ADC}	ADC jitter on trigger conversion	f _{ADC} = f _{HSI14}	-	1	-	1/f _{HSI14}
+ (2)	Sampling time	f _{ADC} = 14 MHz	0.107	-	17.1	μs
LS, ,	Sampling time	-	1.5	-	239.5	1/f _{ADC}
t _{STAB} ⁽²⁾	Stabilization time	-	14		1/f _{ADC}	
t _{CONV} ⁽²⁾	Total conversion time	f _{ADC} = 14 MHz, 12-bit resolution	1	-	18	μs
	(including sampling time)	12-bit resolution	14 to 252 (t _S for sampling +12.5 for successive approximation)		1/f _{ADC}	

 Table 54. ADC characteristics (continued)

1. During conversion of the sampled value (12.5 x ADC clock period), an additional consumption of 100 μ A on I_{DDA} and 60 μ A on I_{DD} should be taken into account.

2. Guaranteed by design, not tested in production.

3. Specified value includes only ADC timing. It does not include the latency of the register access.

4. This parameter specify latency for transfer of the conversion result to the ADC_DR register. EOC flag is set at this time.

Symbol	Parameter	Min	Мах	Unit		
t _{AF}	Maximum width of spikes that are suppressed by the analog filter	50 ⁽²⁾	260 ⁽³⁾	ns		

Table 62. I²C analog filter characteristics⁽¹⁾

1. Guaranteed by design, not tested in production.

2. Spikes with widths below $t_{AF(min)}$ are filtered.

3. Spikes with widths above $t_{AF(max)}$ are not filtered

SPI/I²S characteristics

Unless otherwise specified, the parameters given in *Table 63* for SPI or in *Table 64* for I^2S are derived from tests performed under the ambient temperature, f_{PCLKx} frequency and supply voltage conditions summarized in *Table 21: General operating conditions*.

Refer to Section 6.3.14: I/O port characteristics for more details on the input/output alternate function characteristics (NSS, SCK, MOSI, MISO for SPI and WS, CK, SD for I²S).

Symbol	Parameter Conditions		Min	Мах	Unit	
f _{SCK}		Master mode	-	18	MHz	
1/t _{c(SCK)}	SPI Clock frequency	Slave mode	-	18	IVITIZ	
$t_{r(SCK)} \ t_{f(SCK)}$	SPI clock rise and fall time	Capacitive load: C = 15 pF	-	6	ns	
t _{su(NSS)}	NSS setup time	Slave mode	4Tpclk	-		
t _{h(NSS)}	NSS hold time	Slave mode	2Tpclk + 10	-		
t _{w(SCKH)} t _{w(SCKL)}	SCK high and low time	Master mode, f _{PCLK} = 36 MHz, presc = 4	Tpclk/2 -2	Tpclk/2 + 1		
t _{su(MI)}	Data input actus time	Master mode	4	-		
t _{su(SI)}		Slave mode	5	-		
t _{h(MI)}	Data input hold time	Master mode	4	-		
t _{h(SI)}		Slave mode	5	-	ns	
t _{a(SO)} ⁽²⁾	Data output access time	Slave mode, f _{PCLK} = 20 MHz	0	3Tpclk		
t _{dis(SO)} ⁽³⁾	Data output disable time	Slave mode	0	18		
t _{v(SO)}	Data output valid time	Slave mode (after enable edge)	-	22.5		
t _{v(MO)}	Data output valid time	Master mode (after enable edge)	-	6		
t _{h(SO)}	Data output hold time	Slave mode (after enable edge)	11.5	-	-	
t _{h(MO)}		Master mode (after enable edge)	2	-		
DuCy(SCK)	SPI slave input clock duty cycle Slave mode		25	75	%	

Table	63.	SPI	characteristics(1))
-------	-----	-----	------------------	----	---

1. Data based on characterization results, not tested in production.

2. Min time is for the minimum time to drive the output and the max time is for the maximum time to validate the data.

3. Min time is for the minimum time to invalidate the output and the max time is for the maximum time to put the data in Hi-Z

Figure 45. UFQFPN32 package outline

1. Drawing is not to scale.

- 2. All leads/pads should also be soldered to the PCB to improve the lead/pad solder joint life.
- 3. There is an exposed die pad on the underside of the UFQFPN package. This pad is used for the device ground and must be connected. It is referred to as pin 0 in *Table: Pin definitions*.

Device marking

The following figure gives an example of topside marking orientation versus pin 1 identifier location.

Other optional marking or inset/upset marks, which identify the parts throughout supply chain operations, are not indicated below.

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering Samples to run qualification activity.

7.8 Thermal characteristics

The maximum chip junction temperature (T_Jmax) must never exceed the values given in *Table 21: General operating conditions*.

The maximum chip-junction temperature, $T_{\rm J}$ max, in degrees Celsius, may be calculated using the following equation:

$$T_J max = T_A max + (P_D max x \Theta_{JA})$$

Where:

- T_A max is the maximum ambient temperature in °C,
- Θ_{JA} is the package junction-to-ambient thermal resistance, in °C/W,
- P_D max is the sum of P_{INT} max and P_{I/O} max (P_D max = P_{INT} max + P_{I/O}max),
- P_{INT} max is the product of I_{DD} and V_{DD}, expressed in Watts. This is the maximum chip internal power.

 $\mathsf{P}_{I\!/\!O}$ max represents the maximum power dissipation on output pins where:

 $\mathsf{P}_{\mathsf{I/O}} \max = \Sigma \; (\mathsf{V}_{\mathsf{OL}} \times \mathsf{I}_{\mathsf{OL}}) + \Sigma \; ((\mathsf{V}_{\mathsf{DDIOx}} - \mathsf{V}_{\mathsf{OH}}) \times \mathsf{I}_{\mathsf{OH}}),$

taking into account the actual V_{OL} / I_{OL} and V_{OH} / I_{OH} of the I/Os at low and high level in the application.

Symbol	Parameter	Value	Unit
Θ _{JA}	Thermal resistance junction-ambient LQFP48 - 7 mm x 7 mm	55	
	Thermal resistance junction-ambient UFQFPN48 - 7 mm x 7 mm	33	
	Thermal resistance junction-ambient WLCSP36 2.6 mm x 2.7 mm	64	
	Thermal resistance junction-ambient LQFP32 - 7 mm x 7 mm	57	°C/W
	Thermal resistance junction-ambient UFQFPN32 - 5 mm x 5 mm	38	
	Thermal resistance junction-ambient UFQFPN28 - 4 mm x 4 mm	118	
	Thermal resistance junction-ambient TSSOP20 - 6.5 mm x 6.4 mm	76	

Table 74. Package thermal characteristics

7.8.1 Reference document

JESD51-2 Integrated Circuits Thermal Test Method Environment Conditions - Natural Convection (Still Air). Available from www.jedec.org

7.8.2 Selecting the product temperature range

When ordering the microcontroller, the temperature range is specified in the ordering information scheme shown in *Section 8: Ordering information*.

DocID025832 Rev 5