

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	100MHz
Connectivity	CANbus, EBI/EMI, I²C, IrDA, LINbus, MMC/SDIO, QSPI, SAI, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, LCD, POR, PWM, WDT
Number of I/O	36
Program Memory Size	1.5MB (1.5M × 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	320К х 8
Voltage - Supply (Vcc/Vdd)	1.7V ~ 3.6V
Data Converters	A/D 10x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-UFQFN Exposed Pad
Supplier Device Package	48-UFQFPN (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f413chu6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Figure 4. STM32F413xG/H block diagram

1. The timers connected to APB2 are clocked from TIMxCLK up to 100 MHz, while the timers connected to APB1 are clocked from TIMxCLK up to 50 MHz.

A dedicated application note (AN4515) describes how to implement the STM32F413xG/H BAM to allow the best power efficiency.

3.4 Memory protection unit

The memory protection unit (MPU) is used to manage the CPU accesses to memory to prevent one task to accidentally corrupt the memory or resources used by any other active task. This memory area is organized into up to 8 protected areas that can in turn be divided up into 8 subareas. The protection area sizes are between 32 byte and the whole 4 Gbyte of addressable memory.

The MPU is especially helpful for applications where some critical or certified code has to be protected against the misbehavior of other tasks. It is usually managed by an RTOS (real-time operating system). If a program accesses a memory location that is prohibited by the MPU, the RTOS can detect it and take action. In an RTOS environment, the kernel can dynamically update the MPU area setting, based on the process to be executed.

The MPU is optional and can be bypassed for applications that do not need it.

3.5 Embedded Flash memory

The devices embed up to 1.5 Mbytes of Flash memory available for storing programs and data, plus 512 bytes of one-time programmable (OTP) memory organized in 16 blocks of 32 bytes, each which can be independently locked.

The user Flash memory area can be protected against read operations by an entrusted code (read protection or RDP). Different protection levels are available. The user Flash memory is divided into sectors, which can be individually protected against write operation. Flash sectors can also be protected individually against D-bus read accesses by using the proprietary readout protection (PCROP).

Refer to the product line reference manual for additional information on OTP area and protection features.

To optimize the power consumption the Flash memory can also be switched off in Run or in Sleep mode (see Section 3.20: Low-power modes).

Two modes are available: Flash in Stop mode or in DeepSleep mode (trade off between power saving and startup time.

Before disabling the Flash, the code must be executed from the internal RAM.

3.6 CRC (cyclic redundancy check) calculation unit

The CRC (cyclic redundancy check) calculation unit is used to get a CRC code from a 32-bit data word and a fixed generator polynomial.

Among other applications, CRC-based techniques are used to verify data transmission or storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of verifying the Flash memory integrity. The CRC calculation unit helps compute a software signature during runtime, to be compared with a reference signature generated at link-time and stored at a given memory location.

Figure 6. V_{DDUSB} connected to an external independent power supply

3.17 Power supply supervisor

3.17.1 Internal reset ON

This feature is available for V_{DD} operating voltage range 1.8 V to 3.6 V.

On packages embedding the PDR_ON pin, the power supply supervisor is enabled by holding PDR_ON high. On the other package, the power supply supervisor is always enabled.

The device has an integrated power-on reset (POR) / power-down reset (PDR) circuitry coupled with a Brownout reset (BOR) circuitry. At power-on, POR is always active, and ensures proper operation starting from 1.8 V. After the 1.8 V POR threshold level is reached, the option byte loading process starts, either to confirm or modify default thresholds, or to disable BOR permanently. Three BOR thresholds are available through option bytes.

The device remains in reset mode when V_{DD} is below a specified threshold, $V_{POR/PDR}$ or V_{BOR} , without the need for an external reset circuit.

The device also features an embedded programmable voltage detector (PVD) that monitors the V_{DD}/V_{DDA} power supply and compares it to the V_{PVD} threshold. An interrupt can be generated when V_{DD}/V_{DDA} drops below the V_{PVD} threshold and/or when V_{DD}/V_{DDA} is higher than the V_{PVD} threshold. The interrupt service routine can then generate a warning message and/or put the MCU into a safe state. The PVD is enabled by software.

Additional 32-bit registers contain the programmable alarm subseconds, seconds, minutes, hours, day, and date.

The RTC and backup registers are supplied through a switch that is powered either from the V_{DD} supply when present or from the VBAT pin.

3.20 Low-power modes

The devices support three low-power modes to achieve the best compromise between low power consumption, short startup time and available wakeup sources:

Sleep mode

In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can wake up the CPU when an interrupt/event occurs.

To further reduce the power consumption, the Flash memory can be switched off before entering in Sleep mode. Note that this requires a code execution from the RAM.

• Stop mode

The Stop mode achieves the lowest power consumption while retaining the contents of SRAM and registers. All clocks in the 1.2 V domain are stopped, the PLL, the HSI RC and the HSE crystal oscillators are disabled. The voltage regulator can also be put either in normal or in low-power mode.

The device can be woken up from the Stop mode by any of the EXTI line (the EXTI line source can be one of the 16 external lines, the PVD output, the RTC alarm/ wakeup/ tamper/ time stamp events).

• Standby mode

The Standby mode is used to achieve the lowest power consumption. The internal voltage regulator is switched off so that the entire 1.2 V domain is powered off. The PLL, the HSI RC and the HSE crystal oscillators are also switched off. After entering Standby mode, the SRAM and register contents are lost except for registers in the backup domain when selected.

The device exits the Standby mode when an external reset (NRST pin), an IWDG reset, a rising edge on one of the WKUP pins, or an RTC alarm/ wakeup/ tamper/time stamp event occurs.

Standby mode is not supported when the embedded voltage regulator is bypassed and the 1.2 V domain is controlled by an external power.

3.21 V_{BAT} operation

The VBAT pin allows to power the device V_{BAT} domain from an external battery, an external super-capacitor, or from V_{DD} when no external battery and an external super-capacitor are present.

 V_{BAT} operation is activated when V_{DD} is not present.

The VBAT pin supplies the RTC and the backup registers.

Note: When the microcontroller is supplied from V_{BAT} , external interrupts and RTC alarm/events do not exit it from V_{BAT} operation. When PDR_ON pin is not connected to V_{DD} (internal Reset OFF), the V_{BAT} functionality is no more available and VBAT pin should be connected to V_{DD} .

USART1, USART2, USART3 and USART6 provide hardware management of the CTS and RTS signals, Smart Card mode (ISO 7816 compliant) and SPI-like communication capability. All interfaces can be served by the DMA controller.

USART name	Standard features	Modem (RTS/CTS)	LIN	SPI master	irDA	Smartcard (ISO 7816)	Max. baud rate in Mbit/s (oversampling by 16)	Max. baud rate in Mbit/s (oversampling by 8)	APB mapping
USART1	х	х	x	х	х	х	6.25	12.5	APB2 (max. 100 MHz)
USART2	х	х	x	х	х	х	3.12	6.25	APB1 (max. 50 MHz)
USART3	х	х	x	х	х	х	3.12	6.25	APB1 (max. 50 MHz)
UART4	х	-	x	-	х	-	3.12	6.25	APB1 (max. 50 MHz)
UART5	х	-	x	-	х	-	3.12	6.25	APB1 (max. 50 MHz)
USART6	х	х	x	х	х	х	6.25	12.5	APB2 (max. 100 MHz)
UART7	х	-	x	-	х	-	3.12	6.25	APB1 (max. 50 MHz)
UART8	х	-	x	-	х	-	3.12	6.25	APB1 (max. 50 MHz)
UART9	х	-	x	-	х	-	6.25	12.5	APB2 (max. 100 MHz)
UART10	х	-	x	-	х	-	6.25	12.5	APB2 (max. 100 MHz)

	1	2	3	4	5	6	7	8	9	10	11	12
А	(PE3)	(PE1)	(PB8)	EOOT)	(PD7)	PD5	(PB4)	(PB3)	PA15	PA14	PA13	PA12
В	(PE4)	(PE2)	(PB9)	(РВ7)	(PB6)	(PD6)	(PD4)	(PD3)	(PD1)	PC12	PC10	(PA11)
С	PC13	(PE5)	(PE0)	VDD	(PB5)			(PD2)	(PD0)	PC11	CAP 2	(PA10)
D	PC14- OSC32	(PE6)	vss							(PA9)	(PA8)	PC9
Е	PC15- 0SC32 _0UT	VBAT	BYPAS6 _REG							PC8	PC7	PC6
F		vss									vss	vss
G	OSC)	VDD									VDD	VDD
н	PCO	NRST	PDR							PD15	PD14	PD13
J	VSSA	PC1)	PC2							(PD12	(PD1)	PD1
к	VREF-	(PC3)	(PA2)	(PA5)	PC4			(PD9)	(PB1)	PB15	PB14	(PB13)
L	VREF	PAO	(PA3)	(PA6)	PC5	(PB2)	(PE8)	PE10	(PE12	PB10	CAP 1	PB12
м	(VDDA	(PA1)	(PA4)	(PA7)	(PB0)	(PB1)	(PE7)	(PE9)	(PE1)	PE13	PE14	PE15
	L											MSv3728

Figure 16. STM32F413xG/H UFBGA100 pinout

1. The above figure shows the package top view.

69/208

DocID029162 Rev 4

		AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7	AF8	AF9	AF10	AF11	AF12	AF13	AF14	AF15
I	Port	SYS_ AF	TIM1/2/ LPTIM1	TIM3/4/5	DFSDM2/ TIM8/9/10/11	I2C1/2/3/ I2CFMP1	SPI1/I2S1/ SPI2/I2S2/ SPI3/I2S3/ SPI4/I2S4	SPI2/I2S2/ SPI3/I2S3/ SPI4/I2S4/ SPI5/I2S5/ DFSDM1/2	SPI3/I2S3/ SAI1/ DFSDM2/ USART1/ USART2/ USART3	DFSDM1/ USART3/4/ 5/6/7/8/ CAN1	I2C2/I2C3/ I2CFMP1/ CAN1/2/ TIM12/13/14/ QUADSPI	SAI1/ DFSDM1/ DFSDM2/ QUADSPI/ FSMC /OTG1_FS	UART4/ UART5/ UART9/ UART10 /CAN3	FSMC /SDIO	-	RNG	SYS_ AF
	PC0	-	LPTIM1_ IN1	-	DFSDM2_C KIN4	-	-	-	SAI1_MCL K_B	-	-	-	-	-	-	-	EVENT OUT
Ī	PC1	-	LPTIM1_ OUT	-	DFSDM2_D ATIN4	-	-	-	SAI1_SD_B	-	-	-	-	-	-	-	EVENT OUT
Ī	PC2	-	LPTIM1_I N2	-	DFSDM2_D ATIN7	-	SPI2_MISO	I2S2ext_SD	SAI1_SCK_ B	DFSDM1_ CKOUT	-	-	-	FSMC_NWE	-	-	EVENT OUT
Ī	PC3	-	LPTIM1_ ETR	-	DFSDM2_C KIN7	-	SPI2_MOSI/ I2S2_SD	-	SAI1_FS_B	-	-	-	-	FSMC_A0	-	-	EVENT OUT
Ī	PC4	-	-	-	DFSDM2_C KIN2	-	I2S1_MCK	-	-	-	-	QUADSPI_ BK2_IO2	-	FSMC_NE4	-	-	EVENT OUT
Ī	PC5	-	-	-	DFSDM2_D ATIN2	I2CFMP1 _SMBA	-	-	USART3_R X	-	-	QUADSPI_ BK2_IO3	-	FSMC_NOE	-	-	EVENT OUT
Ī	PC6	-	-	TIM3_ CH1	TIM8_CH1	I2CFMP1 _SCL	I2S2_MCK	DFSDM1_ CKIN3	DFSDM2_ DATIN6	USART6_ TX	-	FSMC_D1/ FSMC_DA1	-	SDIO_D6	-	-	EVENT OUT
tc	PC7	-	-	TIM3_ CH2	TIM8_CH2	I2CFMP1 _SDA	SPI2_SCK/ I2S2_CK	I2S3_MCK	DFSDM2_ CKIN6	USART6_ RX	-	DFSDM1_D ATIN3	-	SDIO_D7	-	-	EVENT OUT
Por	PC8	-	-	TIM3_ CH3	TIM8_CH3	-	-	-	DFSDM2_ CKIN3	USART6_ CK	QUADSPI_ BK1_IO2	-	-	SDIO_D0	-	-	EVENT OUT
Ī	PC9	MCO_2	-	TIM3_ CH4	TIM8_CH4	I2C3_ SDA	I2S2_CKIN	-	DFSDM2_ DATIN3	-	QUADSPI_ BK1_IO0	-	-	SDIO_D1	-	-	EVENT OUT
ſ	PC10	-	-	-	DFSDM2_ CKIN5	-	-	SPI3_SCK/ I2S3_CK	USART3_ TX	-	QUADSPI_ BK1_IO1	-	-	SDIO_D2	-	-	EVENT OUT
	PC11	-	-	-	DFSDM2_ DATIN5	-	I2S3ext_SD	SPI3_MISO	USART3_ RX	UART4_ RX	QUADSPI_ BK2_NCS	FSMC_D2/ FSMC_DA2	-	SDIO_D3	-	-	EVENT OUT
Ī	PC12	-	-	-	-	-	-	SPI3_MOSI/ I2S3_SD	USART3_ CK	UART5_ TX	-	FSMC_D3/ FSMC_DA3	-	SDIO_CK	-	-	EVENT OUT
Ī	PC13	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	EVENT OUT
ĺ	PC14	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	EVENT OUT
	PC15	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	EVENT OUT

Table 12. STM32F413xG/H alternate functions (continued)

Pinouts and pin description

5 Memory mapping

The memory map is shown in *Figure 18*.

Bus	Boundary address	Peripheral
	0xE010 0000 - 0xFFFF FFFF	Reserved
Cortex [®] -M4	0xE000 0000 - 0xE00F FFFF	Cortex-M4 internal peripherals
	0xA000 2000 - 0xDFFF FFFF	Reserved
	0xA000 1000 - 0xA000 1FFF	QuadSPI control register
	0xA000 0000 - 0xA000 0FFF	FSMC control register
АПЬЗ	0x9000 0000 - 0x9FFF FFFF	QUADSPI
	0x7000 0000 - 0x08FFF FFFF	Reserved
	0x6000 0000 - 0x6FFF FFFF	FSMC
	0x5006 0C00 - 0x5FFF FFFF	Reserved
	0x5006 0800 0x5006 0BFF	RNG
AHB2	0x5004 0000 - 0x5006 07FF	Reserved
	0x5000 0000 - 0x5003 FFFF	USB OTG FS
	0x4002 6800 - 0x4FFF FFFF	Reserved
	0x4002 6400 - 0x4002 67FF	DMA2
	0x4002 6000 - 0x4002 63FF	DMA1
	0x4002 4000 - 0X4002 5FFF	Reserved
	0x4002 3C00 - 0x4002 3FFF	Flash interface register
	0x4002 3800 - 0x4002 3BFF	RCC
	0x4002 3400 - 0x4002 37FF	Reserved
	0x4002 3000 - 0x4002 33FF	CRC
AHB1	0x4002 2000 - 0x4002 2FFF	Reserved
	0x4002 1C00 - 0x4002 1FFF	GPIOH
	0x4002 1800 - 0x4002 1BFF	GPIOG
	0x4002 1400 - 0x4002 17FF	GPIOF
	0x4002 1000 - 0x4002 13FF	GPIOE
	0x4002 0C00 - 0x4002 0FFF	GPIOD
	0x4002 0800 - 0x4002 0BFF	GPIOC
	0x4002 0400 - 0x4002 07FF	GPIOB
	0x4002 0000 - 0x4002 03FF	GPIOA

Table 13. STM32F413xG/H register boundary addresses

Bus	Boundary address	Peripheral
	0x4001 6800- 0x4001 FFFF	Reserved
	0x4001 6400 - 0x4001 67FF	DFSDM2
	0x4001 6000 - 0x4001 63FF	DFSDM1
	0x4001 5C00 - 0x4001 5FFF	Reserved
	0x4001 5800 - 0x4001 5BFF	SAI1
	0x4001 5400 - 0x4001 57FF	Reserved
	0x4001 5000 - 0x4001 53FF	SPI5/I2S5
	0x4001 4C00 - 0x4001 4FFF	Reserved
	0x4001 4800 - 0x4001 4BFF	TIM11
	0x4001 4400 - 0x4001 47FF	TIM10
	0x4001 4000 - 0x4001 43FF	TIM9
	0x4001 3C00 - 0x4001 3FFF	EXTI
APB2	0x4001 3800 - 0x4001 3BFF	SYSCFG
	0x4001 3400 - 0x4001 37FF	SPI4/I2S4
	0x4001 3000 - 0x4001 33FF	SPI1/I2S1
	0x4001 2C00 - 0x4001 2FFF	SDIO
	0x4001 2400 - 0x4001 2BFF	Reserved
	0x4001 2000 - 0x4001 23FF	ADC1/2/3
	0x4001 1C00 - 0x4001 1FFF	UART10
	0x4001 1800 - 0x4001 1BFF	UART9
	0x4001 1400 - 0x4001 17FF	USART6
	0x4001 1000 - 0x4001 13FF	USART1
	0x4001 0800 - 0x4001 0FFF	Reserved
	0x4001 0400 - 0x4001 07FF	TIM8
	0x4001 0000 - 0x4001 03FF	TIM1

Table 13. STM32F413xG/H register boundary addresses (continued
--

3. When the ADC is ON (ADON bit set in the ADC_CR2 register), add an additional power consumption of 1.6 mA for the analog part.

			£	Тур		Ма	ax ⁽¹⁾		
Symbol	Parameter	Conditions	'HCLK (MHz)	T _A = 25 °C	Т _А = 25 °С	Т _А = 85 °С	T _A = 105 °C	T _A = 125 °C	Unit
			100	33.3	35.32 ⁽³⁾	35.65	37.65	41.26 ⁽³⁾	
			84	26.8	28.45 ⁽³⁾	28.97	30.82	34.39 ⁽³⁾	
		External clock,	64	18.6	19.74 ⁽³⁾	20.35	22.11	25.35 ⁽³⁾	
		all peripherals enabled ⁽²⁾	50	14.6	15.57	16.41	18.21	21.46	
	Supply current in Run mode		25	7.8	8.37	9.64	11.32	14.68	-
			20	6.7	7.25	8.40	10.25	13.45	
		HSI, PLL $OFF^{(4)}$, all peripherals enabled ⁽²⁾	16	4.6	4.96	6.39	8.20	11.54	
			1	0.8	0.86	2.51	4.34	7.65	
IDD			100	15.7	16.74 ⁽³⁾	17.62	19.50	23.16 ⁽³⁾	mA
		External clock	84	12.7	13.57 ⁽³⁾	14.60	16.38	19.98 ⁽³⁾	
		PLL ON,	64	9.0	9.62 ⁽³⁾	10.60	12.37	15.58 ⁽³⁾	
		all peripherals	50	7.1	7.69	8.79	10.63	13.79	-
		uisableu	25	4.0	4.52	5.68	7.44	10.68	
			20	3.4	4.03	5.23	6.90	10.27	
		HSI, PLL OFF,	16	2.3	2.44	4.00	5.81	9.13	
		all peripherals disabled ⁽²⁾	1	0.6	0.70	2.35	4.18	7.49	

Table 24. Typical and maximum current consumption, code with data processing (ARTaccelerator disabled) running from SRAM - V_{DD} = 3.6 V

1. Guaranteed by characterization results.

2. When the ADC is ON (ADON bit set in the ADC_CR2 register), add an additional power consumption of 1.6 mA for the analog part.

3. Tested in production

4. When analog peripheral blocks such as ADC, HSE, LSE, HSI, or LSI are ON, an additional power consumption has to be considered

6.3.10 PLL characteristics

The parameters given in *Table 47* and *Table 48* are derived from tests performed under temperature and V_{DD} supply voltage conditions summarized in *Table 17*.

Symbol	Parameter	Condition	s	Min	Тур	Мах	Unit
f _{PLL_IN}	PLL input clock ⁽¹⁾	-	-		1	2.10	
f _{PLLP_OUT}	PLLP multiplier output clock	-		24	-	100	
f _{PLLQ_OUT}	48 MHz PLLQ multiplier output clock	-		-	48	75	MHz
f _{PLLR_OUT}	PLLR multiplier output clock for I2S and SAI	-		-	-	216	
f _{VCO_OUT}	PLL VCO output	-		100	-	432	
+	PLL lock time	VCO freq = 100 MHz		75	-	200	110
LOCK		VCO freq = 432 N	/Hz	100	-	300	μο
	Cycle-to-cycle jitter		RMS	-	25	-	
		System clock	peak to peak	-	- ±150		
Jitter ⁽³⁾	Period Jitter	100 MHz	RMS	-	15	-	ne
			peak to peak	-	±200	-	6.0
	Bit Time CAN jitter	Cycle to cycle at on 1000 samples	1 MHz	-	330	-	
I _{DD(PLL)} ⁽⁴⁾	PLL power consumption on VDD	VCO freq = 100 M VCO freq = 432 M	/Hz /Hz	0.15 0.45	-	0.40 0.75	m۸
I _{DDA(PLL)} ⁽⁴⁾	PLL power consumption on VDDA	VCO freq = 100 M VCO freq = 432 M	/Hz /Hz	0.30 0.55	-	0.40 0.85	ШA

|--|

1. Take care of using the appropriate division factor M to obtain the specified PLL input clock values. The M factor is shared between PLL and PLLI2S.

2. Guaranteed by design.

3. The use of two PLLs in parallel could degraded the Jitter up to +30%.

4. Guaranteed by characterization results.

Symbol	Parameter	Conditions		Min	Тур	Max	Unit	
f _{PLL_IN}	PLL input clock ⁽¹⁾	-	0.95 ⁽²⁾	1	2.10			
f _{PLLI2SQ_OUT}	48 MHz PLLI2SQ multiplier output clock	-		-	48	75	MU-7	
f _{PLLI2SR_OUT}	PLLI2SR multiplier output clock for I2S and SAI	-		-	-	216		
f _{VCO_OUT}	PLLI2S VCO output			100	-	432		
+	DLL 12S look time	VCO freq = 100 MHz		75	-	200		
LOCK		VCO freq = 432 MHz	100	-	300	μο		
Jitter ⁽³⁾		Cycle to cycle at	RMS	-	90	-		
	Mastar 125 clock jittar	12.288 MHz on 48 kHz period, N=432, R=5	peak to peak	-	±280	-		
		Average frequency of 12.288 MHz N = 432, R = 5 on 1000 samples		-	90	-	ps	
	WS I2S clock jitter	Cycle to cycle at 48 k on 1000 samples	-	400	-			
I _{DD(PLLI2S)} ⁽⁴⁾	PLLI2S power consumption on V_{DD}	VCO freq = 100 MHz VCO freq = 432 MHz		0.15 0.45	-	0.40 0.75	m۸	
I _{DDA(PLLI2S)} ⁽⁴⁾	PLLI2S power consumption on V _{DDA}	VCO freq = 100 MHz VCO freq = 432 MHz	2	0.30 0.55	-	0.40 0.85		

Table 48. PLLI2S	(audio PLL)) characteristics

1. Take care of using the appropriate division factor M to have the specified PLL input clock values.

2. Guaranteed by design.

3. Value given with main PLL running.

4. Guaranteed by characterization results.

Figure 33 and *Figure 34* show the main PLL output clock waveforms in center spread and down spread modes, where:

F0 is f_{PLL_OUT} nominal.

 T_{mode} is the modulation period.

md is the modulation depth.

6.3.12 Memory characteristics

Flash memory

The characteristics are given at T_A = -40 to 125 °C unless otherwise specified.

The devices are shipped to customers with the Flash memory erased.

Table	50.	Flash	memory	characteristics
Table	50.	i iasii	III CIII OI Y	Characteristics

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
I _{DD} Supply current		Write / Erase 8-bit mode, V_{DD} = 1.7 V	-	5	-	
	Write / Erase 16-bit mode, V_{DD} = 2.1 V	-	8	-	mA	
		Write / Erase 32-bit mode, V_{DD} = 3.3 V	-	12	-	

DocID029162 Rev 4

Symbol	Param	eter	Conditions	Min	Тур	Мах	Unit
	I/O input leakage	current ⁽⁴⁾	$V_{SS} \leq V_{IN} \leq V_{DD}$	-	-	±1	
l _{lkg}	I/O FT/TC input le	akage current	V _{IN} = 5 V	-	-	3	μA
R _{PU}	Weak pull-up equivalent	All pins except for PA10 (OTG_FS_ID)	V _{IN} = V _{SS}	30	40	50	
resistor	PA10 (OTG_FS_ID)	-	7	10	14	ko	
R _{PD}	Weak pull-down equivalent	All pins except for PA10 (OTG_FS_ID)	$V_{IN} = V_{DD}$	30	40	50	K22
	resision	PA10 (OTG_FS_ID)	-	7	10	14	
C _{IO} ⁽⁸⁾	I/O pin capacitanc	æ	-	-	5	-	pF

Table 59. I/O static characteristics (continued)

1. Guaranteed by test in production.

2. Guaranteed by design.

3. With a minimum of 200 mV.

- 4. Leakage could be higher than the maximum value, if negative current is injected on adjacent pins, Refer to Table 58: I/O current injection susceptibility
- To sustain a voltage higher than VDD +0.3 V, the internal pull-up/pull-down resistors must be disabled. Leakage could be higher than the maximum value, if negative current is injected on adjacent pins. Refer to Table 58: I/O current injection susceptibility
- Pull-up resistors are designed with a true resistance in series with a switchable PMOS. This PMOS contribution to the series resistance is minimum (~10% order).
- 7. Pull-down resistors are designed with a true resistance in series with a switchable NMOS. This NMOS contribution to the series resistance is minimum (~10% order).
- 8. Hysteresis voltage between Schmitt trigger switching levels. Guaranteed by characterization results.

All I/Os are CMOS and TTL compliant (no software configuration required). Their characteristics cover more than the strict CMOS-technology or TTL parameters. The coverage of these requirements for FT and TC I/Os is shown in *Figure 35*.

Figure 37. Recommended NRST pin protection

1. The reset network protects the device against parasitic resets.

 The user must ensure that the level on the NRST pin can go below the V_{IL(NRST)} max level specified in Table 62. Otherwise the reset is not taken into account by the device.

6.3.18 TIM timer characteristics

The parameters given in *Table 63* are guaranteed by design.

Refer to Section 6.3.16: I/O port characteristics for details on the input/output alternate function characteristics (output compare, input capture, external clock, PWM output).

Symbol	Parameter	Conditions ⁽³⁾	Min	Мах	Unit
t _{res(TIM)}		AHB/APBx prescaler=1	1	-	t _{TIMxCLK}
	Timer resolution time	100 MHz	11.9	-	ns
		AHB/APBx prescaler>4,	1	-	t _{TIMxCLK}
		f _{TIMxCLK} = 100 MHz	11.9	-	ns
f _{EXT}	Timer external clock frequency on CH1 to CH4	f _{TIMxCLK} = 100 MHz	0	f _{TIMxCLK} /2	MHz
			0	50	MHz
Res _{TIM}	Timer resolution		-	16/32	bit
^t COUNTER	16-bit counter clock period when internal clock is selected	f _{TIMxCLK} = 100 MHz	0.0119	780	μs
t _{MAX COUNT}	Maximum possible count	-	-	65536 × 65536	t _{TIMxCLK}
		f _{TIMxCLK} = 100 MHz	-	51.1	S

Table 63. TIMx characteristics⁽¹⁾⁽²⁾

1. TIMx is used as a general term to refer to the TIM1 to TIM11 timers.

2. Guaranteed by design.

 The maximum timer frequency on APB1 is 50 MHz and on APB2 is up to 100 MHz, by setting the TIMPRE bit in the RCC_DCKCFGR register, if APBx prescaler is 1 or 2 or 4, then TIMxCLK = HCKL, otherwise TIMxCLK >= 4x PCLKx.

- 1. R_S = series protection resistor.
- 2. R_P = external pull-up resistor.
- 3. $V_{DD \ I2C}$ is the I2C bus power supply.

£ ((1)-)	I2C_CCR value
	R _P = 4.7 kΩ
400	0x8019
300	0x8021
200	0x8032
100	0x0096
50	0x012C
20	0x02EE

Table 65. SCL frequency $(f_{PCLK1} = 50 \text{ MHz}, V_{DD} = V_{DD_{12C}} = 3.3 \text{ V})^{(1)(2)}$

1. R_P = External pull-up resistance, f_{SCL} = I^2C speed

For speeds around 200 kHz, the tolerance on the achieved speed is of ±5%. For other speed ranges, the tolerance on the achieved speed is ±2%. These variations depend on the accuracy of the external components used to design the application.

Symbol	Parameter	Min	Мах	Unit
t _{w(NE)}	FSMC_NE low time	2 * t _{HCLK} - 1	2 * t _{HCLK} + 1	
t _{v(NOE_NE)}	FSMC_NEx low to FSMC_NOE low	0	0.5	
t _{w(NOE)}	FSMC_NOE low time	2 * t _{HCLK} - 1	2 * t _{HCLK} + 1	
t _{h(NE_NOE)}	FSMC_NOE high to FSMC_NE high hold time	0	-	
t _{v(A_NE)}	FSMC_NEx low to FSMC_A valid	-	0.5	
t _{h(A_NOE)}	Address hold time after FSMC_NOE high	0	-	
t _{v(BL_NE)}	FSMC_NEx low to FSMC_BL valid	-	0.5	ns
t _{h(BL_NOE)}	FSMC_BL hold time after FSMC_NOE high	0	-	
t _{su(Data_NE)}	Data to FSMC_NEx high setup time	t _{HCLK} - 2	-	
t _{su(Data_NOE)}	Data to FSMC_NOEx high setup time	t _{HCLK} - 2	-	
t _{h(Data_NOE)}	Data hold time after FSMC_NOE high	0	-	
t _{h(Data_NE)}	Data hold time after FSMC_NEx high	0	-	
t _{v(NADV_NE)}	FSMC_NEx low to FSMC_NADV low	-	0	
t _{w(NADV)}	FSMC_NADV low time	-	t _{HCLK} + 1	

Table 88. Asynchronous non-multiplexed SRAM/PSRAM/NOR - read timings $^{(1)(2)}$

1. C_L = 30 pF.

2. Based on characterization.

Table 89. Asynchronous non-multiplexed SRAM/PSRAM/NOR read -
NWAIT timings ⁽¹⁾⁽²⁾

Symbol	Parameter	Min	Мах	Unit
t _{w(NE)}	FSMC_NE low time	7 * t _{HCLK} + 1	7 * t _{HCLK} + 1	
t _{w(NOE)}	FSMC_NWE low time	5 * t _{HCLK} - 1	5 * t _{HCLK} + 1	
t _{w(NWAIT)}	FSMC_NWAIT low time	t _{HCLK} - 0.5	-	ns
t _{su(NWAIT_NE)}	FSMC_NWAIT valid before FSMC_NEx high	5 * t _{HCLK} + 1.5	-	
t _{h(NE_NWAIT)}	FSMC_NEx hold time after FSMC_NWAIT invalid	4 * t _{HCLK} + 1	-	

1. C_L = 30 pF.

2. Based on characterization.

Table 98. Synchronous non-multiplexed NOR/PSRAM read timings⁽¹⁾⁽²⁾

Symbol	Parameter	Min	Мах	Unit
t _{w(CLK)}	FSMC_CLK period	2T _{HCLK} – 0.5	-	
t _(CLKL-NExL)	FSMC_CLK low to FSMC_NEx low (x=02)	-	2	
t _{d(CLKH-NExH)}	FSMC_CLK high to FSMC_NEx high (x= 02)	T _{HCLK} +0.5	-	1
t _{d(CLKL-NADVL)}	FSMC_CLK low to FSMC_NADV low	-	0.5	
t _{d(CLKL-NADVH)}	FSMC_CLK low to FSMC_NADV high	0	-	-
t _{d(CLKL-AV)}	FSMC_CLK low to FSMC_Ax valid (x=1625)	-	2.5	-
t _{d(CLKH-AIV)}	FSMC_CLK high to FSMC_Ax invalid (x=1625)	T _{HCLK}	-	ns
t _{d(CLKL-NOEL)}	FSMC_CLK low to FSMC_NOE low	-	1.5	
t _{d(CLKH-NOEH)}	FSMC_CLK high to FSMC_NOE high	Т _{НСLК} - 0.5	-	-
t _{su(DV-CLKH)}	FSMC_D[15:0] valid data before FSMC_CLK high	1.5	-	-
t _{h(CLKH-DV)}	FSMC_D[15:0] valid data after FSMC_CLK high	3.5	-	
t _{su(NWAIT-CLKH)}	FSMC_NWAIT valid before FSMC_CLK high	2.5	-	
t _{h(CLKH-NWAIT)}	FSMC_NWAIT valid after FSMC_CLK high	3.5	-	

1. C_L = 30 pF.

2. Guaranteed by characterization results.

Device marking for UFBGA144

The following figure gives an example of topside marking and ball A1 position identifier location.

Other optional marking or inset/upset marks, which identify the parts throughout supply chain operations, are not indicated below.

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering Samples to run qualification activity.

