

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M0
Core Size	32-Bit Single-Core
Speed	48MHz
Connectivity	CANbus, HDMI-CEC, I ² C, IrDA, LINbus, SPI, UART/USART, USB
Peripherals	DMA, I ² S, POR, PWM, WDT
Number of I/O	24
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	6K x 8
Voltage - Supply (Vcc/Vdd)	1.65V ~ 3.6V
Data Converters	A/D 13x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-UFQFN
Supplier Device Package	28-UFQFPN (4x4)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f042g6u6tr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

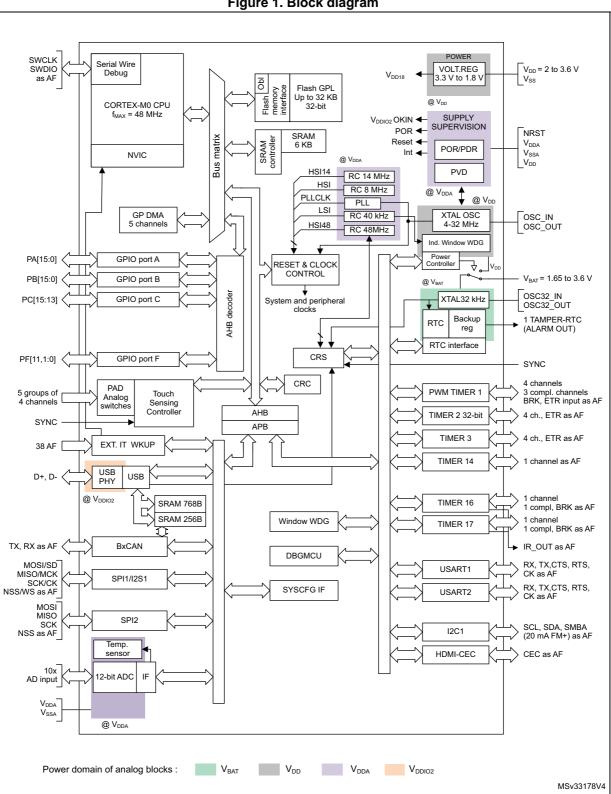


Figure 1. Block diagram

sensor, voltage reference, VBAT voltage measurement) channels and performs conversions in single-shot or scan modes. In scan mode, automatic conversion is performed on a selected group of analog inputs.

The ADC can be served by the DMA controller.

An analog watchdog feature allows very precise monitoring of the converted voltage of one, some or all selected channels. An interrupt is generated when the converted voltage is outside the programmed thresholds.

3.10.1 Temperature sensor

The temperature sensor (TS) generates a voltage $V_{\mbox{\scriptsize SENSE}}$ that varies linearly with temperature.

The temperature sensor is internally connected to the ADC_IN16 input channel which is used to convert the sensor output voltage into a digital value.

The sensor provides good linearity but it has to be calibrated to obtain good overall accuracy of the temperature measurement. As the offset of the temperature sensor varies from chip to chip due to process variation, the uncalibrated internal temperature sensor is suitable for applications that detect temperature changes only.

To improve the accuracy of the temperature sensor measurement, each device is individually factory-calibrated by ST. The temperature sensor factory calibration data are stored by ST in the system memory area, accessible in read-only mode.

Calibration value name	Description	Memory address
TS_CAL1	TS ADC raw data acquired at a temperature of 30 °C (\pm 5 °C), V _{DDA} = 3.3 V (\pm 10 mV)	0x1FFF F7B8 - 0x1FFF F7B9
TS_CAL2	TS ADC raw data acquired at a temperature of 110 $^{\circ}$ C (± 5 $^{\circ}$ C), V _{DDA} = 3.3 V (± 10 mV)	0x1FFF F7C2 - 0x1FFF F7C3

Table 3. Temperature sensor calibration values

3.10.2 Internal voltage reference (V_{REFINT})

The internal voltage reference (V_{REFINT}) provides a stable (bandgap) voltage output for the ADC. V_{REFINT} is internally connected to the ADC_IN17 input channel. The precise voltage of V_{REFINT} is individually measured for each part by ST during production test and stored in the system memory area. It is accessible in read-only mode.

Table 4. Internal voltage reference calibration	values
---	--------

Calibration value name	Description	Memory address
	Raw data acquired at a temperature of 30 °C (± 5 °C), V _{DDA} = 3.3 V (± 10 mV)	0x1FFF F7BA - 0x1FFF F7BB

4 Pinouts and pin descriptions

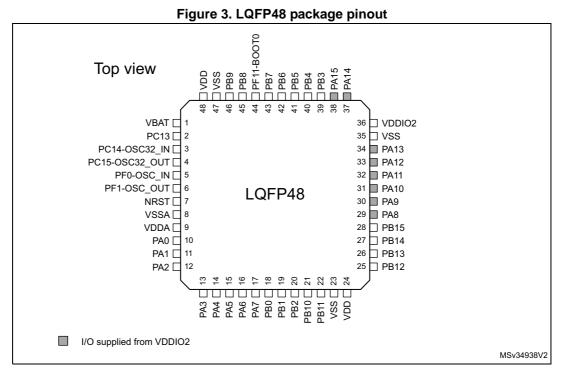


Figure 4. UFQFPN48 package pinout

		Pin ni	umbe	rs						Pin functions		
LQFP48/UFQFPN48	WLCSP36	LQFP32	UFQFPN32	UFQFPN28	TSSPOP20	Pin name (function upon reset)	Pin type	I/O structure	Notes	Alternate function	Additional functions	
14	C3	10	10	10	10	PA4	I/O	ТТа	-	SPI1_NSS, I2S1_WS, TIM14_CH1, TSC_G2_IO1, USART2_CK USB_NOE	ADC_IN4	
15	D3	11	11	11	11	PA5	I/O	ТТа	-	SPI1_SCK, I2S1_CK, CEC, TIM2_CH1_ETR, TSC_G2_IO2	ADC_IN5	
16	E3	12	12	12	12	PA6	I/O	TTa	-	SPI1_MISO, I2S1_MCK, TIM3_CH1, TIM1_BKIN, TIM16_CH1, TSC_G2_IO3, EVENTOUT	ADC_IN6	
17	F4	13	13	13	13	PA7	I/O	TTa	-	SPI1_MOSI, I2S1_SD, TIM3_CH2, TIM14_CH1, TIM1_CH1N, TIM17_CH1, TSC_G2_IO4, EVENTOUT	ADC_IN7	
18	F3	14	14	14	-	PB0	I/O	ТТа	-	TIM3_CH3, TIM1_CH2N, TSC_G3_IO2, EVENTOUT	ADC_IN8	
19	F2	15	15	15	14	PB1	I/O	ТТа	-	TIM3_CH4, TIM14_CH1, TIM1_CH3N, TSC_G3_IO3	ADC_IN9	
20	D2	-	16	-	-	PB2	I/O	FT	-	TSC_G3_IO4	-	
21	-	-	-	-	-	PB10	I/O	FTf	-	SPI2_SCK, CEC, TSC_SYNC, TIM2_CH3, I2C1_SCL	-	
22	-	-	-	-	-	PB11	I/O	FTf	-	TIM2_CH4, EVENTOUT, I2C1_SDA	-	
23	F1	16	0	16	15	VSS	S	-	-	Ground		
24	-	-	-	17	16	VDD	S	-	I	Digital power su	ipply	
25	-	-	-	-	-	PB12	I/O	FT	-	TIM1_BKIN, SPI2_NSS, EVENTOUT	-	

Table	13. STM32F042>	c pin d	lefinit	ions	(continued)

		Pin n	umbe	ers						Pin functior	IS
LQFP48/UFQFPN48	WLCSP36	LQFP32	UFQFPN32	UFQFPN28	TSSPOP20	Pin name (function upon reset)	Pin type	I/O structure	Notes	Alternate function	Additional functions
26	-	-	-	-	-	PB13	I/O	FTf	-	SPI2_SCK, TIM1_CH1N, I2C1_SCL	-
27	-	-	-	-	-	PB14	I/O	FTf	-	SPI2_MISO, TIM1_CH2N, I2C1_SDA	-
28	-	-	-	-	-	PB15	I/O	FT	-	SPI2_MOSI, TIM1_CH3N	WKUP7, RTC_REFIN
29	E2	18	18	-	-	PA8	I/O	FT	(4)	USART1_CK, TIM1_CH1, EVENTOUT, MCO, CRS_SYNC	-
30	D1	19	19	19	17	PA9	I/O	FTf	(4)	USART1_TX, TIM1_CH2, TSC_G4_IO1, I2C1_SCL	-
31	C1	20	20	20	18	PA10	I/O	FTf	(4)	USART1_RX, TIM1_CH3, TIM17_BKIN, TSC_G4_IO2, I2C1_SDA	-
32	C2	21	21	19 ⁽⁵⁾	17 ⁽⁵⁾	PA11	I/O	FTf	(4)	CAN_RX, USART1_CTS, TIM1_CH4, TSC_G4_IO3, EVENTOUT, I2C1_SCL	USB_DM
33	A1	22	22	20 ⁽⁵⁾	18 ⁽⁵⁾	PA12	I/O	FTf	(4)	CAN_TX,USART1_RTS, TIM1_ETR, TSC_G4_IO4, EVENTOUT, I2C1_SDA	USB_DP
34	B1	23	23	21	19	PA13	I/O	FT	(4) (6)	IR_OUT, SWDIO USB_NOE	-
35	-	-	-	-	-	VSS	S	-	-	Ground	
36	E1	17	17	18	16	VDDIO2	S	-	-	Digital power su	ipply
37	B2	24	24	22	20	PA14	I/O	FT	(4) (6)	USART2_TX, SWCLK	-

Table 13. STM32F042x	pin definitions	(continued)
		(oonunaca)

		Pin ni	umbe	rs						Pin function	IS	
LQFP48/UFQFPN48	WLCSP36	LQFP32	UFQFPN32	NFQFPN28	TSSPOP20	Pin name (function upon reset)	Pin type	I/O structure	Notes	Alternate function	Additional functions	
46	-	-	-	-	-	PB9	I/O	FTf	-	SPI2_NSS, I2C1_SDA, IR_OUT, TIM17_CH1, EVENTOUT, CAN_TX	-	
47	-	32	0	-	-	VSS	S	-	-	Ground		
48	A5	1	1	-	-	VDD	S	-	-	Digital power su	ipply	

Table 13. STM32F042x pin definitions (continued)

 PC13, PC14 and PC15 are supplied through the power switch. Since the switch only sinks a limited amount of current (3 mA), the use of GPIOs PC13 to PC15 in output mode is limited:
 The speed should not exceed 2 MHz with a maximum load of 30 pF.

- These GPIOs must not be used as current sources (e.g. to drive an LED).

 After the first RTC domain power-up, PC13, PC14 and PC15 operate as GPIOs. Their function then depends on the content of the RTC registers which are not reset by the system reset. For details on how to manage these GPIOs, refer to the RTC domain and RTC register descriptions in the reference manual.

3. Distinct VSSA pin is only available on 48-pin packages. On all other packages, the pin number corresponds to the VSS pin to which VSSA pad of the silicon die is connected.

4. PA8, PA9, PA10, PA11, PA12, PA13, PA14 and PA15 I/Os are supplied by VDDIO2.

5. Pin pair PA11/12 can be remapped in place of pin pair PA9/10 using SYSCFG_CFGR1 register.

6. After reset, these pins are configured as SWDIO and SWCLK alternate functions, and the internal pull-up on the SWDIO pin and the internal pull-down on the SWCLK pin are activated.

. <u> </u>		conditions at power-d	P / P01101		
Symbol	Parameter	Conditions	Min	Мах	Unit
+	V _{DD} rise time rate		0	8	
t _{VDD}	V _{DD} fall time rate	-	20	8	μs/V
+	V _{DDA} rise time rate		0	8	μ5/ν
t _{VDDA}	V _{DDA} fall time rate	-	20	8	

 Table 22. Operating conditions at power-up / power-down

6.3.3 Embedded reset and power control block characteristics

The parameters given in *Table 23* are derived from tests performed under the ambient temperature and supply voltage conditions summarized in *Table 21: General operating conditions*.

 Table 23. Embedded reset and power control block characteristics

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
V _{POR/PDR} ⁽¹⁾		Falling edge ⁽²⁾	1.80	1.88	1.96 ⁽³⁾	V
* POR/PDR	reset threshold	Rising edge	1.84 ⁽³⁾	1.92	2.00	V
V _{PDRhyst}	PDR hysteresis	-	-	40	-	mV
t _{RSTTEMPO} ⁽⁴⁾	Reset temporization	-	1.50	2.50	4.50	ms

1. The PDR detector monitors V_{DD} and also V_{DDA} (if kept enabled in the option bytes). The POR detector monitors only $V_{DD}.$

2. The product behavior is guaranteed by design down to the minimum $V_{\text{POR/PDR}}$ value.

3. Data based on characterization results, not tested in production.

4. Guaranteed by design, not tested in production.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V	PVD threshold 0	Rising edge	2.1	2.18	2.26	V
V _{PVD0}		Falling edge	2	2.08	2.16	V
M	PVD threshold 1	Rising edge	2.19	2.28	2.37	V
V _{PVD1}		Falling edge	2.09	2.18	2.27	V
M	PVD threshold 2	Rising edge	2.28	2.38	2.48	V
V _{PVD2}		Falling edge	2.18	2.28	2.38	V
M	PVD threshold 3	Rising edge	2.38	2.48	2.58	V
V _{PVD3}		Falling edge	2.28	2.38	2.48	V
M	DVD throshold 4	Rising edge	2.47	2.58	2.69	V
V _{PVD4}	PVD threshold 4	Falling edge	2.37	2.48	2.59	V
M	DVD throshold 5	Rising edge	2.57	2.68	2.79	V
V _{PVD5}	PVD threshold 5	Falling edge	2.47	2.58	2.69	V

Table 24. Programmable voltage detector characteristics

	Peripheral	Typical consumption at 25 °C	Unit
	-		onit
	APB-Bridge ⁽²⁾	2.9	
	ADC ⁽³⁾	3.9	
	CAN	12.9	
	CEC	1.5	
	CRS	1.0	
	DBG (MCU Debug Support)	0.2	
	I2C1	3.6	
	PWR	1.4	
	SPI1	8.5	
	SPI2	6.1	
	SYSCFG	1.8	
APB	TIM1	15.1	µA/MHz
	TIM2	16.8	
	TIM3	11.7	
	TIM14	5.5	
	TIM16	7.0	
	TIM17	6.9	
	USART1	17.8	
	USART2	5.6	
	USB	4.9	
	WWDG	1.4	
	All APB peripherals	136.7	

 Table 32. Peripheral current consumption (continued)

1. The BusMatrix is automatically active when at least one master is ON (CPU, DMA).

2. The APB Bridge is automatically active when at least one peripheral is ON on the Bus.

3. The power consumption of the analog part (I_{DDA}) of peripherals such as ADC is not included. Refer to the tables of characteristics in the subsequent sections.

High-speed internal 48 MHz (HSI48) RC oscillator

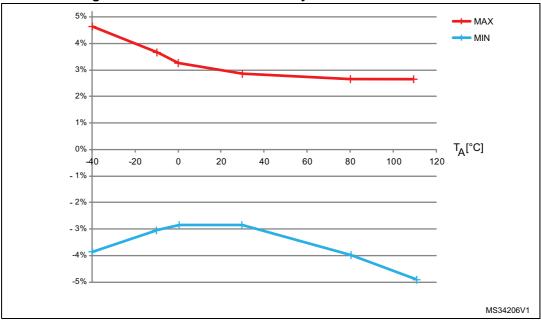

Symbol	Parameter	Conditions Min		Тур	Мах	Unit			
f _{HSI48}	Frequency	-	-	48	-	MHz			
TRIM	HSI48 user-trimming step	-	0.09 ⁽²⁾	0.14	0.2 ⁽²⁾	%			
DuCy _(HSI48)	Duty cycle	-	45 ⁽²⁾	-	55 ⁽²⁾	%			
		$T_A = -40$ to 105 °C	-4.9 ⁽³⁾	-	4.7 ⁽³⁾	%			
ACC	Accuracy of the HSI48 oscillator (factory calibrated)	T _A = −10 to 85 °C	-4.1 ⁽³⁾	-	3.7 ⁽³⁾	%			
ACC _{HSI48}		T _A = 0 to 70 °C	-3.8 ⁽³⁾	-	3.4 ⁽³⁾	%			
		T _A = 25 °C	-2.8	-	2.9	%			
t _{su(HSI48)}	HSI48 oscillator startup time	-	-	-	6 ⁽²⁾	μs			
I _{DDA(HSI48)}	HSI48 oscillator power consumption	-	-	312	350 ⁽²⁾	μA			

Table 40. HSI48 oscillator characteristics⁽¹⁾

1. V_{DDA} = 3.3 V, T_A = –40 to 105 $^\circ\text{C}$ unless otherwise specified.

2. Guaranteed by design, not tested in production.

3. Data based on characterization results, not tested in production.

Figure 21. HSI48 oscillator accuracy characterization results

4

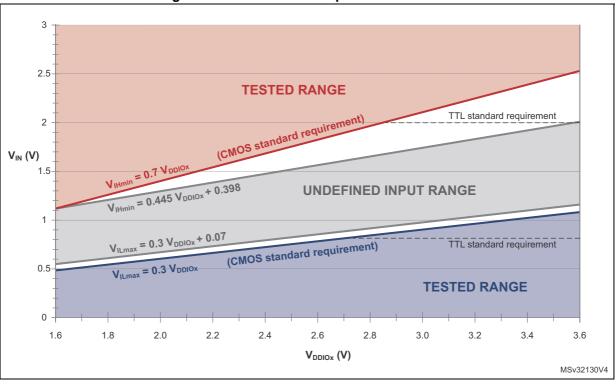
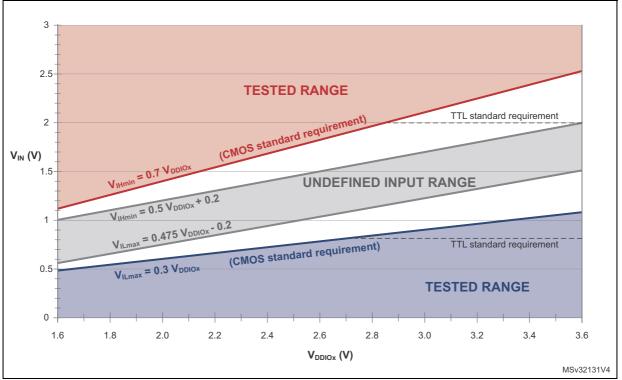



Figure 22. TC and TTa I/O input characteristics

Figure 23. Five volt tolerant (FT and FTf) I/O input characteristics

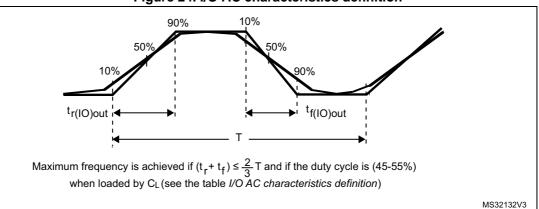

OSPEEDRy [1:0] value ⁽¹⁾	Symbol	Parameter	Conditions	Min	Max	Unit
	f _{max(IO)out}	Maximum frequency ⁽³⁾		-	2	MHz
Fm+	t _{f(IO)out}	Output fall time	C _L = 50 pF, V _{DDIOx} ≥ 2 V		12	
	t _{r(IO)out}	Output rise time		-	34	ns
configuration (4)	f _{max(IO)out}	Maximum frequency ⁽³⁾		-	0.5	MHz
	t _{f(IO)out}	Output fall time	C _L = 50 pF, V _{DDIOx} < 2 V	-	16	200
	t _{r(IO)out}	Output rise time			44	ns
-	t _{EXTIpw}	Pulse width of external signals detected by the EXTI controller	-	10	-	ns

Table 52. I/O AC characteristics⁽¹⁾⁽²⁾ (continued)

 The I/O speed is configured using the OSPEEDRx[1:0] bits. Refer to the STM32F0xxxx RM0091 reference manual for a description of GPIO Port configuration register.

2. Guaranteed by design, not tested in production.

- 3. The maximum frequency is defined in *Figure 24*.
- When Fm+ configuration is set, the I/O speed control is bypassed. Refer to the STM32F0xxxx reference manual RM0091 for a detailed description of Fm+ I/O configuration.

Figure 24. I/O AC characteristics definition

6.3.15 NRST pin characteristics

The NRST pin input driver uses the CMOS technology. It is connected to a permanent pull-up resistor, $\mathsf{R}_{\mathsf{PU}}.$

Unless otherwise specified, the parameters given in the table below are derived from tests performed under the ambient temperature and supply voltage conditions summarized in *Table 21: General operating conditions*.

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
V _{IL(NRST)}	NRST input low level voltage	-	-	-	0.3 V _{DD} +0.07 ⁽¹⁾	V
V _{IH(NRST)}	NRST input high level voltage	-	0.445 V _{DD} +0.398 ⁽¹⁾	-	-	v

Table 53. NRST pin characteristics

USB characteristics

The STM32F042x4/x6 USB interface is fully compliant with the USB specification version 2.0 and is USB-IF certified (for Full-speed device operation).

Symbol	Parameter	Conditions	Min.	Тур	Max.	Unit	
V _{DDIO2}	USB transceiver operating voltage	-	3.0 ⁽¹⁾	-	3.6	V	
t _{STARTUP} ⁽²⁾	USB transceiver startup time	-	-	-	1.0	μs	
R _{PUI}	Embedded USB_DP pull-up value during idle	-	1.1	1.26	1.5	24	
R _{PUR}	Embedded USB_DP pull-up value during reception	-	2.0	2.26	2.6	kΩ	
Z _{DRV} ⁽²⁾	Output driver impedance ⁽³⁾	Driving high and low	28	40	44	Ω	

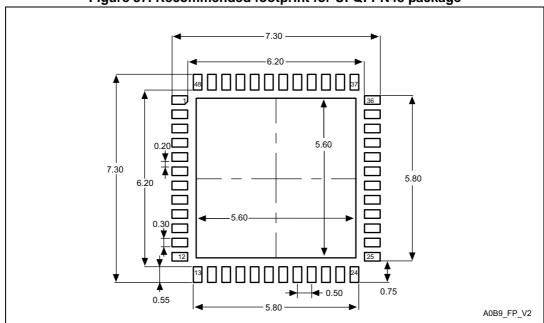
Table 65. USB electrical characterist	ics
---------------------------------------	-----

1. The STM32F042x4/x6 USB functionality is ensured down to 2.7 V but not the full USB electrical characteristics which are degraded in the 2.7-to-3.0 V voltage range.

2. Guaranteed by design, not tested in production.

3. No external termination series resistors are required on USB_DP (D+) and USB_DM (D-); the matching impedance is already included in the embedded driver.

CAN (controller area network) interface

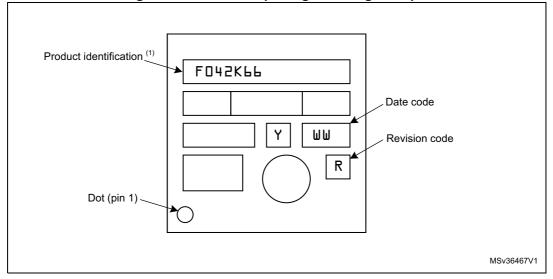

Refer to Section 6.3.14: I/O port characteristics for more details on the input/output alternate function characteristics (CAN_TX and CAN_RX).

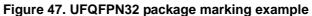
Symbol	millimeters			inches ⁽¹⁾				
	Min	Тур	Мах	Min	Тур	Мах		
А	0.500	0.550	0.600	0.0197	0.0217	0.0236		
A1	0.000	0.020	0.050	0.0000	0.0008	0.0020		
D	6.900	7.000	7.100	0.2717	0.2756	0.2795		
E	6.900	7.000	7.100	0.2717	0.2756	0.2795		
D2	5.500	5.600	5.700	0.2165	0.2205	0.2244		
E2	5.500	5.600	5.700	0.2165	0.2205	0.2244		
L	0.300	0.400	0.500	0.0118	0.0157	0.0197		
Т	-	0.152	-	-	0.0060	-		
b	0.200	0.250	0.300	0.0079	0.0098	0.0118		
е	-	0.500	-	-	0.0197	-		
ddd	-	-	0.080	-	-	0.0031		

Table 67. UFQFPN48 package mechanical data

1. Values in inches are converted from mm and rounded to 4 decimal digits.

Figure 37. Recommended footprint for UFQFPN48 package

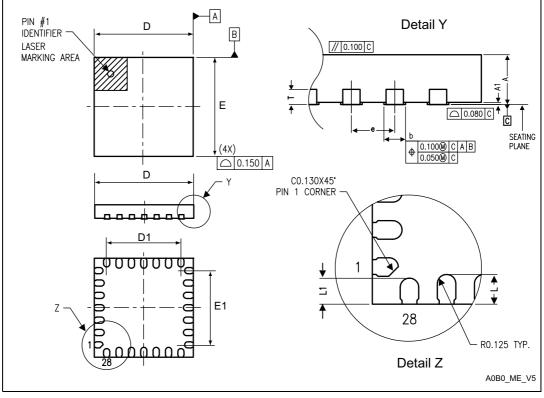

1. Dimensions are expressed in millimeters.



Device marking

The following figure gives an example of topside marking orientation versus pin 1 identifier location.

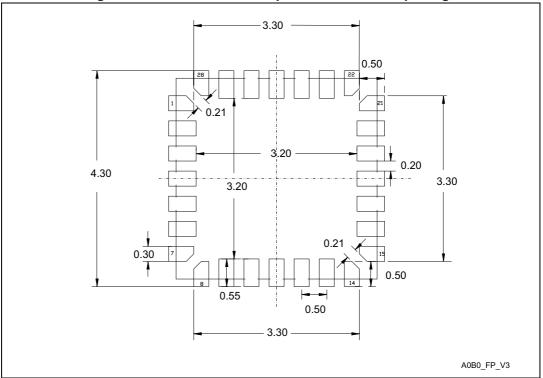
Other optional marking or inset/upset marks, which identify the parts throughout supply chain operations, are not indicated below.



 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering Samples to run qualification activity.

7.6 UFQFPN28 package information

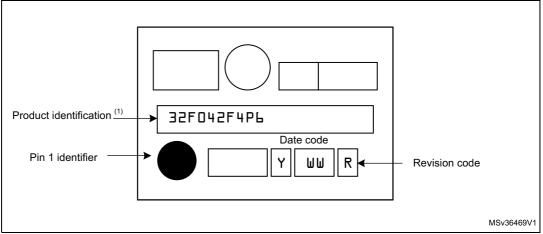
UFQFPN28 is a 28-lead, 4x4 mm, 0.5 mm pitch, ultra-thin fine-pitch quad flat package.

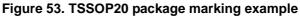

1. Drawing is not to scale.

Symbol	millimeters			inches				
	Min	Тур	Мах	Min	Тур	Мах		
А	0.500	0.550	0.600	0.0197	0.0217	0.0236		
A1	-	0.000	0.050	-	0.0000	0.0020		
D	3.900	4.000	4.100	0.1535	0.1575	0.1614		
D1	2.900	3.000	3.100	0.1142	0.1181	0.1220		
E	3.900	4.000	4.100	0.1535	0.1575	0.1614		
E1	2.900	3.000	3.100	0.1142	0.1181	0.1220		
L	0.300	0.400	0.500	0.0118	0.0157	0.0197		
L1	0.250	0.350	0.450	0.0098	0.0138	0.0177		
Т	-	0.152	-	-	0.0060	-		
b	0.200	0.250	0.300	0.0079	0.0098	0.0118		
е	-	0.500	-	-	0.0197	-		

Table 72. UFQFPN28 package mechanical data⁽¹⁾

1. Values in inches are converted from mm and rounded to 4 decimal digits.


1. Dimensions are expressed in millimeters.



Device marking

The following figure gives an example of topside marking orientation versus pin 1 identifier location.

Other optional marking or inset/upset marks, which identify the parts throughout supply chain operations, are not indicated below.

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering Samples to run qualification activity.

Each temperature range suffix corresponds to a specific guaranteed ambient temperature at maximum dissipation and, to a specific maximum junction temperature.

As applications do not commonly use the STM32F042x4/x6 at maximum dissipation, it is useful to calculate the exact power consumption and junction temperature to determine which temperature range will be best suited to the application.

The following examples show how to calculate the temperature range needed for a given application.

8 Ordering information

For a list of available options (memory, package, and so on) or for further information on any aspect of this device, please contact your nearest ST sales office.

Table 75. Order	-								
Example:	STM3	2 F	- ()42	C	6	T	6	XX
Device family									
STM32 = ARM-based 32-bit microcontroller									
Product type									
F = General-purpose									
Sub-family									
042 = STM32F042xx									
Pin count									
F = 20 pins									
G = 28 pins									
K = 32 pins									
T = 36 pins									
C = 48 pins									
User code memory size									
4 = 16 Kbyte									
6 = 32 Kbyte									
Package									
P = TSSOP									
T = LQFP									
U = UFQFPN									
Y = WLCSP									
Temperature range									
6 = -40 to 85 °C									
7 = -40 to 105 °C									
Options									

xxx = code ID of programmed parts (includes packing type) TR = tape and reel packing blank = tray packing

		76. Document revision history (continued)
Date	Revision	Changes
16-Dec-2015	4	 Section 3: Functional overview: Figure 2: Clock tree modified Section 4: Pinouts and pin descriptions: Package pinout figures updated (look and feel) Figure 5: WLCSP36 package pinout- now presented in top view Table 13: STM32F042x pin definitions - note 3 added; CIMP1_OUT and USART4_CTS removed Table 15: Alternate functions selected through GPIOB_AFR registers for port B - change of I2C2_SDA and I2C2_SCL to I2C1_SDA and I2C1_SCL Section 5: Memory mapping: Table 17: STM32F042x4/x6 peripheral register boundary addresses - change of "SYSCFG + COMP" to "SYSCFG" Section 6: Electrical characteristics: Table 50: I/O static characteristics - removed note Section 6.3.16: 12-bit ADC characteristics - changed introductory sentence Section 7: Package information: Figure 49: Recommended footprint for UFQFPN28 package distance between corner pads added
10-Jan-2017	5	 Section 6: Electrical characteristics: Table 37: LSE oscillator characteristics (fLSE = 32.768 kHz) - information on configuring different drive capabilities removed. See the corresponding reference manual. Table 25: Embedded internal reference voltage - V_{REFINT} values Figure 28: SPI timing diagram - slave mode and CPHA = 0 and Figure 29: SPI timing diagram - slave mode and CPHA = 1 enhanced and corrected Section 8: Ordering information: The name of the section changed from the previous "Part numbering"

Table 76.	Document	revision	history	(continued)	
	Dogamon	101101011		(0011111404)	

