

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M0
Core Size	32-Bit Single-Core
Speed	48MHz
Connectivity	CANbus, HDMI-CEC, I ² C, IrDA, LINbus, SPI, UART/USART, USB
Peripherals	DMA, I ² S, POR, PWM, WDT
Number of I/O	26
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	6K x 8
Voltage - Supply (Vcc/Vdd)	1.65V ~ 3.6V
Data Converters	A/D 13x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	32-LQFP
Supplier Device Package	32-LQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f042k4t6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Contents

Introd	luction	
Descr	ription .	
Funct	tional o	verview
3.1	ARM [®] -0	Cortex [®] -M0 core
3.2	Memori	es 13
3.3	Boot mo	odes
3.4	Cyclic re	edundancy check calculation unit (CRC)
3.5	Power r	nanagement
	3.5.1	Power supply schemes
	3.5.2	Power supply supervisors14
	3.5.3	Voltage regulator
	3.5.4	Low-power modes
3.6	Clocks a	and startup
3.7	General	I-purpose inputs/outputs (GPIOs) 17
3.8	Direct m	nemory access controller (DMA) 18
3.9	Interrup	ts and events
	3.9.1	Nested vectored interrupt controller (NVIC)
	3.9.2	Extended interrupt/event controller (EXTI)
3.10	Analog-	to-digital converter (ADC) 18
	3.10.1	Temperature sensor
	3.10.2	Internal voltage reference (V _{REFINT})19
	3.10.3	V _{BAT} battery voltage monitoring
3.11	Touch s	ensing controller (TSC) 20
3.12	Timers a	and watchdogs 21
	3.12.1	Advanced-control timer (TIM1)
	3.12.2	General-purpose timers (TIM2, 3, 14, 16, 17)
	3.12.3	Independent watchdog (IWDG) 23
	3.12.4	System window watchdog (WWDG)23
		SysTick timer
		ne clock (RTC) and backup registers
3.14	Inter-int	egrated circuit interface (I ² C) 24
	Desci Funct 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 3.10 3.10 3.11 3.12	Functional or 3.1 ARM®-0 3.2 Memori 3.2 Memori 3.3 Boot model 3.4 Cyclic re 3.5 Power re 3.5.1 3.5.2 3.5.3 3.5.4 3.6 Clocks at 3.7 Generat 3.8 Direct re 3.9 Interrup 3.9.1 3.9.2 3.10 Analog- 3.10.1 3.10.2 3.10.1 3.10.2 3.10.3 3.11 Touch st 3.12.1 3.12.1 3.12.3 3.12.4 3.12.4 3.12.5 3.13

DocID025832 Rev 5

		6.3.13	I/O current injection characteristics	
		6.3.14	I/O port characteristics	
		6.3.15	NRST pin characteristics	
		6.3.16	12-bit ADC characteristics	
		6.3.17	Temperature sensor characteristics	
		6.3.18	V _{BAT} monitoring characteristics	
		6.3.19	Timer characteristics	
		6.3.20	Communication interfaces	
7	Pack	age info	ormation	
	7.1	LQFP4	48 package information	
	7.2	UFQFF	PN48 package information	
	7.3	WLCS	P36 package information	
	7.4	LQFP3	2 package information	
	7.5	UFQFF	PN32 package information	101
	7.6	UFQFF	PN28 package information	105
	7.7	TSSOF	20 package information	108
	7.8	Therma	al characteristics	
		7.8.1	Reference document	
		7.8.2	Selecting the product temperature range	111
8	Ord	ering in	formation	
9	Revi	sion his	tory	

3.6 Clocks and startup

System clock selection is performed on startup, however the internal RC 8 MHz oscillator is selected as default CPU clock on reset. An external 4-32 MHz clock can be selected, in which case it is monitored for failure. If failure is detected, the system automatically switches back to the internal RC oscillator. A software interrupt is generated if enabled. Similarly, full interrupt management of the PLL clock entry is available when necessary (for example on failure of an indirectly used external crystal, resonator or oscillator).

Several prescalers allow the application to configure the frequency of the AHB and the APB domains. The maximum frequency of the AHB and the APB domains is 48 MHz.

Additionally, also the internal RC 48 MHz oscillator can be selected for system clock or PLL input source. This oscillator can be automatically fine-trimmed by the means of the CRS peripheral using the external synchronization.

	Number of capacitive sensing channels								
Analog I/O group	STM32F042Cx LQPF48 UQFPN48 WLCSP36		STM32F042Kx LQFP32 UQFPN32	STM32F042Gx UQFPN28	STM32F042Fx TSSOP20				
G1	3	3 3		3	3				
G2	3	3	3	3	3				
G3	2	2	1 2	1	0				
G4	3	3	3	1	1				
G5	3	3	3	3	0				
Number of capacitive sensing channels	14	14	13 14	11	7				

Table 6. No. of capacitive sensing channels available on STM32F042x devices

3.12 Timers and watchdogs

The STM32F042x4/x6 devices include up to five general-purpose timers and an advanced control timer.

Table 7 compares the features of the different timers.

Timer type	Timer	Counter resolution	Counter type			Capture/compare channels	Complementary outputs				
Advanced control	TIM1	16-bit	Up, down, up/down	integer from 1 to 65536	Yes	4	3				
	TIM2	32-bit	Up, down, up/down	integer from 1 to 65536	Yes	4	-				
General purpose	TIM3	16-bit	Up, down, up/down	integer from 1 to 65536	Yes	4	-				
	TIM14	16-bit	Up	integer from 1 to 65536	No	1	-				
	TIM16 TIM17	16-bit	Up	integer from 1 to 65536	Yes	1	1				

Table 7. Timer feature comparison

3.12.1 Advanced-control timer (TIM1)

The advanced-control timer (TIM1) can be seen as a three-phase PWM multiplexed on six channels. It has complementary PWM outputs with programmable inserted dead times. It

The RTC is an independent BCD timer/counter. Its main features are the following:

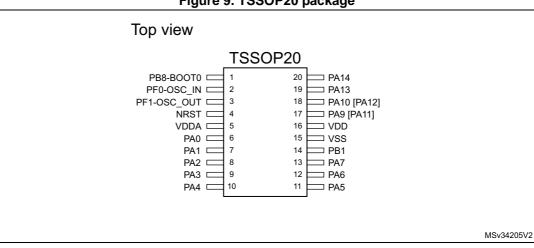
- calendar with subseconds, seconds, minutes, hours (12 or 24 format), week day, date, month, year, in BCD (binary-coded decimal) format
- automatic correction for 28, 29 (leap year), 30, and 31 day of the month
- programmable alarm with wake up from Stop and Standby mode capability
- on-the-fly correction from 1 to 32767 RTC clock pulses. This can be used to synchronize the RTC with a master clock
- digital calibration circuit with 1 ppm resolution, to compensate for quartz crystal inaccuracy
- two anti-tamper detection pins with programmable filter. The MCU can be woken up from Stop and Standby modes on tamper event detection
- timestamp feature which can be used to save the calendar content. This function can be triggered by an event on the timestamp pin, or by a tamper event. The MCU can be woken up from Stop and Standby modes on timestamp event detection
- reference clock detection: a more precise second source clock (50 or 60 Hz) can be used to enhance the calendar precision

The RTC clock sources can be:

- a 32.768 kHz external crystal
- a resonator or oscillator
- the internal low-power RC oscillator (typical frequency of 40 kHz)
- the high-speed external clock divided by 32

3.14 Inter-integrated circuit interface (I²C)

The I²C interface (I2C1) can operate in multimaster or slave modes. It can support Standard mode (up to 100 kbit/s), Fast mode (up to 400 kbit/s) and Fast Mode Plus (up to 1 Mbit/s) with 20 mA output drive.


It supports 7-bit and 10-bit addressing modes, multiple 7-bit slave addresses (two addresses, one with configurable mask). It also includes programmable analog and digital noise filters.

Aspect	Analog filter	Digital filter
Pulse width of suppressed spikes	≥ 50 ns	Programmable length from 1 to 15 I2Cx peripheral clocks
Benefits	Available in Stop mode	 Extra filtering capability vs. standard requirements Stable length
Drawbacks	Variations depending on temperature, voltage, process	Wakeup from Stop on address match is not available when digital filter is enabled.

Table 8. Comparison of I ² C analog and dig	igital filters
--	----------------

In addition, I2C1 provides hardware support for SMBUS 2.0 and PMBUS 1.1: ARP capability, Host notify protocol, hardware CRC (PEC) generation/verification, timeouts verifications and ALERT protocol management. I2C1 also has a clock domain independent

Figure 9. TSSOP20 package

1. Pin pair PA11/12 can be remapped in place of pin pair PA9/10 using the SYSCFG_CFGR1 register.

Table 12. Legend/abbreviations used in the pinout table

Na	me	Abbreviation	Abbreviation Definition					
Pin r	name		specified in brackets below the pin name, the pin function during and ame as the actual pin name					
		S	Supply pin					
Pin	type	I/O	Input / output pin					
		FT	5 V-tolerant I/O					
		FTf	5 V-tolerant I/O, FM+ capable					
		ТТа	3.3 V-tolerant I/O directly connected to ADC					
I/O str	ucture	TC	Standard 3.3 V I/O					
		RST	RST Bidirectional reset pin with embedded weak pull-up resistor					
No	tes	Unless otherwise s reset.	specified by a note, all I/Os are set as floating inputs during and after					
Pin	Alternate functions	Functions selected	through GPIOx_AFR registers					
functions	Additional functions	Functions directly	selected/enabled through peripheral registers					

		Pin ni	umbe	rs						Pin functions		
LQFP48/UFQFPN48	WLCSP36	LQFP32	UFQFPN32	UFQFPN28	TSSPOP20	Pin name (function upon reset)	Pin type	I/O structure	Notes	Alternate function	Additional functions	
14	C3	10	10	10	10	PA4	I/O	ТТа	-	SPI1_NSS, I2S1_WS, TIM14_CH1, TSC_G2_IO1, USART2_CK USB_NOE	ADC_IN4	
15	D3	11	11	11	11	PA5	I/O	ТТа	-	SPI1_SCK, I2S1_CK, CEC, TIM2_CH1_ETR, TSC_G2_IO2	ADC_IN5	
16	E3	12	12	12	12	PA6	I/O	TTa	-	SPI1_MISO, I2S1_MCK, TIM3_CH1, TIM1_BKIN, TIM16_CH1, TSC_G2_IO3, EVENTOUT	ADC_IN6	
17	F4	13	13	13	13	PA7	I/O	TTa	-	SPI1_MOSI, I2S1_SD, TIM3_CH2, TIM14_CH1, TIM1_CH1N, TIM17_CH1, TSC_G2_IO4, EVENTOUT	ADC_IN7	
18	F3	14	14	14	-	PB0	I/O	ТТа	-	TIM3_CH3, TIM1_CH2N, TSC_G3_IO2, EVENTOUT	ADC_IN8	
19	F2	15	15	15	14	PB1	I/O	ТТа	-	TIM3_CH4, TIM14_CH1, TIM1_CH3N, TSC_G3_IO3	ADC_IN9	
20	D2	-	16	-	-	PB2	I/O	FT	-	TSC_G3_IO4	-	
21	-	-	-	-	-	PB10	I/O	FTf	-	SPI2_SCK, CEC, TSC_SYNC, TIM2_CH3, I2C1_SCL	-	
22	-	-	-	-	-	PB11	I/O	FTf	-	TIM2_CH4, EVENTOUT, I2C1_SDA	-	
23	F1	16	0	16	15	VSS	S	-	-	Ground		
24	-	-	-	17	16	VDD	S	-	I	Digital power su	ipply	
25	-	-	-	-	-	PB12	I/O	FT	-	TIM1_BKIN, SPI2_NSS, EVENTOUT	-	

Table	13. STM32F042>	c pin d	lefinit	ions	(continued)

6.1.6 Power supply scheme

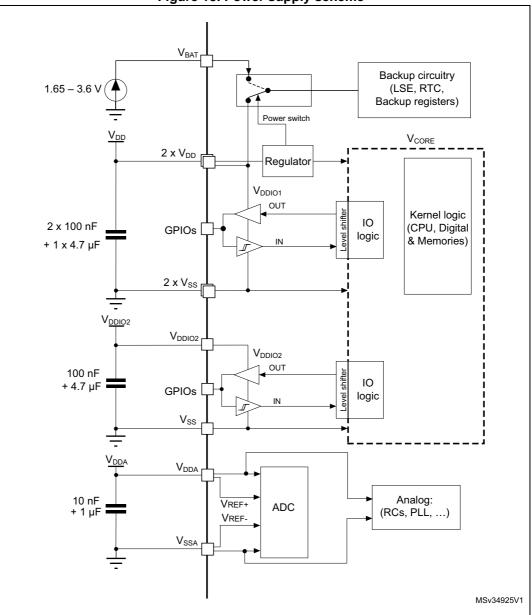


Figure 13. Power supply scheme

Caution: Each power supply pair (V_{DD}/V_{SS}, V_{DDA}/V_{SSA} etc.) must be decoupled with filtering ceramic capacitors as shown above. These capacitors must be placed as close as possible to, or below, the appropriate pins on the underside of the PCB to ensure the good functionality of the device.

Symbol					Тур @	V _{BAT}						
	Parameter	Conditions	1.65 V	1.8 V	2.4 V	2.7 V	3.3 V	3.6 V	T _A = 25 °C	T _A = 85 °C	T _A = 105 °C	Unit
	RTC domain	LSE & RTC ON; "Xtal mode": lower driving capability; LSEDRV[1:0] = '00'	0.5	0.5	0.6	0.7	0.9	1.1	1.2	1.5	2.0	
IDD_VBAT	supply current	LSE & RTC ON; "Xtal mode" higher driving capability; LSEDRV[1:0] = '11'	0.8	0.9	1.1	1.2	1.4	1.5	1.6	2.0	2.6	μA

Table 29. Typical and maximum current consumption from the $\rm V_{BAT}$ supply

1. Data based on characterization results, not tested in production.

Typical current consumption

The MCU is placed under the following conditions:

- V_{DD} = V_{DDA} = 3.3 V
- All I/O pins are in analog input configuration
- The Flash memory access time is adjusted to f_{HCLK} frequency:
 - 0 wait state and Prefetch OFF from 0 to 24 MHz
 - 1 wait state and Prefetch ON above 24 MHz
- When the peripherals are enabled, f_{PCLK} = f_{HCLK}
- PLL is used for frequencies greater than 8 MHz
- AHB prescaler of 2, 4, 8 and 16 is used for the frequencies 4 MHz, 2 MHz, 1 MHz and 500 kHz respectively

High-speed external clock generated from a crystal/ceramic resonator

The high-speed external (HSE) clock can be supplied with a 4 to 32 MHz crystal/ceramic resonator oscillator. All the information given in this paragraph are based on design simulation results obtained with typical external components specified in *Table 36*. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy).

Symbol	Parameter	Conditions ⁽¹⁾	Min ⁽²⁾	Тур	Max ⁽²⁾	Unit
f _{OSC_IN}	Oscillator frequency	-	4	8	32	MHz
R _F	Feedback resistor	-	-	200	-	kΩ
		During startup ⁽³⁾	-	-	8.5	
		V _{DD} = 3.3 V, Rm = 30 Ω, CL = 10 pF@8 MHz	-	0.4	-	
		V _{DD} = 3.3 V, Rm = 45 Ω, CL = 10 pF@8 MHz	-	0.5	-	
I _{DD}	HSE current consumption	V _{DD} = 3.3 V, Rm = 30 Ω, CL = 5 pF@32 MHz	-	0.8	-	mA
		V _{DD} = 3.3 V, Rm = 30 Ω, CL = 10 pF@32 MHz	-	1	-	
		V _{DD} = 3.3 V, Rm = 30 Ω, CL = 20 pF@32 MHz	-	1.5	-	
9 _m	Oscillator transconductance	Startup	10	-	-	mA/V
t _{SU(HSE)} ⁽⁴⁾	Startup time	V _{DD} is stabilized	-	2	-	ms

	Table 36.	HSE	oscillator	characteristics
--	-----------	-----	------------	-----------------

1. Resonator characteristics given by the crystal/ceramic resonator manufacturer.

2. Guaranteed by design, not tested in production.

3. This consumption level occurs during the first 2/3 of the $t_{\mbox{SU(HSE)}}$ startup time

4. t_{SU(HSE)} is the startup time measured from the moment it is enabled (by software) to a stabilized 8 MHz oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer

For C_{L1} and C_{L2} , it is recommended to use high-quality external ceramic capacitors in the 5 pF to 20 pF range (Typ.), designed for high-frequency applications, and selected to match the requirements of the crystal or resonator (see *Figure 17*). C_{L1} and C_{L2} are usually the same size. The crystal manufacturer typically specifies a load capacitance which is the series combination of C_{L1} and C_{L2} . PCB and MCU pin capacitance must be included (10 pF can be used as a rough estimate of the combined pin and board capacitance) when sizing C_{L1} and C_{L2} .

Note: For information on selecting the crystal, refer to the application note AN2867 "Oscillator design guide for ST microcontrollers" available from the ST website www.st.com.

DocID025832 Rev 5

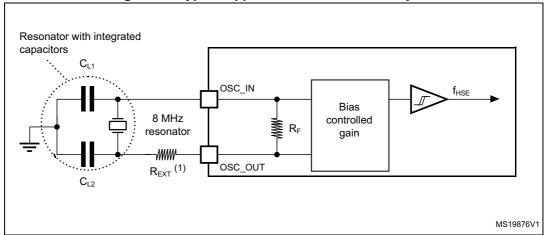


Figure 17. Typical application with an 8 MHz crystal

1. R_{EXT} value depends on the crystal characteristics.

Low-speed external clock generated from a crystal resonator

The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal resonator oscillator. All the information given in this paragraph are based on design simulation results obtained with typical external components specified in *Table 37*. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy).

Symbol	Parameter	Conditions ⁽¹⁾	Min ⁽²⁾	Тур	Max ⁽²⁾	Unit
		low drive capability	-	0.5	0.9	
I _{DD}	LSE current consumption	medium-low drive capability	-	-	1	
	LSE current consumption	medium-high drive capability		-	1.3	μA
		high drive capability	-	-	1.6	
	Oscillator transconductance	low drive capability	5	-	-	
9 _m		medium-low drive capability		-	-	µA/V
		transconductance medium-high drive capability		-	-	
	high drive capability		25	-	-	
t _{SU(LSE)} ⁽³⁾	Startup time	V _{DDIOx} is stabilized	-	2	-	S

1. Refer to the note and caution paragraphs below the table, and to the application note AN2867 "Oscillator design guide for ST microcontrollers".

2. Guaranteed by design, not tested in production.

 t_{SU(LSE)} is the startup time measured from the moment it is enabled (by software) to a stabilized 32.768 kHz oscillation is reached. This value is measured for a standard crystal and it can vary significantly with the crystal manufacturer

Prescaler divider	PR[2:0] bits	Min timeout RL[11:0]= 0x000	Max timeout RL[11:0]= 0xFFF	Unit		
/4	0	0.1	409.6			
/8	1	0.2	819.2			
/16	2	0.4	1638.4			
/32	3	0.8	3276.8	ms		
/64	4	1.6	6553.6			
/128	5	3.2	13107.2			
/256	6 or 7	6.4	26214.4			

Table 60. IWDG min/max timeout period at 40 kHz (LSI)⁽¹⁾

1. These timings are given for a 40 kHz clock but the microcontroller internal RC frequency can vary from 30 to 60 kHz. Moreover, given an exact RC oscillator frequency, the exact timings still depend on the phasing of the APB interface clock versus the LSI clock so that there is always a full RC period of uncertainty.

Prescaler	WDGTB	Min timeout value	Max timeout value	Unit
1	0	0.0853	5.4613	
2	1	0.1706	10.9226	me
4	2	0.3413	21.8453	ms
8	3	0.6826	43.6906	

Table 61. WWDG min/max timeout value at 48 MHz (PCLK)

6.3.20 Communication interfaces

I²C interface characteristics

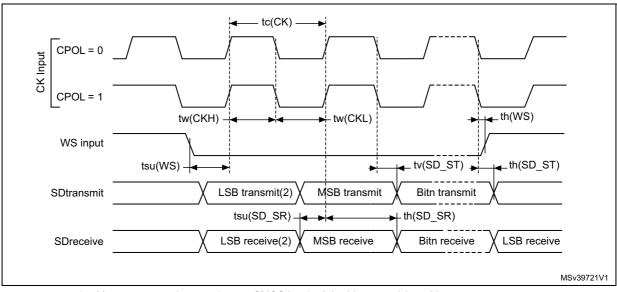
The I^2C interface meets the timings requirements of the I^2C -bus specification and user manual rev. 03 for:

- Standard-mode (Sm): with a bit rate up to 100 kbit/s
- Fast-mode (Fm): with a bit rate up to 400 kbit/s
- Fast-mode Plus (Fm+): with a bit rate up to 1 Mbit/s.

The I²C timings requirements are guaranteed by design when the I2Cx peripheral is properly configured (refer to Reference manual).

The SDA and SCL I/O requirements are met with the following restrictions: the SDA and SCL I/O pins are not "true" open-drain. When configured as open-drain, the PMOS connected between the I/O pin and V_{DDIOx} is disabled, but is still present. Only FTf I/O pins support Fm+ low level output current maximum requirement. Refer to Section 6.3.14: I/O port characteristics for the I²C I/Os characteristics.

All I²C SDA and SCL I/Os embed an analog filter. Refer to the table below for the analog filter characteristics:



Symbol	Parameter	Conditions	Min	Мах	Unit	
t _{su(SD_MR)}	Data input setup time	Master receiver	6	-		
t _{su(SD_SR)}		Slave receiver	2	-		
t _{h(SD_MR)} ⁽²⁾	Data input hold time	Master receiver	4	-		
t _{h(SD_SR)} ⁽²⁾	Data input hold time	Slave receiver	0.5	-		
t _{v(SD_MT)} ⁽²⁾	Data output valid time	Master transmitter	-	4	ns	
t _{v(SD_ST)} ⁽²⁾		Slave transmitter	-	20		
t _{h(SD_MT)}	Data output hold time	Master transmitter	0	-]	
t _{h(SD_ST)}		Slave transmitter	13	-		

Table 64. I²S characteristics⁽¹⁾ (continued)

1. Data based on design simulation and/or characterization results, not tested in production.

2. Depends on f_{PCLK} . For example, if f_{PCLK} = 8 MHz, then T_{PCLK} = 1/ f_{PLCLK} = 125 ns.

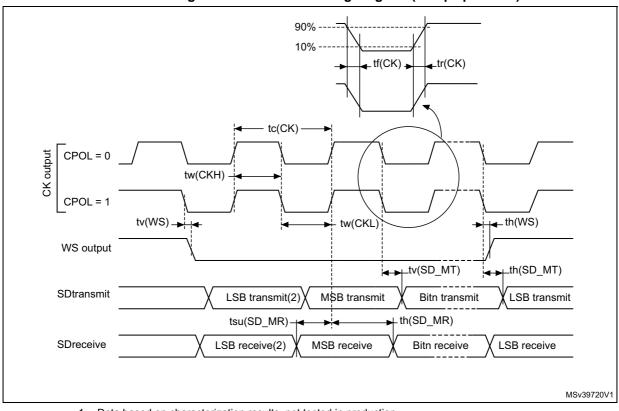
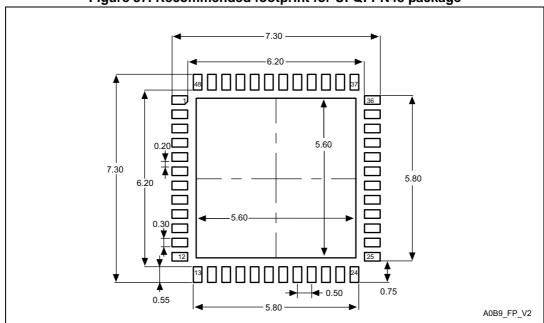


Figure 31. I²S slave timing diagram (Philips protocol)

1. Measurement points are done at CMOS levels: 0.3 × V_{DDIOx} and 0.7 × V_{DDIOx}

2. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first byte.

Figure 32. I²S master timing diagram (Philips protocol)


- 1. Data based on characterization results, not tested in production.
- 2. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first byte.

Quarter at	millimeters			inches ⁽¹⁾			
Symbol	Min	Тур	Мах	Min	Тур	Мах	
А	0.500	0.550	0.600	0.0197	0.0217	0.0236	
A1	0.000	0.020	0.050	0.0000	0.0008	0.0020	
D	6.900	7.000	7.100	0.2717	0.2756	0.2795	
E	6.900	7.000	7.100	0.2717	0.2756	0.2795	
D2	5.500	5.600	5.700	0.2165	0.2205	0.2244	
E2	5.500	5.600	5.700	0.2165	0.2205	0.2244	
L	0.300	0.400	0.500	0.0118	0.0157	0.0197	
Т	-	0.152	-	-	0.0060	-	
b	0.200	0.250	0.300	0.0079	0.0098	0.0118	
е	-	0.500	-	-	0.0197	-	
ddd	-	-	0.080	-	-	0.0031	

Table 67. UFQFPN48 package mechanical data

1. Values in inches are converted from mm and rounded to 4 decimal digits.

Figure 37. Recommended footprint for UFQFPN48 package

1. Dimensions are expressed in millimeters.

7.3 WLCSP36 package information

WLCSP36 is a 36-ball, 2.605 x 2.703 mm, 0.4 mm pitch wafer-level chip-scale package.

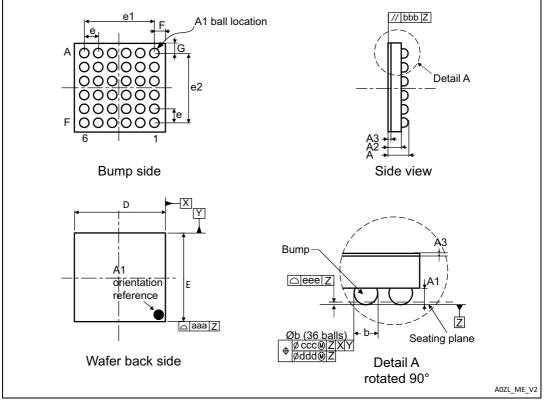


Figure 39. WLCSP36 package outline

1. Drawing is not to scale.

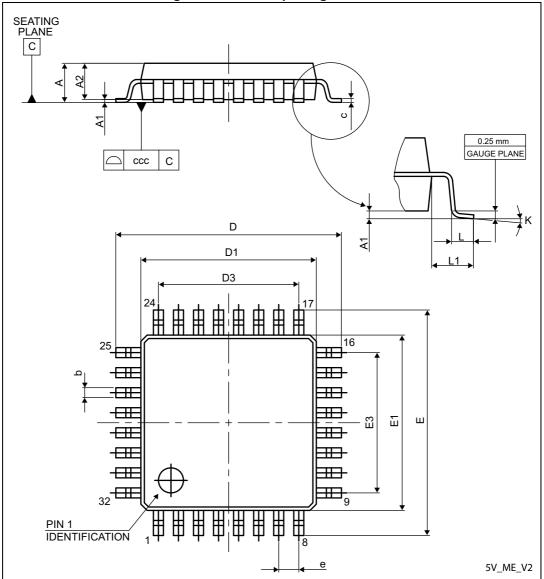
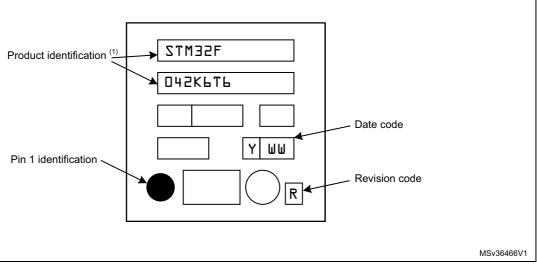

Symbol	millimeters			inches ⁽¹⁾		
Symbol	Min	Тур	Мах	Min	Тур	Max
А	0.525	0.555	0.585	0.0207	0.0219	0.0230
A1	-	0.175	-	-	0.0069	-
A2	-	0.380	-	-	0.0150	-
A3 ⁽²⁾	-	0.025	-	-	0.0010	-
b ⁽³⁾	0.220	0.250	0.280	0.0087	0.0098	0.0110
D	2.570	2.605	2.640	0.1012	0.1026	0.1039
E	2.668	2.703	2.738	0.1050	0.1064	0.1078
е	-	0.400	-	-	0.0157	-
e1	-	2.000	-	-	0.0787	-
e2	-	2.000	-	-	0.0787	-

Table 68. WLCSP36 package mechanical data

7.4 LQFP32 package information

LQFP32 is a 32-pin, 7 x 7 mm low-profile quad flat package.


1. Drawing is not to scale.

Device marking

The following figure gives an example of topside marking orientation versus pin 1 identifier location.

Other optional marking or inset/upset marks, which identify the parts throughout supply chain operations, are not indicated below.

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering Samples to run qualification activity.

7.5 UFQFPN32 package information

UFQFPN32 is a 32-pin, 5x5 mm, 0.5 mm pitch ultra-thin fine-pitch quad flat package.

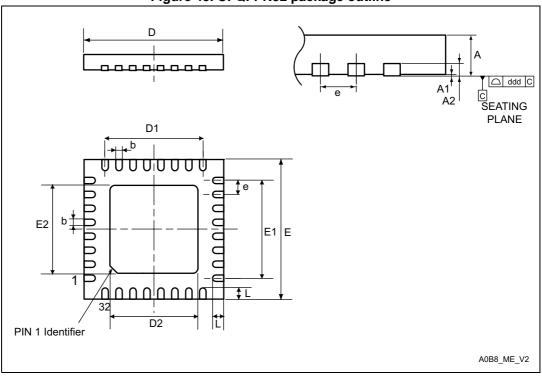


Figure 45. UFQFPN32 package outline

1. Drawing is not to scale.

- 2. All leads/pads should also be soldered to the PCB to improve the lead/pad solder joint life.
- 3. There is an exposed die pad on the underside of the UFQFPN package. This pad is used for the device ground and must be connected. It is referred to as pin 0 in *Table: Pin definitions*.

Revision	Changes
Revision	 Table 9: STM32F042x4/x6 I²C implementation - adding 20 mA Updates in Section 4: Pinouts and pin descriptions Table 12: Legend/abbreviations used in the pinout table - removing "I" pin type Updates in Section 5: Memory mapping: Figure 10: STM32F042x6 memory map, x4 difference described in text Updates in Section 6: Electrical characteristics: the condition "Regulator in run mode, all oscillators OFF" in Table 28: Typical and maximum consumption in Stop and Standby modes, footnote for V_{IN} max value in Table 18: Voltage characteristics, footnote for max V_{IN} in Table 21: General operating conditions, t_{START} parameter definition in Table 25: Embedded internal reference voltage addition of t_{START} parameter in Table 25: Embedded internal reference voltage, removal of -40°C to 85°C condition and the associated footnote Table 26: Typical and maximum current consumption from VDD supply at VDD = 3.6 V: removing "code executing from Flash or RAM" removal of the min value for t_{START} parameter in Table 58: VBAT monitoring characteristics removal of Res_{TM} parameter line from Table 59: TIMx characteristics and putting all values in new Typ column, substitution of t_{COUNTER} with t_{MAX_COUNT}, values defined as powers of two V_{ESD(CDM)} class in Table 47: ESD absolute maximum ratings reorganization of Table 64: I²S characteristics and filling max value of t_{v(SD_ST)} adding definition of levels in Figure 32: I²S master timing diagram (Philips protocol) Updates in Section 7: Package information: heading and display of columns in Table 68: WLCSP36 package mechanical data.,
	 Updates in Section 7: Package information: heading and display of columns in Table 68: WLCSP36 package mechanical data., Figure 38: UFQFPN48 package marking example
	 Figure 41: WLCSP36 package marking example Figure 50: UFQFPN28 package marking example Figure 41: WLCSP36 package marking example Figure 51: TSSOP20 package outline - correcting GAGE to GAUGE removing "die 445" from Table 74: Package thermal characteristics Updates in Section 8: Part numbering: adding tray packing to options

Table 76.	Document	revision	historv	(continued))
	Dogamon	101101011		(ooninaoa)	,

