

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M0
Core Size	32-Bit Single-Core
Speed	48MHz
Connectivity	CANbus, HDMI-CEC, I ² C, IrDA, LINbus, SPI, UART/USART, USB
Peripherals	DMA, I ² S, POR, PWM, WDT
Number of I/O	26
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	6K x 8
Voltage - Supply (Vcc/Vdd)	1.65V ~ 3.6V
Data Converters	A/D 13x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	32-UFQFN Exposed Pad
Supplier Device Package	32-UFQFPN (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f042k6u6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

List of figures

Figure 1.	Block diagram	. 12
Figure 2.	Clock tree	. 17
Figure 3.	LQFP48 package pinout	. 28
Figure 4.	UFQFPN48 package pinout	. 28
Figure 5.	WLCSP36 package pinout	. 29
Figure 6.	LQFP32 package pinout	. 29
Figure 7.	UFQFPN32 package pinout	. 30
Figure 8.	UFQFPN28 package	
Figure 9.	TSSOP20 package	
Figure 10.	STM32F042x6 memory map	
Figure 11.	Pin loading conditions	
Figure 12.	Pin input voltage	
Figure 13.	Power supply scheme	
Figure 14.	Current consumption measurement scheme	
Figure 15.	High-speed external clock source AC timing diagram	
Figure 16.	Low-speed external clock source AC timing diagram	
Figure 17.	Typical application with an 8 MHz crystal	
Figure 18.	Typical application with a 32.768 kHz crystal	
Figure 19.	HSI oscillator accuracy characterization results for soldered parts	
Figure 20.	HSI14 oscillator accuracy characterization results	
Figure 21.	HSI48 oscillator accuracy characterization results	
Figure 22.	TC and TTa I/O input characteristics	
Figure 23.	Five volt tolerant (FT and FTf) I/O input characteristics	
Figure 23.	I/O AC characteristics definition	
Figure 25.	Recommended NRST pin protection	
Figure 26.	ADC accuracy characteristics	
Figure 27.	Typical connection diagram using the ADC	
Figure 28.	SPI timing diagram - slave mode and CPHA = 0	
Figure 29.	SPI timing diagram - slave mode and CPHA = 1	
Figure 30.	SPI timing diagram - master mode	
Figure 31.	I ² S slave timing diagram (Philips protocol)	
Figure 32.	I ² S master timing diagram (Philips protocol).	
Figure 33.	LQFP48 package outline	
Figure 34.	Recommended footprint for LQFP48 package	
Figure 35.	LQFP48 package marking example	
Figure 36.	UFQFPN48 package outline	
Figure 37.	Recommended footprint for UFQFPN48 package	
Figure 38.	UFQFPN48 package marking example	
Figure 39.	WLCSP36 package outline	
Figure 40.	Recommended pad footprint for WLCSP36 package	. 97
Figure 41.	WLCSP36 package marking example	
Figure 42.	LQFP32 package outline	
Figure 43.	Recommended footprint for LQFP32 package	100
Figure 44.	LQFP32 package marking example	101
Figure 45.	UFQFPN32 package outline	102
Figure 46.	Recommended footprint for UFQFPN32 package	
Figure 47.	UFQFPN32 package marking example	104
Figure 48.	UFQFPN28 package outline	

2 Description

The STM32F042x4/x6 microcontrollers incorporate the high-performance ARM[®] Cortex[®]-M0 32-bit RISC core operating at up to 48 MHz frequency, high-speed embedded memories (up to 32 Kbytes of Flash memory and 6 Kbytes of SRAM), and an extensive range of enhanced peripherals and I/Os. All devices offer standard communication interfaces (one I²C, two SPIs/one I²S, one HDMI CEC and two USARTs), one USB Full-speed device (crystal-less), one CAN, one 12-bit ADC, four 16-bit timers, one 32-bit timer and an advanced-control PWM timer.

The STM32F042x4/x6 microcontrollers operate in the -40 to +85 °C and -40 to +105 °C temperature ranges, from a 2.0 to 3.6 V power supply. A comprehensive set of power-saving modes allows the design of low-power applications.

The STM32F042x4/x6 microcontrollers include devices in seven different packages ranging from 20 pins to 48 pins with a die form also available upon request. Depending on the device chosen, different sets of peripherals are included.

These features make the STM32F042x4/x6 microcontrollers suitable for a wide range of applications such as application control and user interfaces, hand-held equipment, A/V receivers and digital TV, PC peripherals, gaming and GPS platforms, industrial applications, PLCs, inverters, printers, scanners, alarm systems, video intercoms and HVACs.

3.4 Cyclic redundancy check calculation unit (CRC)

The CRC (cyclic redundancy check) calculation unit is used to get a CRC code from a 32-bit data word and a CRC-32 (Ethernet) polynomial.

Among other applications, CRC-based techniques are used to verify data transmission or storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of verifying the Flash memory integrity. The CRC calculation unit helps compute a signature of the software during runtime, to be compared with a reference signature generated at link-time and stored at a given memory location.

3.5 **Power management**

3.5.1 Power supply schemes

- $V_{DD} = V_{DDIO1} = 2.0$ to 3.6 V: external power supply for I/Os (V_{DDIO1}) and the internal regulator. It is provided externally through VDD pins.
- V_{DDA} = from V_{DD} to 3.6 V: external analog power supply for ADC, Reset blocks, RCs and PLL (minimum voltage to be applied to V_{DDA} is 2.4 V when the ADC is used). It is provided externally through VDDA pin. The V_{DDA} voltage level must be always greater or equal to the V_{DD} voltage level and must be established first.
- V_{DDIO2} = 1.65 to 3.6 V: external power supply for marked I/Os. V_{DDIO2} is provided externally through the VDDIO2 pin. The V_{DDIO2} voltage level is completely independent from V_{DD} or V_{DDA}, but it must not be provided without a valid supply on V_{DD}. The V_{DDIO2} supply is monitored and compared with the internal reference voltage (V_{REFINT}). When the V_{DDIO2} is below this threshold, all the I/Os supplied from this rail are disabled by hardware. The output of this comparator is connected to EXTI line 31 and it can be used to generate an interrupt. Refer to the pinout diagrams or tables for concerned I/Os list.
- V_{BAT} = 1.65 to 3.6 V: power supply for RTC, external clock 32 kHz oscillator and backup registers (through power switch) when V_{DD} is not present.

For more details on how to connect power pins, refer to *Figure 13: Power supply scheme*.

3.5.2 Power supply supervisors

The device has integrated power-on reset (POR) and power-down reset (PDR) circuits. They are always active, and ensure proper operation above a threshold of 2 V. The device remains in reset mode when the monitored supply voltage is below a specified threshold, $V_{POR/PDR}$, without the need for an external reset circuit.

- The POR monitors only the V_{DD} supply voltage. During the startup phase it is required that V_{DDA} should arrive first and be greater than or equal to V_{DD}.
- The PDR monitors both the V_{DD} and V_{DDA} supply voltages, however the V_{DDA} power supply supervisor can be disabled (by programming a dedicated Option bit) to reduce the power consumption if the application design ensures that V_{DDA} is higher than or equal to V_{DD}.

The device features an embedded programmable voltage detector (PVD) that monitors the V_{DD} power supply and compares it to the V_{PVD} threshold. An interrupt can be generated when V_{DD} drops below the V_{PVD} threshold and/or when V_{DD} is higher than the V_{PVD}

3.6 Clocks and startup

System clock selection is performed on startup, however the internal RC 8 MHz oscillator is selected as default CPU clock on reset. An external 4-32 MHz clock can be selected, in which case it is monitored for failure. If failure is detected, the system automatically switches back to the internal RC oscillator. A software interrupt is generated if enabled. Similarly, full interrupt management of the PLL clock entry is available when necessary (for example on failure of an indirectly used external crystal, resonator or oscillator).

Several prescalers allow the application to configure the frequency of the AHB and the APB domains. The maximum frequency of the AHB and the APB domains is 48 MHz.

Additionally, also the internal RC 48 MHz oscillator can be selected for system clock or PLL input source. This oscillator can be automatically fine-trimmed by the means of the CRS peripheral using the external synchronization.

sensor, voltage reference, VBAT voltage measurement) channels and performs conversions in single-shot or scan modes. In scan mode, automatic conversion is performed on a selected group of analog inputs.

The ADC can be served by the DMA controller.

An analog watchdog feature allows very precise monitoring of the converted voltage of one, some or all selected channels. An interrupt is generated when the converted voltage is outside the programmed thresholds.

3.10.1 Temperature sensor

The temperature sensor (TS) generates a voltage $V_{\mbox{\scriptsize SENSE}}$ that varies linearly with temperature.

The temperature sensor is internally connected to the ADC_IN16 input channel which is used to convert the sensor output voltage into a digital value.

The sensor provides good linearity but it has to be calibrated to obtain good overall accuracy of the temperature measurement. As the offset of the temperature sensor varies from chip to chip due to process variation, the uncalibrated internal temperature sensor is suitable for applications that detect temperature changes only.

To improve the accuracy of the temperature sensor measurement, each device is individually factory-calibrated by ST. The temperature sensor factory calibration data are stored by ST in the system memory area, accessible in read-only mode.

Calibration value name	Description	Memory address		
TS_CAL1	TS ADC raw data acquired at a temperature of 30 °C (\pm 5 °C), V _{DDA} = 3.3 V (\pm 10 mV)	0x1FFF F7B8 - 0x1FFF F7B9		
TS_CAL2	TS ADC raw data acquired at a temperature of 110 $^{\circ}$ C (± 5 $^{\circ}$ C), V _{DDA} = 3.3 V (± 10 mV)	0x1FFF F7C2 - 0x1FFF F7C3		

Table 3. Temperature sensor calibration values

3.10.2 Internal voltage reference (V_{REFINT})

The internal voltage reference (V_{REFINT}) provides a stable (bandgap) voltage output for the ADC. V_{REFINT} is internally connected to the ADC_IN17 input channel. The precise voltage of V_{REFINT} is individually measured for each part by ST during production test and stored in the system memory area. It is accessible in read-only mode.

Table 4. Internal voltage reference calibration	values
---	--------

Calibration value name	Description	Memory address
	Raw data acquired at a temperature of 30 °C (± 5 °C), V _{DDA} = 3.3 V (± 10 mV)	0x1FFF F7BA - 0x1FFF F7BB

TIM16 and TIM17 have a complementary output with dead-time generation and independent DMA request generation.

Their counters can be frozen in debug mode.

3.12.3 Independent watchdog (IWDG)

The independent watchdog is based on an 8-bit prescaler and 12-bit downcounter with user-defined refresh window. It is clocked from an independent 40 kHz internal RC and as it operates independently from the main clock, it can operate in Stop and Standby modes. It can be used either as a watchdog to reset the device when a problem occurs, or as a free running timer for application timeout management. It is hardware or software configurable through the option bytes. The counter can be frozen in debug mode.

3.12.4 System window watchdog (WWDG)

The system window watchdog is based on a 7-bit downcounter that can be set as free running. It can be used as a watchdog to reset the device when a problem occurs. It is clocked from the APB clock (PCLK). It has an early warning interrupt capability and the counter can be frozen in debug mode.

3.12.5 SysTick timer

This timer is dedicated to real-time operating systems, but could also be used as a standard down counter. It features:

- a 24-bit down counter
- autoreload capability
- maskable system interrupt generation when the counter reaches 0
- programmable clock source (HCLK or HCLK/8)

3.13 Real-time clock (RTC) and backup registers

The RTC and the five backup registers are supplied through a switch that takes power either on V_{DD} supply when present or through the V_{BAT} pin. The backup registers are five 32-bit registers used to store 20 bytes of user application data when V_{DD} power is not present. They are not reset by a system or power reset, or at wake up from Standby mode.

		Pin ni	umbe	rs						Pin function	าร
LQFP48/UFQFPN48	WLCSP36	LQFP32	UFQFPN32	UFQFPN28	TSSPOP20	Pin name (function upon reset)	Pin type	I/O structure	Notes	Alternate function	Additional functions
1	-	-	-	-	-	VBAT	S	-	-	Backup power s	upply
2	A6	-	-	-	-	PC13	I/O	тс	(1) (2)	-	WKUP2, RTC_TAMP1, RTC_TS, RTC_OUT
3	B6	-	-	-	-	PC14- OSC32_IN (PC14)	I/O	тс	(1) (2)	-	OSC32_IN
4	C6	-	-	-	-	PC15- OSC32_OUT (PC15)	I/O	тс	(1) (2)	-	OSC32_OUT
5	B5	2	2	2	2	PF0-OSC_IN (PF0)	I/O	FTf	-	CRS_SYNC I2C1_SDA	OSC_IN
6	C5	3	3	3	3	PF1-OSC_OUT (PF1)	I/O	FTf	-	I2C1_SCL	OSC_OUT
7	D5	4	4	4	4	NRST	I/O	RST	-	Device reset input / internal reset outpu (active low)	
8	D6	32	0	16	15	VSSA	S		(3)	Analog grou	nd
9	E5	5	5	5	5	VDDA	S		-	Analog power s	upply
10	F6	6	6	6	6	PA0	I/O	ТТа	-	USART2_CTS, TIM2_CH1_ETR, TSC_G1_IO1	RTC_ TAMP2, WKUP1, ADC_IN0,
11	D4	7	7	7	7	PA1	I/O	ТТа	-	USART2_RTS, TIM2_CH2, TSC_G1_IO2, EVENTOUT	ADC_IN1
12	E4	8	8	8	8	PA2	I/O	ТТа	-	USART2_TX, TIM2_CH3, TSC_G1_IO3	ADC_IN2, WKUP4
13	F5	9	9	9	9	PA3	I/O	ТТа	-	USART2_RX, TIM2_CH4, TSC_G1_IO4	ADC_IN3

Table 13. STM32F042x pin definitions

		Pin nı	umbe	rs						Pin functions		
LQFP48/UFQFPN48	WLCSP36	LQFP32	UFQFPN32	UFQFPN28	TSSPOP20	Pin name (function upon reset)	Pin type			Alternate function	Additional functions	
38	A2	25	25	23	-	PA15	I/O	FT	(4)	SPI1_NSS, I2S1_WS, USART2_RX, TIM2_CH1_ETR, EVENTOUT, USB_NOE	-	
39	В3	26	26	24	-	PB3	I/O	FT	-	SPI1_SCK, I2S1_CK, TIM2_CH2, TSC_G5_IO1, EVENTOUT	-	
40	A3	27	27	25	-	PB4	I/O	FT	-	SPI1_MISO, I2S1_MCK, TIM17_BKIN, TIM3_CH1, TSC_G5_IO2, EVENTOUT	-	
41	E6	28	28	26	-	PB5	I/O	FT	-	SPI1_MOSI, I2S1_SD, I2C1_SMBA, TIM16_BKIN, TIM3_CH2	WKUP6	
42	C4	29	29	27	-	PB6	I/O	FTf	-	I2C1_SCL, USART1_TX, TIM16_CH1N, TSC_G5_I03	-	
43	A4	30	30	28	-	PB7	I/O	FTf	FTf - I2C1_SDA, USART1_RX, TIM17_CH1N, TSC G5 IO4		-	
44	-	-	31	-	-	PF11-BOOT0	I/O	FT	-	-	Boot memory selection	
-	B4	31	-	1	1	PB8-BOOT0	I/O	FTf	-	I2C1_SCL, CEC, TIM16_CH1, TSC_SYNC, CAN_RX	Boot memory selection	
45	-	-	32	-	-	PB8	I/O	FTf	-	I2C1_SCL, CEC, TIM16_CH1, TSC_SYNC, CAN_RX	-	

Table 13. STM32F042x pin definitions (continued)

		Pin ni	umbe	rs					Pin functions				
LQFP48/UFQFPN48	WLCSP36	LQFP32	UFQFPN32	NFQFPN28	TSSPOP20	Pin name (function upon reset)	Pin type	I/O structure	Notes	Alternate function	Additional functions		
46	-	-	-	-	-	PB9	I/O	FTf	-	SPI2_NSS, I2C1_SDA, IR_OUT, TIM17_CH1, EVENTOUT, CAN_TX	-		
47	-	32	0	-	-	VSS	S	-	-	Ground			
48	A5	1	1	-	-	VDD	S	-	-	Digital power supply			

Table 13. STM32F042x pin definitions (continued)

 PC13, PC14 and PC15 are supplied through the power switch. Since the switch only sinks a limited amount of current (3 mA), the use of GPIOs PC13 to PC15 in output mode is limited:
 The speed should not exceed 2 MHz with a maximum load of 30 pF.

- These GPIOs must not be used as current sources (e.g. to drive an LED).

 After the first RTC domain power-up, PC13, PC14 and PC15 operate as GPIOs. Their function then depends on the content of the RTC registers which are not reset by the system reset. For details on how to manage these GPIOs, refer to the RTC domain and RTC register descriptions in the reference manual.

3. Distinct VSSA pin is only available on 48-pin packages. On all other packages, the pin number corresponds to the VSS pin to which VSSA pad of the silicon die is connected.

4. PA8, PA9, PA10, PA11, PA12, PA13, PA14 and PA15 I/Os are supplied by VDDIO2.

5. Pin pair PA11/12 can be remapped in place of pin pair PA9/10 using SYSCFG_CFGR1 register.

6. After reset, these pins are configured as SWDIO and SWCLK alternate functions, and the internal pull-up on the SWDIO pin and the internal pull-down on the SWCLK pin are activated.

Table 14. Alternate functions selected through GPIOA_AFR registers for port A

Pin name	AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7
PA0	-	USART2_CTS	TIM2_CH1_ETR	TSC_G1_IO1	-	-	-	-
PA1	EVENTOUT	USART2_RTS	TIM2_CH2	TSC_G1_IO2	-	-	-	-
PA2	-	USART2_TX	TIM2_CH3	TSC_G1_IO3	-	-	-	-
PA3	-	USART2_RX	TIM2_CH4	TSC_G1_IO4	-	-	-	-
PA4	SPI1_NSS, I2S1_WS	USART2_CK	USB_NOE	TSC_G2_IO1	TIM14_CH1	-	-	-
PA5	SPI1_SCK, I2S1_CK	CEC	TIM2_CH1_ETR	TSC_G2_IO2	-	-	-	-
PA6	SPI1_MISO, I2S1_MCK	TIM3_CH1	TIM1_BKIN	TSC_G2_IO3	-	TIM16_CH1	EVENTOUT	-
PA7	SPI1_MOSI, I2S1_SD	TIM3_CH2	TIM1_CH1N	TSC_G2_IO4	TIM14_CH1	TIM17_CH1	EVENTOUT	-
PA8	МСО	USART1_CK	TIM1_CH1	EVENTOUT	CRS_SYNC	-	-	-
PA9	-	USART1_TX	TIM1_CH2	TSC_G4_IO1	I2C1_SCL	MCO	-	-
PA10	TIM17_BKIN	USART1_RX	TIM1_CH3	TSC_G4_IO2	I2C1_SDA	-	-	-
PA11	EVENTOUT	USART1_CTS	TIM1_CH4	TSC_G4_IO3	CAN_RX	I2C1_SCL	-	-
PA12	EVENTOUT	USART1_RTS	TIM1_ETR	TSC_G4_IO4	CAN_TX	I2C1_SDA	-	-
PA13	SWDIO	IR_OUT	USB_NOE	-	-	-	-	-
PA14	SWCLK	USART2_TX	-	-	-	-	-	-
PA15	SPI1_NSS, I2S1_WS	USART2_RX	TIM2_CH1_ETR	EVENTOUT	-	USB_NOE	-	-

DocID025832 Rev 5

Pinouts and pin descriptions

37/117

Bus	Boundary address	Size	Peripheral	
	0x4000 7C00 - 0x4000 7FFF	1 KB	Reserved	
	0x4000 7800 - 0x4000 7BFF	1 KB	CEC	
	0x4000 7400 - 0x4000 77FF	1 KB	Reserved	
	0x4000 7000 - 0x4000 73FF	1 KB	PWR	
	0x4000 6C00 - 0x4000 6FFF	1 KB	CRS	
	0x4000 6800 - 0x4000 6BFF0	1 KB	Reserved	
	0x4000 6400 - 0x4000 67FF	1 KB	BxCAN	
	0x4000 6000 - 0x4000 63FF	1 KB	USB/CAN RAM	
	0x4000 5C00 - 0x4000 5FFF	1 KB	USB	
	0x4000 5800 - 0x4000 5BFF	1 KB	Reserved	
	0x4000 5400 - 0x4000 57FF	1 KB	I2C1	
	0x4000 4800 - 0x4000 53FF	3 KB	Reserved	
	0x4000 4400 - 0x4000 47FF	1 KB	USART2	
APB	0x4000 3C00 - 0x4000 43FF	2 KB	Reserved	
	0x4000 3800 - 0x4000 3BFF	1 KB	SPI2	
	0x4000 3400 - 0x4000 37FF	1 KB	Reserved	
	0x4000 3000 - 0x4000 33FF	1 KB	IWDG	
	0x4000 2C00 - 0x4000 2FFF	1 KB	WWDG	
	0x4000 2800 - 0x4000 2BFF	1 KB	RTC	
	0x4000 2400 - 0x4000 27FF	1 KB	Reserved	
	0x4000 2000 - 0x4000 23FF	1 KB	TIM14	
	0x4000 0800 - 0x4000 1FFF	6 KB	Reserved	
	0x4000 0400 - 0x4000 07FF	1 KB	TIM3	
	0x4000 0000 - 0x4000 03FF	1 KB	TIM2	

Tab	le 17. STM32F042x4/x6 peripheral register	boundary add	resses (continued)

. <u> </u>		conditions at power-u	P / P01101		
Symbol	Parameter	Conditions	Min	Мах	Unit
+	V _{DD} rise time rate		0	8	
t _{VDD}	V _{DD} fall time rate	-	20	8	μs/V
+	V _{DDA} rise time rate		0	8	μ5/ν
t _{VDDA}	V _{DDA} fall time rate	-	20	8	

 Table 22. Operating conditions at power-up / power-down

6.3.3 Embedded reset and power control block characteristics

The parameters given in *Table 23* are derived from tests performed under the ambient temperature and supply voltage conditions summarized in *Table 21: General operating conditions*.

 Table 23. Embedded reset and power control block characteristics

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
V _{POR/PDR} ⁽¹⁾		Falling edge ⁽²⁾	1.80	1.88	1.96 ⁽³⁾	V
* POR/PDR	VPOR/PDR`´ reset threshold		1.84 ⁽³⁾	1.92	2.00	V
V _{PDRhyst}	PDR hysteresis	-	-	40	-	mV
t _{RSTTEMPO} ⁽⁴⁾	Reset temporization	-	1.50	2.50	4.50	ms

1. The PDR detector monitors V_{DD} and also V_{DDA} (if kept enabled in the option bytes). The POR detector monitors only $V_{DD}.$

2. The product behavior is guaranteed by design down to the minimum $V_{\text{POR/PDR}}$ value.

3. Data based on characterization results, not tested in production.

4. Guaranteed by design, not tested in production.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V	PVD threshold 0	Rising edge	2.1	2.18	2.26	V
V _{PVD0}		Falling edge	2	2.08	2.16	V
M	DVD throshold 1	Rising edge	2.19	2.28	2.37	V
V _{PVD1}	PVD threshold 1 PVD threshold 2	Falling edge	2.09	2.18	2.27	V
M	DVD threshold 2	Rising edge	2.28	2.38	2.48	V
VPVD2	V _{PVD2} PVD threshold 2	Falling edge	2.18	2.28	2.38	V
M	PVD threshold 3	Rising edge	2.38	2.48	2.58	V
V _{PVD3}		Falling edge	2.28	2.38	2.48	V
M	PVD threshold 4	Rising edge	2.47	2.58	2.69	V
V _{PVD4}		Falling edge	2.37	2.48	2.59	V
M	PVD threshold 5	Rising edge	2.57	2.68	2.79	V
V _{PVD5}		Falling edge	2.47	2.58	2.69	V

Table 24. Programmable voltage detector characteristics

trigger circuits used to discriminate the input value. Unless this specific configuration is required by the application, this supply current consumption can be avoided by configuring these I/Os in analog mode. This is notably the case of ADC input pins which should be configured as analog inputs.

Caution: Any floating input pin can also settle to an intermediate voltage level or switch inadvertently, as a result of external electromagnetic noise. To avoid current consumption related to floating pins, they must either be configured in analog mode, or forced internally to a definite digital value. This can be done either by using pull-up/down resistors or by configuring the pins in output mode.

I/O dynamic current consumption

In addition to the internal peripheral current consumption measured previously (see *Table 32: Peripheral current consumption*), the I/Os used by an application also contribute to the current consumption. When an I/O pin switches, it uses the current from the I/O supply voltage to supply the I/O pin circuitry and to charge/discharge the capacitive load (internal or external) connected to the pin:

$$I_{SW} = V_{DDIOx} \times f_{SW} \times C$$

where

 I_{SW} is the current sunk by a switching I/O to charge/discharge the capacitive load V_{DDIOx} is the I/O supply voltage

 $V_{\rm DDIO_X}$ is the NO supply voltage

 f_{SW} is the I/O switching frequency

C is the total capacitance seen by the I/O pin: C = C_{INT} + C_{EXT} + C_S

 C_S is the PCB board capacitance including the pad pin.

The test pin is configured in push-pull output mode and is toggled by software at a fixed frequency.

6.3.6 Wakeup time from low-power mode

The wakeup times given in *Table 33* are the latency between the event and the execution of the first user instruction. The device goes in low-power mode after the WFE (Wait For Event) instruction, in the case of a WFI (Wait For Interruption) instruction, 16 CPU cycles must be added to the following timings due to the interrupt latency in the Cortex M0 architecture.

The SYSCLK clock source setting is kept unchanged after wakeup from Sleep mode. During wakeup from Stop or Standby mode, SYSCLK takes the default setting: HSI 8 MHz.

The wakeup source from Sleep and Stop mode is an EXTI line configured in event mode. The wakeup source from Standby mode is the WKUP1 pin (PA0).

All timings are derived from tests performed under the ambient temperature and supply voltage conditions summarized in *Table 21: General operating conditions*..

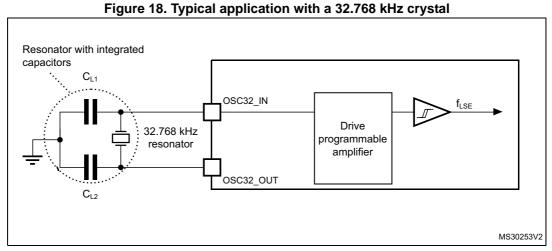
Symbol	Parameter	Conditions		Тур	Typ @Vdd = Vdda					
Symbol	Farameter	Conditions	= 2.0 V	= 2.4 V	= 2.7 V	= 3 V	= 3.3 V	5	Unit	
+	Wakeup from Stop	Regulator in run mode	3.2	3.1	2.9	2.9	2.8	5		
twustop mode	Regulator in low power mode	7.0	5.8	5.2	4.9	4.6	9			
twustandby	Wakeup from Standby mode	-	60.4	55.6	53.5	52	51	-	μs	
twusleep	Wakeup from Sleep mode	-		4 S)	/SCLK cy	cles		-		

 Table 33. Low-power mode wakeup timings

6.3.7 External clock source characteristics

High-speed external user clock generated from an external source

In bypass mode the HSE oscillator is switched off and the input pin is a standard GPIO.


The external clock signal has to respect the I/O characteristics in Section 6.3.14. However, the recommended clock input waveform is shown in *Figure 15: High-speed external clock source AC timing diagram*.

Symbol	Parameter ⁽¹⁾	Min	Тур	Max	Unit
f _{HSE_ext}	User external clock source frequency	-	8	32	MHz
V _{HSEH}	OSC_IN input pin high level voltage	0.7 V _{DDIOx}	-	V _{DDIOx}	V
V _{HSEL}	OSC_IN input pin low level voltage	V _{SS}	-	0.3 V _{DDIOx}	v
t _{w(HSEH)} t _{w(HSEL)}	OSC_IN high or low time	15	-	-	ns
t _{r(HSE)} t _{f(HSE)}	OSC_IN rise or fall time	-	-	20	115

Table 24	Ligh speed	ovtornal	ucor	alaak	oborootoriction
Table 34.	Hign-speed	external	user (CIOCK	characteristics

Note: For information on selecting the crystal, refer to the application note AN2867 "Oscillator design guide for ST microcontrollers" available from the ST website <u>www.st.com</u>.

Note: An external resistor is not required between OSC32_IN and OSC32_OUT and it is forbidden to add one.

6.3.8 Internal clock source characteristics

The parameters given in *Table 38* are derived from tests performed under ambient temperature and supply voltage conditions summarized in *Table 21: General operating conditions*. The provided curves are characterization results, not tested in production.

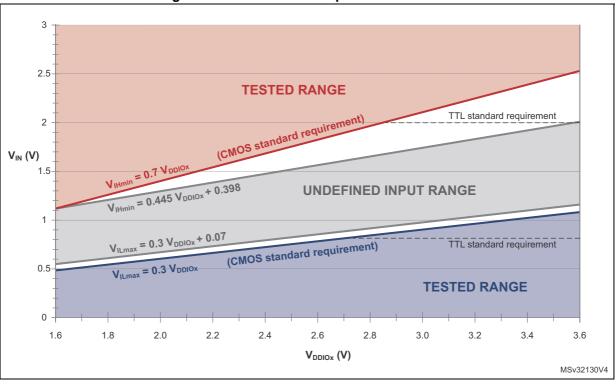
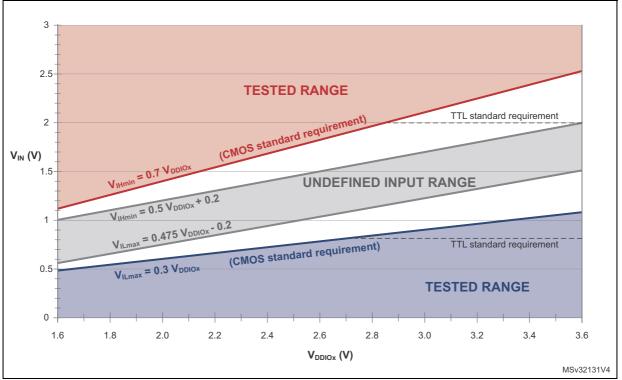



Figure 22. TC and TTa I/O input characteristics

Figure 23. Five volt tolerant (FT and FTf) I/O input characteristics

DocID025832 Rev 5

Input/output AC characteristics

The definition and values of input/output AC characteristics are given in *Figure 24* and *Table 52*, respectively. Unless otherwise specified, the parameters given are derived from tests performed under the ambient temperature and supply voltage conditions summarized in *Table 21: General operating conditions*.

OSPEEDRy [1:0] value ⁽¹⁾	Symbol	Parameter	Conditions	Min	Max	Unit
	f _{max(IO)out}	Maximum frequency ⁽³⁾		-	2	MHz
	t _{f(IO)out}	Output fall time	C _L = 50 pF, V _{DDIOx} ≥ 2 V	-	125	ns
x0	t _{r(IO)out}	Output rise time		-	125	115
X0	f _{max(IO)out}	Maximum frequency ⁽³⁾		-	1	MHz
	t _{f(IO)out}	Output fall time	C _L = 50 pF, V _{DDIOx} < 2 V	-	125	ns
	t _{r(IO)out}	Output rise time		-	125	115
	f _{max(IO)out}	Maximum frequency ⁽³⁾		-	10	MHz
	t _{f(IO)out}	Output fall time	$C_L = 50 \text{ pF}, V_{DDIOx} \ge 2 \text{ V}$	-	25	ns
01	t _{r(IO)out}	Output rise time		-	25	115
01	f _{max(IO)out}	Maximum frequency ⁽³⁾		-	4	MHz
	t _{f(IO)out}	Output fall time	C _L = 50 pF, V _{DDIOx} < 2 V	-	62.5	ns
	t _{r(IO)out}	Output rise time		-	62.5	115
			C_L = 30 pF, $V_{DDIOx} \ge 2.7 V$	-	50	
	f	Maximum frequency ⁽³⁾	C _L = 50 pF, V _{DDIOx} ≥ 2.7 V	-	30	MHz
	f _{max(IO)out}		C_L = 50 pF, 2 V ≤ V_{DDIOx} < 2.7 V	-	20	
			C_L = 50 pF, V_{DDIOx} < 2 V	-	10	
			C_L = 30 pF, $V_{DDIOx} \ge 2.7 V$	-	5	
11	+	Output fall time	$C_L = 50 \text{ pF}, V_{DDIOx} \ge 2.7 \text{ V}$	-	8	
	t _{f(IO)out}		C_L = 50 pF, 2 V \leq V _{DDIOx} $<$ 2.7 V	-	12	
			C_L = 50 pF, V_{DDIOx} < 2 V	-	25	ns
			C _L = 30 pF, V _{DDIOx} ≥ 2.7 V	-	5	611
	t	Output rise time	C _L = 50 pF, V _{DDIOx} ≥ 2.7 V	-	8	
	t _{r(IO)out}		$C_{L} = 50 \text{ pF}, 2 \text{ V} \le \text{V}_{\text{DDIOx}} < 2.7 \text{ V}$	-	12	
			C _L = 50 pF, V _{DDIOx} < 2 V	-	25	

Table 52.	I/O AC	characteristics ⁽¹⁾⁽²⁾
-----------	--------	-----------------------------------

USB characteristics

The STM32F042x4/x6 USB interface is fully compliant with the USB specification version 2.0 and is USB-IF certified (for Full-speed device operation).

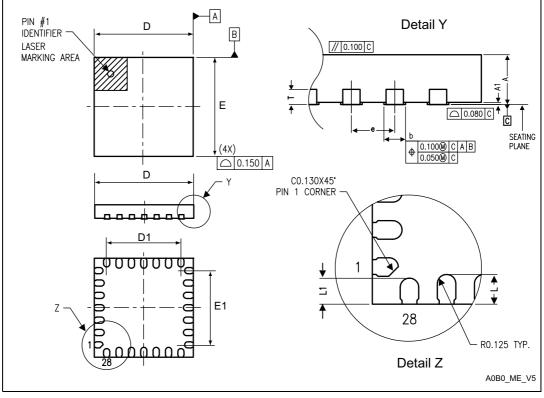
Symbol	Parameter	Conditions	Min.	Тур	Max.	Unit
V _{DDIO2}	USB transceiver operating voltage	-	3.0 ⁽¹⁾	-	3.6	V
t _{STARTUP} ⁽²⁾	USB transceiver startup time	-	-	-	1.0	μs
R _{PUI}	Embedded USB_DP pull-up value during idle	-	1.1	1.26	1.5	kΩ
R _{PUR}	Embedded USB_DP pull-up value during reception	-	2.0	2.26	2.6	K32
Z _{DRV} ⁽²⁾	Output driver impedance ⁽³⁾	Driving high and low	28	40	44	Ω

Table 65. USB electrical characterist	ics
---------------------------------------	-----

1. The STM32F042x4/x6 USB functionality is ensured down to 2.7 V but not the full USB electrical characteristics which are degraded in the 2.7-to-3.0 V voltage range.

2. Guaranteed by design, not tested in production.

3. No external termination series resistors are required on USB_DP (D+) and USB_DM (D-); the matching impedance is already included in the embedded driver.


CAN (controller area network) interface

Refer to Section 6.3.14: I/O port characteristics for more details on the input/output alternate function characteristics (CAN_TX and CAN_RX).

7.6 UFQFPN28 package information

UFQFPN28 is a 28-lead, 4x4 mm, 0.5 mm pitch, ultra-thin fine-pitch quad flat package.

1. Drawing is not to scale.

		millimeters			inches		
Symbol	Min	Тур	Мах	Min	Тур	Max	
А	0.500	0.550	0.600	0.0197	0.0217	0.0236	
A1	-	0.000	0.050	-	0.0000	0.0020	
D	3.900	4.000	4.100	0.1535	0.1575	0.1614	
D1	2.900	3.000	3.100	0.1142	0.1181	0.1220	
E	3.900	4.000	4.100	0.1535	0.1575	0.1614	
E1	2.900	3.000	3.100	0.1142	0.1181	0.1220	
L	0.300	0.400	0.500	0.0118	0.0157	0.0197	
L1	0.250	0.350	0.450	0.0098	0.0138	0.0177	
Т	-	0.152	-	-	0.0060	-	
b	0.200	0.250	0.300	0.0079	0.0098	0.0118	
е	-	0.500	-	-	0.0197	-	

Table 72. UFQFPN28 package mechanical data⁽¹⁾

DocID025832 Rev 5

8 Ordering information

For a list of available options (memory, package, and so on) or for further information on any aspect of this device, please contact your nearest ST sales office.

Table 75. Order	-							
Example:	STM3	2 F	042	C	6	T	6	XX
Device family								
STM32 = ARM-based 32-bit microcontroller								
Product type								
F = General-purpose								
Sub-family								
042 = STM32F042xx								
Pin count								
F = 20 pins]				
G = 28 pins								
K = 32 pins								
T = 36 pins								
C = 48 pins								
User code memory size								
4 = 16 Kbyte								
6 = 32 Kbyte								
Package								
P = TSSOP								
T = LQFP								
U = UFQFPN								
Y = WLCSP								
Temperature range								
6 = -40 to 85 °C			 					
7 = -40 to 105 °C								
Options								

xxx = code ID of programmed parts (includes packing type) TR = tape and reel packing blank = tray packing

