

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M0
Core Size	32-Bit Single-Core
Speed	48MHz
Connectivity	CANbus, HDMI-CEC, I ² C, IrDA, LINbus, SPI, UART/USART, USB
Peripherals	DMA, I ² S, POR, PWM, WDT
Number of I/O	26
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	·
RAM Size	6K x 8
Voltage - Supply (Vcc/Vdd)	1.65V ~ 3.6V
Data Converters	A/D 13x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	32-LQFP
Supplier Device Package	32-LQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f042k6t7

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

USART modes/features ⁽¹⁾	USART1	USART2
Modbus communication	Х	-
Auto baud rate detection	Х	-
Driver Enable	Х	Х

Table 10. STM32F042x4/x6 USART implementation (continued)

1. X = supported.

3.16 Serial peripheral interface (SPI) / Inter-integrated sound interface (I²S)

Up to two SPIs are able to communicate up to 18 Mbit/s in slave and master modes in fullduplex and half-duplex communication modes. The 3-bit prescaler gives 8 master mode frequencies and the frame size is configurable from 4 bits to 16 bits.

One standard I²S interface (multiplexed with SPI1) supporting four different audio standards can operate as master or slave at half-duplex communication mode. It can be configured to transfer 16 and 24 or 32 bits with 16-bit or 32-bit data resolution and synchronized by a specific signal. Audio sampling frequency from 8 kHz up to 192 kHz can be set by an 8-bit programmable linear prescaler. When operating in master mode, it can output a clock for an external audio component at 256 times the sampling frequency.

SPI features ⁽¹⁾ SPI1 SPI2								
SFIleatures	3511	3612						
Hardware CRC calculation	Х	Х						
Rx/Tx FIFO	Х	Х						
NSS pulse mode	Х	Х						
I ² S mode	Х	-						
TI mode	Х	Х						

Table 11. STM32F042x4/x6 SPI/I²S implementation

1. X = supported.

3.17 High-definition multimedia interface (HDMI) - consumer electronics control (CEC)

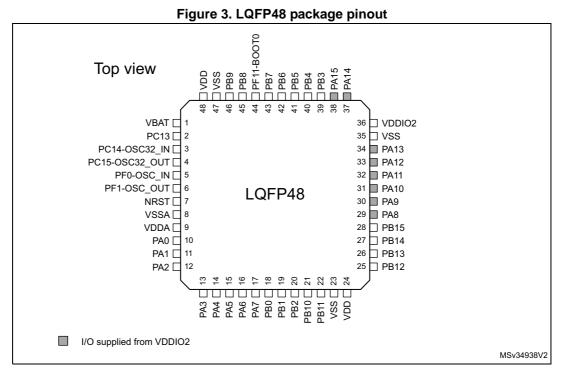
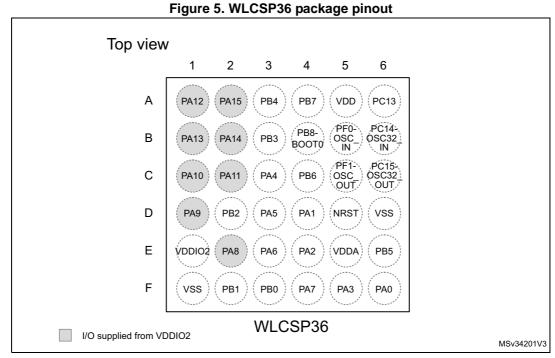
The device embeds a HDMI-CEC controller that provides hardware support for the Consumer Electronics Control (CEC) protocol (Supplement 1 to the HDMI standard).

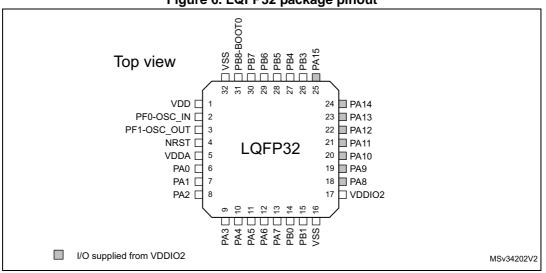
This protocol provides high-level control functions between all audiovisual products in an environment. It is specified to operate at low speeds with minimum processing and memory overhead. It has a clock domain independent from the CPU clock, allowing the HDMI_CEC controller to wakeup the MCU from Stop mode on data reception.

3.18 Controller area network (CAN)

The CAN is compliant with specifications 2.0A and B (active) with a bit rate up to 1 Mbit/s. It can receive and transmit standard frames with 11-bit identifiers as well as extended frames

4 Pinouts and pin descriptions


Figure 4. UFQFPN48 package pinout

1. The above figure shows the package in top view, changing from bottom view in the previous document versions.

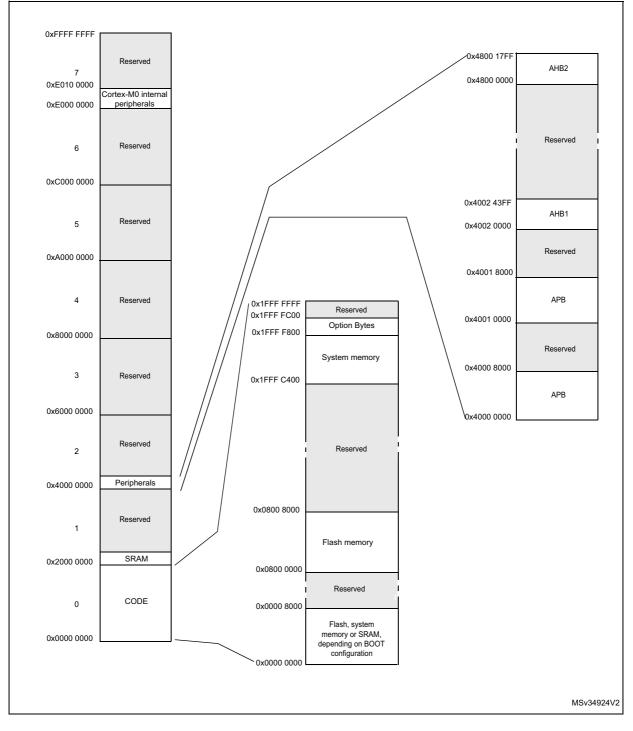


Figure 6. LQFP32 package pinout

5 Memory mapping

To the difference of STM32F042x6 memory map in *Figure 10*, the two bottom code memory spaces of STM32F042x4 end at 0x0000 3FFF and 0x0800 3FFF, respectively.

Symbol	Ratings	Max.	Unit
ΣI _{VDD}	Total current into sum of all VDD power lines (source) ⁽¹⁾	120	
ΣI_{VSS}	Total current out of sum of all VSS ground lines (sink) ⁽¹⁾	-120	
I _{VDD(PIN)}	Maximum current into each VDD power pin (source) ⁽¹⁾	100	
I _{VSS(PIN)}	Maximum current out of each VSS ground pin (sink) ⁽¹⁾	-100	
	Output current sunk by any I/O and control pin	25	
I _{IO(PIN)}	Output current source by any I/O and control pin	-25	
	Total output current sunk by sum of all I/Os and control pins ⁽²⁾	80	
ΣΙ _{ΙΟ(ΡΙΝ)}	Total output current sourced by sum of all I/Os and control pins ⁽²⁾	-80	mA
	Total output current sourced by sum of all I/Os supplied by VDDIO2	-40	
	Injected current on FT and FTf pins	-5/+0 ⁽⁴⁾	
I _{INJ(PIN)} ⁽³⁾	Injected current on TC and RST pin	± 5	
	Injected current on TTa pins ⁽⁵⁾	± 5	1
ΣΙ _{INJ(PIN)}	Total injected current (sum of all I/O and control pins) ⁽⁶⁾	± 25	1

Table 19. Current characteristics

1. All main power (VDD, VDDA) and ground (VSS, VSSA) pins must always be connected to the external power supply, in the permitted range.

2. This current consumption must be correctly distributed over all I/Os and control pins. The total output current must not be sunk/sourced between two consecutive power supply pins referring to high pin count QFP packages.

3. A positive injection is induced by $V_{IN} > V_{DDIOx}$ while a negative injection is induced by $V_{IN} < V_{SS}$. $I_{INJ(PIN)}$ must never be exceeded. Refer to *Table 18: Voltage characteristics* for the maximum allowed input voltage values.

4. Positive injection is not possible on these I/Os and does not occur for input voltages lower than the specified maximum value.

5. On these I/Os, a positive injection is induced by $V_{IN} > V_{DDA}$. Negative injection disturbs the analog performance of the device. See note ⁽²⁾ below *Table 56: ADC accuracy*.

6. When several inputs are submitted to a current injection, the maximum $\Sigma I_{INJ(PIN)}$ is the absolute sum of the positive and negative injected currents (instantaneous values).

Table 20. Thermal characteristics

Symbol	Ratings	Value	Unit
T _{STG}	Storage temperature range	–65 to +150	°C
TJ	Maximum junction temperature	150	°C

6.3 Operating conditions

6.3.1 General operating conditions

Symbol	Parameter	Conditions	Min	Max	Unit	
f _{HCLK}	Internal AHB clock frequency	-	0	48		
f _{PCLK}	Internal APB clock frequency	-	0	48	MHz	
V _{DD}	Standard operating voltage	-	2.0	3.6	V	
V _{DDIO2}	I/O supply voltage Must not be supplied if V _{DD} is not present		1.65	3.6	V	
M	Analog operating voltage (ADC not used)	Must have a potential equal	V_{DD}	3.6	V	
V _{DDA}	Analog operating voltage (ADC used)	to or higher than V _{DD}	2.4	3.6	v	
V _{BAT}	Backup operating voltage	-	1.65	3.6	V	
	I/O input voltage	TC and RST I/O	-0.3	V _{DDIOx} +0.3		
V _{IN}		TTa I/O	-0.3	V _{DDA} +0.3 ⁽¹⁾	V	
		FT and FTf I/O	-0.3	5.5 ⁽¹⁾		
		LQFP48	-	364		
		UFQFPN48	-	606		
	Power dissipation at $T_A = 85 \degree C$	WLCSP36	-	313		
P _D	for suffix 6 or $T_A = 105 \text{ °C}$ for	LQFP32	-	351	mW	
	suffix 7 ⁽²⁾	UFQFPN32	-	526		
		UFQFPN28	-	170		
		TSSOP20	-	263		
	Ambient temperature for the	Maximum power dissipation	-40	85	°C	
Та	suffix 6 version	Low power dissipation ⁽³⁾	-40	105	- °C	
IA	Ambient temperature for the	Maximum power dissipation	-40	105	°C	
	suffix 7 version	Low power dissipation ⁽³⁾	-40	125	U	
TJ	lupation tomperature range	Suffix 6 version	-40	105	°C	
IJ	Junction temperature range	Suffix 7 version	-40	125	-0	

Table 21. General operating conditions

1. For operation with a voltage higher than V_{DDIOx} + 0.3 V, the internal pull-up resistor must be disabled.

2. If T_A is lower, higher P_D values are allowed as long as T_J does not exceed T_{Jmax} . See Section 7.8: Thermal characteristics.

3. In low power dissipation state, T_A can be extended to this range as long as T_J does not exceed T_{Jmax} (see Section 7.8: Thermal characteristics).

6.3.2 Operating conditions at power-up / power-down

The parameters given in *Table 22* are derived from tests performed under the ambient temperature condition summarized in *Table 21*.

	er			All	peripher	als enab	oled ⁽¹⁾	All	periphe	rals disa	abled		
Symbol	Parameter	Conditions	f _{HCLK}		M	lax @ T ₄	(2)		м	ax @ T _A	(2)	Unit	
Sy	Para			Тур	25 °C	85 °C	105 °C	Тур	25 °C	85 °C	105 °C		
		HSI48	48 MHz	19.3	21.9	22.1	23.7	11.9	13.4	13.6	13.7		
			48 MHz	19.2	21.8 ⁽³⁾	22.0	22.1 ⁽³⁾	11.7	13.3 ⁽³⁾	13.5	13.7 ⁽³⁾		
	ode, AM	HSE bypass, PLL on	32 MHz	13.4	15.8	15.9	16.0	7.9	8.8	8.9	9.7		
	2 2 2 2		24 MHz	10.3	12.6	13.0	13.4	6.2	8.0	8.2	8.3		
	Supply current in Run mode, code executing from RAM	HSE bypass,	8 MHz	3.6	4.1	4.3	4.4	2.0	2.1	2.1	2.5		
		PLL off	1 MHz	0.8	0.9	0.9	1.1	0.4	0.5	0.6	0.8		
	curr exec		48 MHz	19.5	22.0	22.1	22.5	11.8	13.6	13.8	13.9		
	pply ode (pply ode	HSI clock, PLL on	32 MHz	13.5	16.3	16.4	16.6	8.0	8.8	9.1	9.9	
	Sul	N N N	24 MHz	10.5	12.8	13.0	13.8	6.5	8.0	8.1	8.4		
		HSI clock, PLL off	8 MHz	3.7	4.7	5.0	5.3	2.1	2.3	2.4	3.0		
I _{DD}		HSI48	48 MHz	12.4	15.1	16.3	16.7	3.0	3.2	3.3	3.4	mA	
			48 MHz	12.3	15.0 ⁽³⁾	16.0	16.2 ⁽³⁾	2.9	3.2 ⁽³⁾	3.3	3.4 ⁽³⁾		
	node	HSE bypass, PLL on	32 MHz	8.5	10.6	11.2	11.7	1.9	2.1	2.2	2.5		
	ep n		24 MHz	6.5	8.1	8.5	8.7	1.6	1.8	1.8	1.9		
	l Sle	HSE bypass,	8 MHz	2.3	3.0	3.1	3.2	0.7	0.8	0.8	0.9		
	ent ir	PLL off	1 MHz	0.4	0.4	0.4	0.6	0.1	0.3	0.3	0.4		
	Supply current in Sleep mode		48 MHz	12.4	15.3	15.7	15.9	3.0	3.0	3.2	3.4		
	, ylq	HSI clock, PLL on	32 MHz	8.6	10.7	11.3	11.6	2.1	2.2	2.2	2.5		
	Sup		24 MHz	6.6	8.4	8.7	8.9	1.6	1.6	1.7	1.9		
		HSI clock, PLL off	8 MHz	2.4	3.2	3.4	3.6	0.6	0.8	0.9	1.0		

Table 26. Typical and maximum current consumption from V_{DD} supply at V_{DD} = 3.6 V (continued)

1. USB is kept disabled as this IP functions only with a 48 MHz clock.

2. Data based on characterization results, not tested in production unless otherwise specified.

3. Data based on characterization results and tested in production (using one common test limit for sum of I_{DD} and I_{DDA}).

					Typ @ V _{BAT}						Max ⁽¹⁾			
Symbol	Parameter	Conditions	1.65 V	1.8 V	2.4 V	2.7 V	3.3 V	3.6 V	T _A = 25 °C	T _A = 85 °C	T _A = 105 °C	Unit		
. RTC	RTC domain	LSE & RTC ON; "Xtal mode": lower driving capability; LSEDRV[1:0] = '00'	0.5	0.5	0.6	0.7	0.9	1.1	1.2	1.5	2.0			
IDD_VBAT	supply current	LSE & RTC ON; "Xtal mode" higher driving capability; LSEDRV[1:0] = '11'	0.8	0.9	1.1	1.2	1.4	1.5	1.6	2.0	2.6	μA		

Table 29. Typical and maximum current consumption from the $\rm V_{BAT}$ supply

1. Data based on characterization results, not tested in production.

Typical current consumption

The MCU is placed under the following conditions:

- V_{DD} = V_{DDA} = 3.3 V
- All I/O pins are in analog input configuration
- The Flash memory access time is adjusted to f_{HCLK} frequency:
 - 0 wait state and Prefetch OFF from 0 to 24 MHz
 - 1 wait state and Prefetch ON above 24 MHz
- When the peripherals are enabled, f_{PCLK} = f_{HCLK}
- PLL is used for frequencies greater than 8 MHz
- AHB prescaler of 2, 4, 8 and 16 is used for the frequencies 4 MHz, 2 MHz, 1 MHz and 500 kHz respectively

High-speed internal 14 MHz (HSI14) RC oscillator (dedicated to ADC)

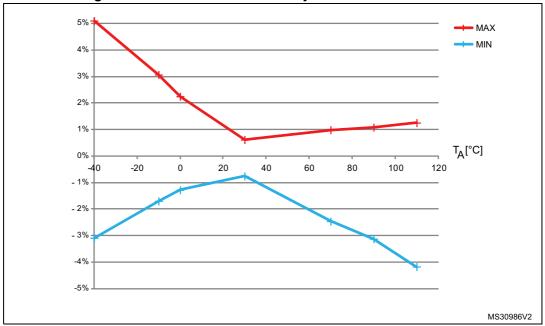

Symbol	Parameter	Conditions	Min	Тур	Max	Unit					
f _{HSI14}	Frequency	-	-	14	-	MHz					
TRIM	HSI14 user-trimming step	-	-	-	1 ⁽²⁾	%					
DuCy _(HSI14)	Duty cycle	-	45 ⁽²⁾	-	55 ⁽²⁾	%					
	Accuracy of the HSI14 oscillator (factory calibrated)	$T_A = -40$ to 105 °C	-4.2 ⁽³⁾	-	5.1 ⁽³⁾	%					
ACC		T _A = -10 to 85 °C	-3.2 ⁽³⁾	-	3.1 ⁽³⁾	%					
ACC _{HSI14}		T _A = 0 to 70 °C	-2.5 ⁽³⁾	-	2.3 ⁽³⁾	%					
		the HSI14 the HSI14 ctory calibrated) $ \frac{T_A = -40 \text{ to } 105 ^{\circ}\text{C}}{T_A = -10 \text{ to } 85 ^{\circ}\text{C}} -3.2^{(3)} - 5}{T_A = 0 \text{ to } 70 ^{\circ}\text{C}} -2.5^{(3)} - 2}{T_A = 25 ^{\circ}\text{C}} -1 - 1 - 125^{(3)} - 2}{T_A = 25 ^{\circ}\text{C}} -1 - 125^{(3)} - 255^{$	1	%							
t _{su(HSI14)}	HSI14 oscillator startup time	-	1 ⁽²⁾	-	2 ⁽²⁾	μs					
I _{DDA(HSI14)}	HSI14 oscillator power consumption	-	-	100	150 ⁽²⁾	μA					

Table 39. HSI14 oscillator characteristics⁽¹⁾

1. V_{DDA} = 3.3 V, T_A = -40 to 105 °C unless otherwise specified.

2. Guaranteed by design, not tested in production.

3. Data based on characterization results, not tested in production.

Figure 20. HSI14 oscillator accuracy characterization results

Table 44. This memory endurance and data retention										
Symbol	Parameter	Conditions	Min ⁽¹⁾	Unit						
N _{END}	Endurance	$T_{A} = -40 \text{ to } +105 \text{ °C}$	10	kcycle						
	Data retention	1 kcycle ⁽²⁾ at T _A = 85 °C	30							
t _{RET}		1 kcycle ⁽²⁾ at T _A = 105 °C	10	Year						
		10 kcycle ⁽²⁾ at T _A = 55 °C	20							

 Table 44. Flash memory endurance and data retention

1. Data based on characterization results, not tested in production.

2. Cycling performed over the whole temperature range.

6.3.11 EMC characteristics

Susceptibility tests are performed on a sample basis during device characterization.

Functional EMS (electromagnetic susceptibility)

While a simple application is executed on the device (toggling 2 LEDs through I/O ports). the device is stressed by two electromagnetic events until a failure occurs. The failure is indicated by the LEDs:

- Electrostatic discharge (ESD) (positive and negative) is applied to all device pins until a functional disturbance occurs. This test is compliant with the IEC 61000-4-2 standard.
- **FTB**: A Burst of Fast Transient voltage (positive and negative) is applied to V_{DD} and V_{SS} through a 100 pF capacitor, until a functional disturbance occurs. This test is compliant with the IEC 61000-4-4 standard.

A device reset allows normal operations to be resumed.

The test results are given in *Table 45*. They are based on the EMS levels and classes defined in application note AN1709.

s	Symbol	Parameter	Conditions	Level/ Class
,	V _{FESD}	Voltage limits to be applied on any I/O pin to induce a functional disturbance	V_{DD} = 3.3 V, LQFP48, T _A = +25 °C, f _{HCLK} = 48 MHz, conforming to IEC 61000-4-2	3B
,	V _{EFTB}	Fast transient voltage burst limits to be applied through 100 pF on V_{DD} and V_{SS} pins to induce a functional disturbance	V_{DD} = 3.3 V, LQFP48, T _A = +25°C, f _{HCLK} = 48 MHz, conforming to IEC 61000-4-4	4B

Table 45. EMS characteristics

Designing hardened software to avoid noise problems

EMC characterization and optimization are performed at component level with a typical application environment and simplified MCU software. It should be noted that good EMC performance is highly dependent on the user application and the software in particular.

Therefore it is recommended that the user applies EMC software optimization and prequalification tests in relation with the EMC level requested for his application.

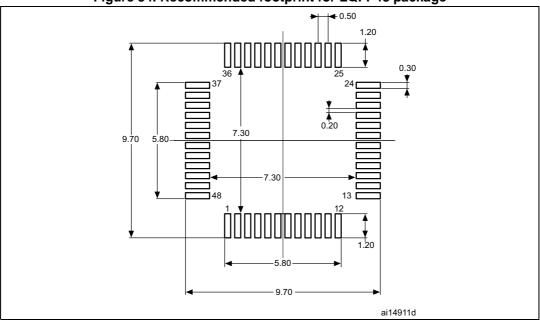
Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
R _{PD}	Weak pull-down equivalent resistor ⁽³⁾	V _{IN} = - V _{DDIOx}	25	40	55	kΩ
C _{IO}	I/O pin capacitance	-	-	5	-	pF

Table 50. I/O static characteristics (continued)

1. Data based on design simulation only. Not tested in production.

2. The leakage could be higher than the maximum value, if negative current is injected on adjacent pins. Refer to *Table 49: I/O current injection susceptibility.*

 Pull-up and pull-down resistors are designed with a true resistance in series with a switchable PMOS/NMOS. This PMOS/NMOS contribution to the series resistance is minimal (~10% order).


All I/Os are CMOS- and TTL-compliant (no software configuration required). Their characteristics cover more than the strict CMOS-technology or TTL parameters. The coverage of these requirements is shown in *Figure 22* for standard I/Os, and in *Figure 23* for 5 V-tolerant I/Os. The following curves are design simulation results, not tested in production.

O much a l	millimeters			inches ⁽¹⁾			
Symbol	Min	Тур	Мах	Min	Тур	Max	
А	-	-	1.600	-	-	0.0630	
A1	0.050	-	0.150	0.0020	-	0.0059	
A2	1.350	1.400	1.450	0.0531	0.0551	0.0571	
b	0.170	0.220	0.270	0.0067	0.0087	0.0106	
С	0.090	-	0.200	0.0035	-	0.0079	
D	8.800	9.000	9.200	0.3465	0.3543	0.3622	
D1	6.800	7.000	7.200	0.2677	0.2756	0.2835	
D3	-	5.500	-	-	0.2165	-	
E	8.800	9.000	9.200	0.3465	0.3543	0.3622	
E1	6.800	7.000	7.200	0.2677	0.2756	0.2835	
E3	-	5.500	-	-	0.2165	-	
е	-	0.500	-	-	0.0197	-	
L	0.450	0.600	0.750	0.0177	0.0236	0.0295	
L1	-	1.000	-	-	0.0394	-	
k	0°	3.5°	7°	0°	3.5°	7°	
ССС	-	-	0.080	-	-	0.0031	

Table 66. LQFP48 package mechanical data
--

1. Values in inches are converted from mm and rounded to 4 decimal digits.

1. Dimensions are expressed in millimeters.

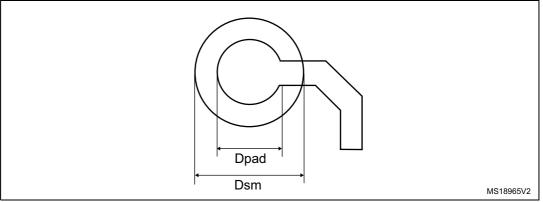

Table 66. W2661 66 paokage meenandal data (bontinded)						
Symbol	millimeters			inches ⁽¹⁾		
	Min	Тур	Мах	Min	Тур	Max
F	-	0.3025	-	-	0.0119	-
G	-	0.3515	-	-	0.0138	-
ааа	-	-	0.100	-	-	0.0039
bbb	-	-	0.100	-	-	0.0039
CCC	-	-	0.100	-	-	0.0039
ddd	-	-	0.050	-	-	0.0020
eee	-	-	0.050	-	-	0.0020

Table 68. WLCSP36 package mechanical data (continued)

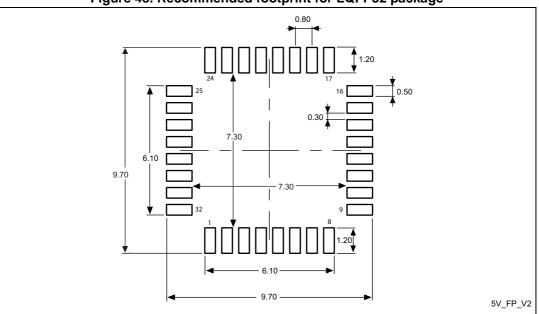
1. Values in inches are converted from mm and rounded to 4 decimal digits.

2. Back side coating.

3. Dimension is measured at the maximum bump diameter parallel to primary datum Z.

Figure 40. Recommended pad footprint for WLCSP36 package

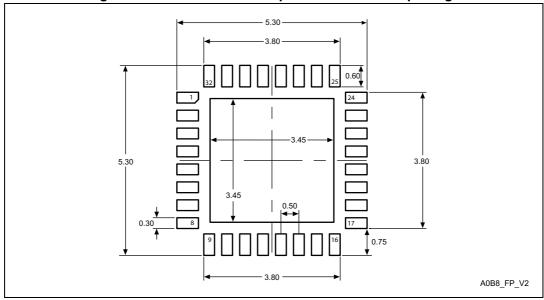
Table 69. WLCSP36 recommended PCB design rules


Dimension	Recommended values
Pitch	0.4 mm
Dpad	260 μm max. (circular) 220 μm recommended
Dsm	300 μm min. (for 260 μm diameter pad)
PCB pad design	Non-solder mask defined via underbump allowed

0 miliot	millimeters			inches ⁽¹⁾			
Symbol	Min	Тур	Мах	Min	Тур	Max	
А	-	-	1.600	-	-	0.0630	
A1	0.050	-	0.150	0.0020	-	0.0059	
A2	1.350	1.400	1.450	0.0531	0.0551	0.0571	
b	0.300	0.370	0.450	0.0118	0.0146	0.0177	
с	0.090	-	0.200	0.0035	-	0.0079	
D	8.800	9.000	9.200	0.3465	0.3543	0.3622	
D1	6.800	7.000	7.200	0.2677	0.2756	0.2835	
D3	-	5.600	-	-	0.2205	-	
E	8.800	9.000	9.200	0.3465	0.3543	0.3622	
E1	6.800	7.000	7.200	0.2677	0.2756	0.2835	
E3	-	5.600	-	-	0.2205	-	
е	-	0.800	-	-	0.0315	-	
L	0.450	0.600	0.750	0.0177	0.0236	0.0295	
L1	-	1.000	-	-	0.0394	-	
k	0°	3.5°	7°	0°	3.5°	7°	
CCC	-	-	0.100	-	-	0.0039	

Table 70. LQFP32 package mechanical data

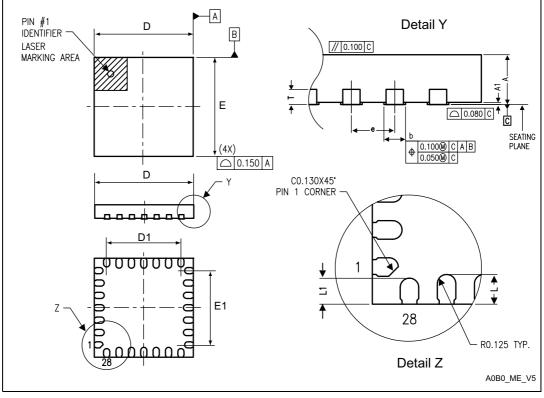
1. Values in inches are converted from mm and rounded to 4 decimal digits.


Figure 43. Recommended footprint for LQFP32 package

1. Dimensions are expressed in millimeters.

	millimeters			inches ⁽¹⁾		
Symbol	Min	Тур	Мах	Min	Тур	Мах
А	0.500	0.550	0.600	0.0197	0.0217	0.0236
A1	0.000	0.020	0.050	0.0000	0.0008	0.0020
A3	-	0.152	-	-	0.0060	-
b	0.180	0.230	0.280	0.0071	0.0091	0.0110
D	4.900	5.000	5.100	0.1929	0.1969	0.2008
D1	3.400	3.500	3.600	0.1339	0.1378	0.1417
D2	3.400	3.500	3.600	0.1339	0.1378	0.1417
Е	4.900	5.000	5.100	0.1929	0.1969	0.2008
E1	3.400	3.500	3.600	0.1339	0.1378	0.1417
E2	3.400	3.500	3.600	0.1339	0.1378	0.1417
е	-	0.500	-	-	0.0197	-
L	0.300	0.400	0.500	0.0118	0.0157	0.0197
ddd	-	-	0.080	-	-	0.0031

1. Values in inches are converted from mm and rounded to 4 decimal digits.


Figure 46. Recommended footprint for UFQFPN32 package

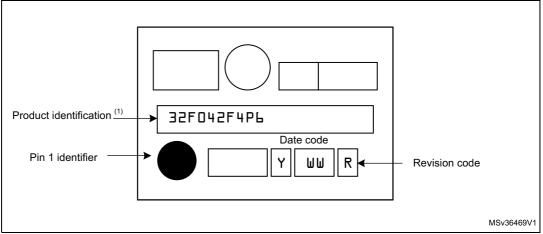
1. Dimensions are expressed in millimeters.

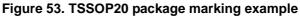
7.6 UFQFPN28 package information

UFQFPN28 is a 28-lead, 4x4 mm, 0.5 mm pitch, ultra-thin fine-pitch quad flat package.

1. Drawing is not to scale.

Symbol	millimeters			inches		
	Min	Тур	Мах	Min	Тур	Мах
А	0.500	0.550	0.600	0.0197	0.0217	0.0236
A1	-	0.000	0.050	-	0.0000	0.0020
D	3.900	4.000	4.100	0.1535	0.1575	0.1614
D1	2.900	3.000	3.100	0.1142	0.1181	0.1220
E	3.900	4.000	4.100	0.1535	0.1575	0.1614
E1	2.900	3.000	3.100	0.1142	0.1181	0.1220
L	0.300	0.400	0.500	0.0118	0.0157	0.0197
L1	0.250	0.350	0.450	0.0098	0.0138	0.0177
Т	-	0.152	-	-	0.0060	-
b	0.200	0.250	0.300	0.0079	0.0098	0.0118
е	-	0.500	-	-	0.0197	-


Table 72. UFQFPN28 package mechanical data⁽¹⁾



Device marking

The following figure gives an example of topside marking orientation versus pin 1 identifier location.

Other optional marking or inset/upset marks, which identify the parts throughout supply chain operations, are not indicated below.

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering Samples to run qualification activity.

9 Revision history

		Table 76. Document revision history
Date	Revision	Changes
25-Feb-2014	1	Initial release.
03-Apr-2014	2	 Added the sample engineering sections for all the packages in the chapter Package information: Updated tables: STM32F042x4/x6 USART implementation: added one table footnote. STM32F042x pin definitions, Current characteristics, Typical and maximum current consumption from VDD supply at VDD = 3.6 V, Typical and maximum current consumption from the VDDA supply, Typical and maximum current consumption from the VDDA supply, Typical and maximum current consumption from the VBAT supply, Typical and maximum current consumption from the VBAT supply, Typical and maximum current consumption from the VBAT supply, Typical and maximum current consumption from the VBAT supply, Typical current consumption, code executing from Flash, running from HSE 8 MHz crystal, Flash memory characteristics, I/O static characteristics, I/O current injection susceptibility, EMS characteristics, UFQFPN28 28-pin package pinout, UQFPN28 28-pin package, Power supply scheme, TC and TTa I/O input characteristics, LQFP48 marking example (package top view), UFQFPN28 marking example (package top view),
26-Oct-2015	3	 Cover page: number of I/Os and timers updated. Updates in Section 2: Description: updated Figure 1: Block diagram Updates in Section 3: Functional overview: updated Figure 2: Clock tree addition of the number of complementary outputs for the advanced control timer and for TIM16, TIM17 general purpose timers in Table 7: Timer feature comparison removal of USART2 from Figure 3.5.4: Low-power modes

Table 76.	Document	revision	history
-----------	----------	----------	---------

Revision	Changes
Revision	 Table 9: STM32F042x4/x6 I²C implementation - adding 20 mA Updates in Section 4: Pinouts and pin descriptions Table 12: Legend/abbreviations used in the pinout table - removing "I" pin type Updates in Section 5: Memory mapping: Figure 10: STM32F042x6 memory map, x4 difference described in text Updates in Section 6: Electrical characteristics: the condition "Regulator in run mode, all oscillators OFF" in Table 28: Typical and maximum consumption in Stop and Standby modes, footnote for V_{IN} max value in Table 18: Voltage characteristics, footnote for max V_{IN} in Table 21: General operating conditions, t_{START} parameter definition in Table 25: Embedded internal reference voltage addition of t_{START} parameter in Table 25: Embedded internal reference voltage, removal of -40°C to 85°C condition and the associated footnote Table 26: Typical and maximum current consumption from VDD supply at VDD = 3.6 V: removing "code executing from Flash or RAM" removal of the min value for t_{START} parameter in Table 58: VBAT monitoring characteristics removal of Res_{TM} parameter line from Table 59: TIMx characteristics and putting all values in new Typ column, substitution of t_{COUNTER} with t_{MAX_COUNT}, values defined as powers of two V_{ESD(CDM)} class in Table 47: ESD absolute maximum ratings reorganization of Table 64: I²S characteristics and filling max value of t_{v(SD_ST)} adding definition of levels in Figure 32: I²S master timing diagram (Philips protocol) Updates in Section 7: Package information: heading and display of columns in Table 68: WLCSP36 package mechanical data.,
	 Updates in Section 7: Package information: heading and display of columns in Table 68: WLCSP36 package mechanical data., Figure 38: UFQFPN48 package marking example
	 Figure 41: WLCSP36 package marking example Figure 50: UFQFPN28 package marking example Figure 41: WLCSP36 package marking example Figure 51: TSSOP20 package outline - correcting GAGE to GAUGE removing "die 445" from Table 74: Package thermal characteristics Updates in Section 8: Part numbering: adding tray packing to options

Table 76.	Document	revision	historv	(continued))
	Dogamon	101101011		(ooninaoa)	,

	Table 76. Document revision history (continued)					
Date	Revision	Changes				
16-Dec-2015	4	 Section 3: Functional overview: Figure 2: Clock tree modified Section 4: Pinouts and pin descriptions: Package pinout figures updated (look and feel) Figure 5: WLCSP36 package pinout- now presented in top view Table 13: STM32F042x pin definitions - note 3 added; CIMP1_OUT and USART4_CTS removed Table 15: Alternate functions selected through GPIOB_AFR registers for port B - change of I2C2_SDA and I2C2_SCL to I2C1_SDA and I2C1_SCL Section 5: Memory mapping: Table 17: STM32F042x4/x6 peripheral register boundary addresses - change of "SYSCFG + COMP" to "SYSCFG" Section 6: Electrical characteristics: Table 50: I/O static characteristics - removed note Section 6.3.16: 12-bit ADC characteristics - changed introductory sentence Section 7: Package information: Figure 49: Recommended footprint for UFQFPN28 package distance between corner pads added 				
10-Jan-2017	5	 Section 6: Electrical characteristics: Table 37: LSE oscillator characteristics (fLSE = 32.768 kHz) - information on configuring different drive capabilities removed. See the corresponding reference manual. Table 25: Embedded internal reference voltage - V_{REFINT} values Figure 28: SPI timing diagram - slave mode and CPHA = 0 and Figure 29: SPI timing diagram - slave mode and CPHA = 1 enhanced and corrected Section 8: Ordering information: The name of the section changed from the previous "Part numbering" 				

Table 76.	Document	revision	history	(continued))
	Dogamon	101101011		(0011111404)	

