

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	100MHz
Connectivity	CANbus, EBI/EMI, I²C, IrDA, LINbus, MMC/SDIO, QSPI, SAI, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, LCD, POR, PWM, WDT
Number of I/O	60
Program Memory Size	1.5MB (1.5M × 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	320K x 8
Voltage - Supply (Vcc/Vdd)	1.7V ~ 3.6V
Data Converters	A/D 16x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	81-UFBGA, WLCSP
Supplier Device Package	81-WLCSP (4.04x3.95)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f413mhy6tr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.22 Timers and watchdogs

The devices embed two advanced-control timer, ten general-purpose timers, two basic timers, one low-power timer, two watchdog timers and a SysTick timer.

All timer counters can be frozen in debug mode.

Table 5 compares the features of the advanced-control and general-purpose timers.

Timer type	Timer	Counter resolution	Counter type	Prescaler factor	DMA request generation	Capture/ compare channels	Complemen- tary output	Max. interface clock (MHz)	Max. timer clock (MHz)
Advance d-control	TIM1, TIM8	16-bit	Up, Down, Up/down	Any integer between 1 and 65536	Yes	4	Yes	100	100
	TIM2, TIM5	32-bit	Up, Down, Up/down	Any integer between 1 and 65536	Yes	4	No	50	100
	TIM3, TIM4	16-bit	Up, Down, Up/down	Any integer between 1 and 65536	Yes	4	No	50	100
General	TIM9	16-bit	Up	Any integer between 1 and 65536	No	2	No	100	100
purpose	TIM10, TIM11	16-bit	Up	Any integer between 1 and 65536	No	1	No	100	100
	TIM12	16-bit	Up	Any integer between 1 and 65536	No	2	No	50	100
	TIM13, TIM14	16-bit	Up	Any integer between 1 and 65536	No	1	No	50	100

 Table 5. Timer feature comparison

Timer type	Timer	Counter resolution	Counter type	Prescaler factor	DMA request generation	Capture/ compare channels	Complemen- tary output	Max. interface clock (MHz)	Max. timer clock (MHz)
Basic timers	TIM6, TIM7	16-bit	Up	Any integer between 1 and 65536	Yes	0	No	50	100
Low- power timer	LPTIM1	16-bit	Up	Between 1 and 128	No	2	No	50	100

 Table 5. Timer feature comparison (continued)

3.22.1 Advanced-control timers (TIM1, TIM8)

The advanced-control timers (TIM1/8) can be seen as three-phase PWM generator multiplexed on 4 independent channels. They have complementary PWM outputs with programmable inserted dead times. They can also be considered as complete general-purpose timers. Their 4 independent channels can be used for:

- Input capture
- Output compare
- PWM generation (edge- or center-aligned modes)
- One-pulse mode output

If configured as standard 16-bit timers, they have the same features as the general-purpose TIMx timers. If configured as a 16-bit PWM generator, they have full modulation capability (0-100%).

The advanced-control timers can work together with the TIMx timers via the Timer Link feature for synchronization or event chaining.

TIM1 and TIM8 support independent DMA request generation.

3.22.2 General-purpose timers (TIMx)

There are elven synchronizable general-purpose timers embedded in the STM32F413xG/H (see *Table 5* for differences).

• TIM2, TIM3, TIM4, TIM5

The STM32F413xG/H devices include 4 full-featured general-purpose timers: TIM2. TIM3, TIM4 and TIM5. TIM2 and TIM5 timers are based on a 32-bit auto-reload up/downcounter and a 16-bit prescaler while TIM3 and TIM4 timers are based on a 16-bit auto-reload up/downcounter plus a 16-bit prescaler. They all features four

independent channels for input capture/output compare, PWM or one-pulse mode output. This gives up to 15 input capture/output compare/PWMs

TIM2. TIM3, TIM4 and TIM5 general-purpose timers can operate together or in conjunction with the other general-purpose timers and TIM1 advanced-control timer via the Timer Link feature for synchronization or event chaining.

Any of these general-purpose timers can be used to generate PWM output.

TIM2. TIM3, TIM4 and TIM5 channels have independent DMA request generation. They are capable of handling quadrature (incremental) encoder signals and the digital outputs from 1 to 4 hall-effect sensors.

• TIM9, TIM10, TIM11, TIM12, TIM13 and TIM14

These timers are based on a 16-bit auto-reload upcounter and a 16-bit prescaler. TIM10, TIM11, TIM13 and TIM14 feature one independent channel, whereas TIM9 and TIM12 have two independent channels for input capture/output compare, PWM or onepulse mode output. They can be synchronized with TIM2. TIM3, TIM4 and TIM5 fullfeatured general-purpose timers or used as simple time bases.

3.22.3 Basic timer (TIM6, TIM7)

TIM6 and TIM7 timers are basic 16-bit timers. They support independent DMA request generation.

3.22.4 Low-power timer (LPTIM1)

The low-power timer (LPTIM1) features an independent clock and runs in Stop mode if it is clocked by LSE, LSI or by an external clock. LPTIM1 is able to wakeup the devices from Stop mode.

The low-power timer main features are the following:

- 16-bit up counter with 16-bit autoreload register
- 16-bit compare register
- Configurable output: pulse, PWM
- Continuous / one shot mode
- Selectable software / hardware input trigger
- Selectable clock source
 - Internal clock source: LSE, LSI, HSI or APB1 clock
 - External clock source over LPTIM1 input (working even with no internal clock source running, used by the pulse counter application)
- Programmable digital glitch filter
- Encoder mode
- Active in Stop mode.

3.22.5 Independent watchdog

The independent watchdog is based on a 12-bit downcounter and 8-bit prescaler. It is clocked from an independent 32 kHz internal RC and as it operates independently from the main clock, it can operate in Stop and Standby modes. It can be used either as a watchdog to reset the device when a problem occurs, or as a free-running timer for application timeout management. It is hardware- or software-configurable through the option bytes.

DocID029162 Rev 4

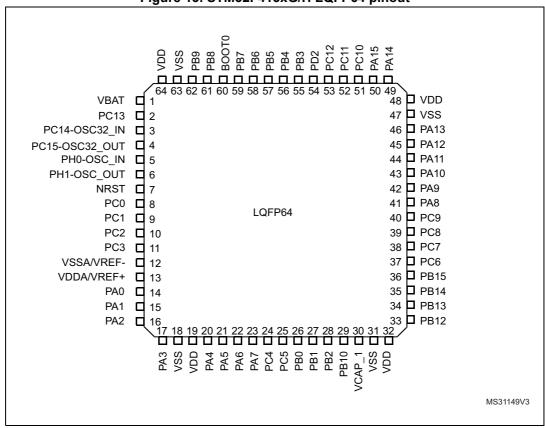
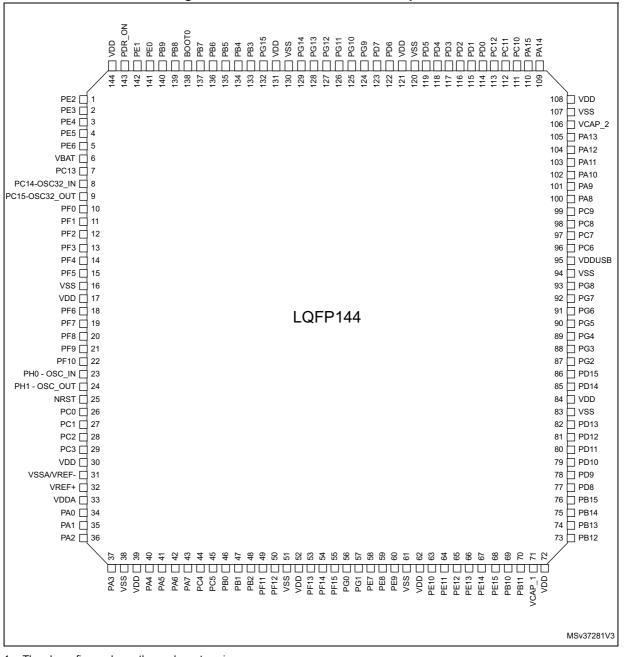



Figure 13. STM32F413xG/H LQFP64 pinout

1. The above figure shows the package top view.

Figure 15. STM32F413xG/H LQFP144 pinout

1. The above figure shows the package top view.

			-									
	1	2	3	4	5	6	7	8	9	10	11	12
Α	PC13	PE3	PE2	PE1	PE0	PB4	PB3	PD6	PD7	PA15	PA14	PA13
в	PC14- OSC32_IN	PE4	PE5	PE6	PB9	PB5	PG15	PG12	PD5	PC11	PC10	PA12
с	PC15- OSC32_OUT	VBAT	PF0	PF1	PB8	PB6	PG14	PG11	PD4	PC12	VDDUSB	PA11
D	PH0 - OSC_IN	vss	VDD	PF2	BOOTO	PB7	PG13	PG10	PD3	PD1	PA10	PA9
E	PH1 - OSC_OUT	PF3	PF4	PF5	PDR_ON	vss	vss	PG9	PD2	PD0	PC9	PA8
F	NRST	PF7	PF6	VDD	VDD	VDD	VDD	VDD	VDD	VDD	PC8	PC7
G	PF10	PF9	PF8	VSS	VDD	VDD	VDD	vss	VCAP_2	vss	PG8	PC6
н	PC0	PC1	PC2	PC3	BYPASS_ REG	VSS	VCAP_1	PE11	PD11	PG7	PG6	PG5
J	VSSA	PA0	PA4	PC4	PB2	PG1	PE10	PE12	PD10	PG4	PG3	PG2
к	VREF-	PA1	PA5	PC5	PF13	PG0	PE9	PE13	PD9	PD13	PD14	PD15
L	VREF+	PA2	PA6	PB0	PF12	PF15	PE8	PE14	PD8	PD12	PB14	PB15
м	VDDA	PA3	PA7	PB1	PF11	PF14	PE7	PE15	PB10	PB11	PB12	PB13
								•				MSv3728

Figure 17. STM32F413xG/H UFBGA144 pinout

1. The above figure shows the package top view.

Table 9. Legend/abbreviations used in the pinout table

Name	Abbreviation	Definition					
Pin name		specified in brackets below the pin name, the pin function during and after as the actual pin name					
	S	Supply pin					
Pin type	I	Input only pin					
	I/O	Input/ output pin					
	FT	5 V tolerant I/O					
	FTf	5 V tolerant I/O, I2C FM+ option					
I/O structure	TC	Standard 3.3 V I/O					
NO STRUCTURE	ТТа	3.3 V tolerant I/O directly connected to DAC					
	В	Dedicated BOOT0 pin					
	NRST	Bidirectional reset pin with embedded weak pull-up resistor					
Notes	Unless otherwise	specified by a note, all I/Os are set as floating inputs during and after reset					
Alternate functions	Functions selected	d through GPIOx_AFR registers					
Additional functions	Functions directly	selected/enabled through peripheral registers					

		Ρ	in Nu	mber								
UFQFPN48	LQFP64	WLCSP81	LQFP100	UFBGA100	UFBGA144	LQFP144	Pin name (function after reset) ⁽¹⁾	Pin type	I/O structure	Notes	Alternate functions	Additional functions
-	-	B8	-	H3	E5	143	PDR_ON	Ι	FT	-	-	-
48	64	A9	100	C4	F5	144	VDD	S	-	-	-	-

Table 10. STM32F413xG/H pin definition (continued)

1. Function availability depends on the chosen device.

NC (Not Connected) pins are not bonded. They must be configured by software to output push-pull and forced to 0 in the output data register to avoid extra power consumption in low power mode. 2.

Compatibility issue on alternate function pin PE4 SAI1_SD_A and PE6 SAI1_FS_A: Pins have been swapped versus other 3. MCUs supporting those alternate SAI functions on those pins

PC13, PC14 and PC15 are supplied through the power switch. Since the switch only sinks a limited amount of current (3 mA), the use of GPIOs PC13 to PC15 in output mode is limited:
The speed should not exceed 2 MHz with a maximum load of 30 pF.
These I/Os must not be used as a current source (e.g. to drive an LED).

 Main function after the first backup domain power-up. Later on, it depends on the contents of the RTC registers even after reset (because these registers are not reset by the main reset). For details on how to manage these I/Os, refer to the RTC register description sections in the STM32F413xG/Hreference manual.

6. FT = 5 V tolerant except when in analog mode or oscillator mode (for PC14, PC15, PH0 and PH1).

Incompatibility issue on alternate function with other MCUs supporting UART4: UART4_TX wrongly mapped to PD10 instead of PC10

	FSMC										
Pins	LCD/NOR/ PSRAM/SRAM	NOR/PSRAM Mux	64 pins	81 pins	100 pins	144 pins					
PE2	A23	A23	-	-	Yes	Yes					
PE3	A19	A19	-	-	Yes	Yes					
PE4	A20	A20	-	-	Yes	Yes					
PE5	A21	A21	-	-	Yes	Yes					
PE6	A22	A22	-	-	Yes	Yes					
PF0	A0	-	-	-	-	Yes					
PF1	A1	-	-	-	-	Yes					
PF2	A2	-	-	-	-	Yes					
PF3	A3	-	-	-	-	Yes					
PF4	A4	-	-	-	-	Yes					
PF5	A5	-	-	-	-	Yes					
PC2	NWE	NWE	Yes	Yes	Yes	Yes					
PC3	A0	-	Yes	Yes	Yes	Yes					
PA2	D4	DA4	Yes	Yes	Yes	Yes					

Table	11.	FSMC	pin	definition
-------	-----	------	-----	------------

STM32F413xG/H

Pinouts and pin description

Table 12. STM32F413xG/H alternate functions (continued)
---	------------

				-	Table 12	2. STM32F	413xG/H	alternate	function	is (continu	ued)					
	AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7	AF8	AF9	AF10	AF11	AF12	AF13	AF14	AF15
Port	SYS_ AF	TIM1/2/ LPTIM1	TIM3/4/5	DFSDM2/ TIM8/9/10/11	I2C1/2/3/ I2CFMP1	SPI1/I2S1/ SPI2/I2S2/ SPI3/I2S3/ SPI4/I2S4	SPI2/I2S2/ SPI3/I2S3/ SPI4/I2S4/ SPI5/I2S5/ DFSDM1/2	SPI3/I2S3/ SAI1/ DFSDM2/ USART1/ USART2/ USART3	DFSDM1/ USART3/4/ 5/6/7/8/ CAN1	I2C2/I2C3/ I2CFMP1/ CAN1/2/ TIM12/13/14/ QUADSPI	SAI1/ DFSDM1/ DFSDM2/ QUADSPI/ FSMC /OTG1_FS	UART4/ UART5/ UART9/ UART10 /CAN3	FSMC /SDIO	-	RNG	SYS_ AF
두 PHC	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	EVENT OUT
₽ PH1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	EVENT OUT

74/208

6 Electrical characteristics

6.1 Parameter conditions

Unless otherwise specified, all voltages are referenced to V_{SS}.

6.1.1 Minimum and maximum values

Unless otherwise specified the minimum and maximum values are guaranteed in the worst conditions of ambient temperature, supply voltage and frequencies by tests in production on 100% of the devices with an ambient temperature at $T_A = 25$ °C and $T_A = T_A max$ (given by the selected temperature range).

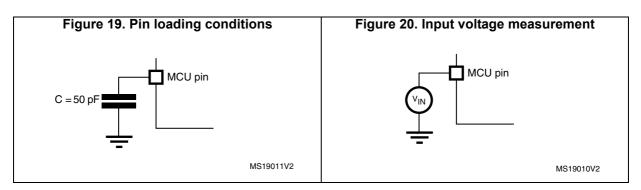
Data based on characterization results, design simulation and/or technology characteristics are indicated in the table footnotes and are not tested in production. Based on characterization, the minimum and maximum values refer to sample tests and represent the mean value plus or minus three times the standard deviation (mean $\pm 3 \sigma$).

6.1.2 Typical values

Unless otherwise specified, typical data are based on T_A = 25 °C, V_{DD} = 3.3 V (for the 1.7 V \leq V_{DD} \leq 3.6 V voltage range). They are given only as design guidelines and are not tested.

Typical ADC accuracy values are determined by characterization of a batch of samples from a standard diffusion lot over the full temperature range, where 95% of the devices have an error less than or equal to the value indicated (mean $\pm 2 \sigma$).

6.1.3 Typical curves


Unless otherwise specified, all typical curves are given only as design guidelines and are not tested.

6.1.4 Loading capacitor

The loading conditions used for pin parameter measurement are shown in *Figure 19*.

6.1.5 Pin input voltage

The input voltage measurement on a pin of the device is described in Figure 20.

(tor enabled with prefeto	iii) i uiiii	-		-		1.7 V	1
			f	Тур		Ma	x ⁽¹⁾		
Symbol	Parameter	Conditions	f _{HCLK} (MHz)	T _A = 25 °C	T _A = 25 °C	T _A = 85 °C	T _A = 105 °C	T _A = 125 °C	Unit
			100	42.9	45.86	45.76	47.88	51.71	
			84	35.4	37.90	38.16	40.01	43.26	
		External clock,	64	26.2	28.19	28.74	30.37	33.54	
		PLL ON, all peripherals enabled ⁽²⁾	50	20.7	22.32	22.50	24.34	27.73	
			25	11.1	11.87	12.87	14.72	18.08	
			20	9.4	10.05	11.26	13.16	16.46	
		HSI, PLL OFF, all peripherals enabled	16	7.1	7.72	9.06	10.90	14.29	
	Supply current		1	1.2	1.84	3.10	4.84	8.20	mA
I _{DD}	in Run mode		100	25.4	27.83	27.84	29.93	33.66	
			84	21.4	23.44	24.10	25.77	29.04	
		External clock, PLL ON ⁽²⁾	64	16.6	18.31	19.17	20.72	23.86	
		all peripherals disabled	50	13.2	15.10	14.95	16.71	20.13	
			25	7.2	7.90	9.01	10.88	14.25	
			20	6.2	6.83	8.05	9.88	13.15	1
		HSI, PLL OFF,	16	4.8	5.37	6.70	8.52	11.89	
		all peripherals disabled	1	1.0	1.62	2.96	4.67	8.07	

Table 30. Typical and maximum current consumption in run mode, code with data processing (ART accelerator enabled with prefetch) running from Flash memory - V_{DD} = 1.7 V

1. Guaranteed by characterization results.

2. Add an additional power consumption of 1.6 mA per ADC for the analog part. In applications, this consumption occurs only while the ADC is ON (ADON bit is set in the ADC_CR2 register).

The characteristics given in *Table 41* result from tests performed using an high-speed external clock source, and under ambient temperature and supply voltage conditions summarized in *Table 17*.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{HSE_ext}	External user clock source frequency ⁽¹⁾		1	-	50	MHz
V _{HSEH}	OSC_IN input pin high level voltage		0.7V _{DD}	-	V _{DD}	V
V _{HSEL}	OSC_IN input pin low level voltage		V_{SS}	-	$0.3V_{DD}$	v
t _{w(HSE)} t _{w(HSE)}	OSC_IN high or low time ⁽¹⁾		5	-	-	ns
t _{r(HSE)} t _{f(HSE)}	OSC_IN rise or fall time ⁽¹⁾		-	-	10	115
C _{in(HSE)}	OSC_IN input capacitance ⁽¹⁾		-	5	-	pF
DuCy _(HSE)	Duty cycle		45	-	55	%
١L	OSC_IN Input leakage current	$V_{SS} \leq V_{IN} \leq V_{DD}$	-	-	±1	μA

1. Guaranteed by design.

Low-speed external user clock generated from an external source

In bypass mode the LSE oscillator is switched off and the input pin is a standard I/O. The external clock signal has to respect the *Table 59*. However, the recommended clock input waveform is shown in *Figure 28*.

The characteristics given in *Table 42* result from tests performed using an low-speed external clock source, and under ambient temperature and supply voltage conditions summarized in *Table 17*.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{LSE_ext}	User External clock source frequency ⁽¹⁾		-	32.768	1000	kHz
V _{LSEH}	OSC32_IN input pin high level voltage		0.7V _{DD}	-	V _{DD}	V
V _{LSEL}	OSC32_IN input pin low level voltage		V _{SS}	-	0.3V _{DD}	
t _{w(LSE)} t _{f(LSE)}	OSC32_IN high or low time ⁽¹⁾		450	-	-	ns
$t_{r(LSE)} \\ t_{f(LSE)}$	OSC32_IN rise or fall time ⁽¹⁾		-	-	50	113
C _{in(LSE)}	OSC32_IN input capacitance ⁽¹⁾		-	5	-	pF
DuCy _(LSE)	Duty cycle		30	-	70	%
١L	OSC32_IN Input leakage current	$V_{SS} \le V_{IN} \le V_{DD}$	-	-	±1	μA

Table 42. Low-speed external user clock characteristics

1. Guaranteed by design.

Prequalification trials

Most of the common failures (unexpected reset and program counter corruption) can be reproduced by manually forcing a low state on the NRST pin or the Oscillator pins for 1 second.

To complete these trials, ESD stress can be applied directly on the device, over the range of specification values. When unexpected behavior is detected, the software can be hardened to prevent unrecoverable errors occurring (see application note AN1015).

Electromagnetic Interference (EMI)

The electromagnetic field emitted by the device are monitored while a simple application, executing EEMBC code, is running. This emission test is compliant with IEC61967-2 standard which specifies the test board and the pin loading.

Symbol	mbol Parameter Conditions		Monitored frequency band	Max vs. [f _{HSE} /f _{CPU}] 8/100 MHz	Unit
S _{EMI} Pe			0.1 to 30 MHz	13	
		V _{DD} = 3.6 V, T _A = 25 °C, LQFP144	30 to 130 MHz	21	dBµV
	Peak level	package, conforming to IEC 61967-2, EEMBC, ART ON, all peripheral clocks enabled, clock dithering disabled.	130 MHz to 1 GHz	25	υσμν
			1 GHz to 2 GHz	19	
			EMI Level	4	-

Table 55. EMI characteristics for LQFP144

6.3.14 Absolute maximum ratings (electrical sensitivity)

Based on three different tests (ESD, LU) using specific measurement methods, the device is stressed in order to determine its performance in terms of electrical sensitivity.

Electrostatic discharge (ESD)

Electrostatic discharges (a positive then a negative pulse separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size depends on the number of supply pins in the device (3 parts \times (n+1) supply pins). This test conforms to the JESD22-A114/C101 standard.

SPI interface characteristics

Unless otherwise specified, the parameters given in *Table 67* for the SPI interface are derived from tests performed under the ambient temperature, f_{PCLKx} frequency and V_{DD} supply voltage conditions summarized in *Table 17*, with the following configuration:

- Output speed is set to OSPEEDRy[1:0] = 10
- Capacitive load C = 30 pF
- Measurement points are done at CMOS levels: 0.5V_{DD}

Refer to Section 6.3.16: I/O port characteristics for more details on the input/output alternate function characteristics (NSS, SCK, MOSI, MISO for SPI).

Symbol	Parameter Conditions		Min	Тур	Max	Unit
		Master mode, SPI1,4,5 3.0 V < V _{DD} < 3.6 V	-	-	50	
f _{SCK} 1/t _{c(SCK)}		Master mode, SPI1,4,5 2.7 V < V _{DD} < 3.6 V	-	-	42	
		Master mode SPI1,4,5 1.7 V < V _{DD} < 3.6 V	-	-	25	
	SPI clock frequency	Master transmitter mode SPI1,4,5 1.71 V < V _{DD} < 3.6 V	-	-	50	MHz
		Slave receiver mode SPI1,4,5 1.71 V < V _{DD} < 3.6 V	-	-	- 50	
		Slave mode transmitter/full duplex SPI1,4,5 2.7 V < V _{DD} < 3.6 V		-	40 ⁽²⁾	
		Slave mode transmitter/full duplex SPI1,4,5 1.71 V < V _{DD} < 3.6 V	-	-	26	
		Master & Slave mode, SPI2/3 1.71 V < V _{DD} < 3.6 V	-	-	25	
t _{su(NSS)}	NSS setup time	Slave mode, SPI presc = 2	4*T _{PCLK}	-	-	ns
t _{h(NSS)}	NSS hold time	Slave mode, SPI presc = 2	2*T _{PCLK}	-	-	ns
t _{w(SCKH)} t _{w(SCKL)}	SCK high and low time	v time Master mode		T _{PCLK}	T _{PCLK} +2	ns
t _{su(MI)}	Data input setup time	Master mode	2.5	-	-	ns
t _{su(SI)}		Slave mode	4.5	-	-	115
t _{h(MI)}	Data input hold time	Master mode	5	-	-	ns
t _{h(SI)}		Slave mode	2	-	-	

Table 67. SPI dynamic characteristics	Table 67.	SPI d	vnamic	characteristics ⁽¹)
---------------------------------------	-----------	-------	--------	-------------------------------	---

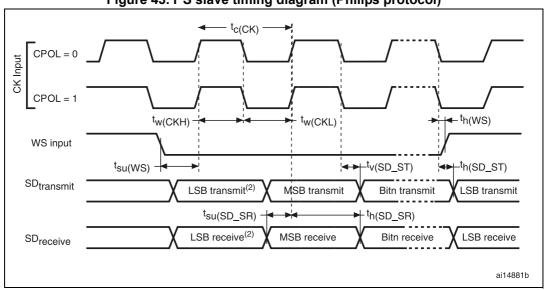
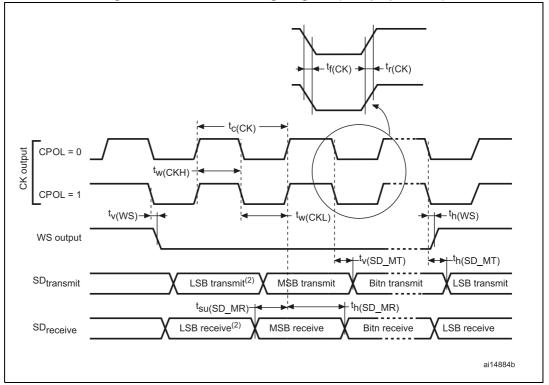



Figure 43. I²S slave timing diagram (Philips protocol)

LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first byte.

Figure 44. I²S master timing diagram (Philips protocol)

1. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first byte.

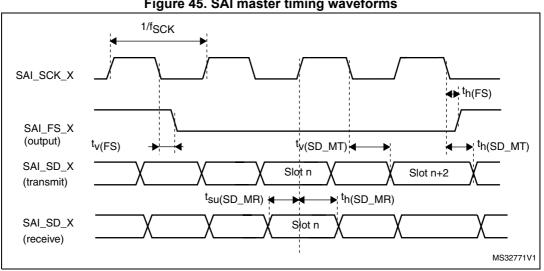
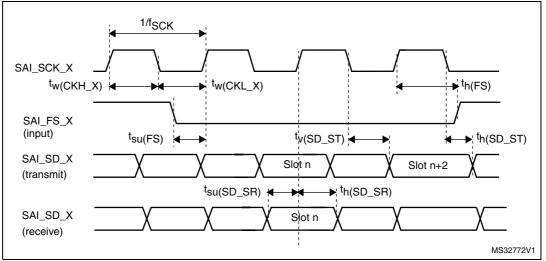



Figure 45. SAI master timing waveforms

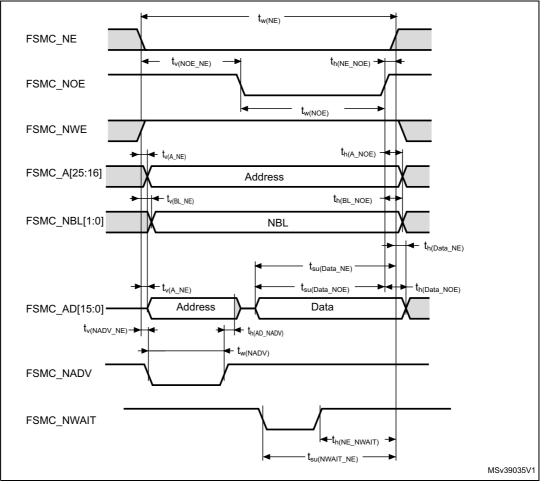
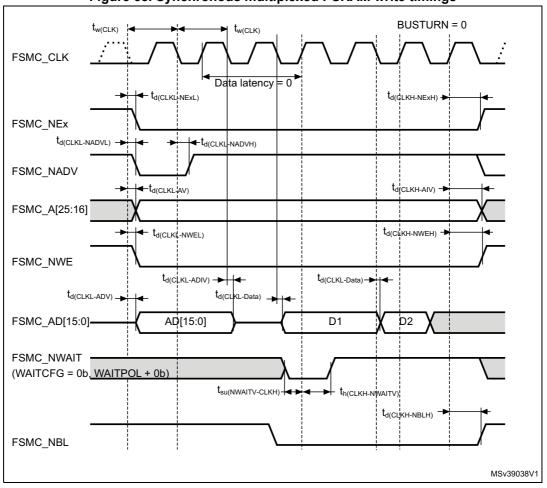

- 1. C_L = 30 pF.
- 2. Based on characterization.

Table 91. Asynchronous non-multiplexed SRAM/PSRAM/NOR write - NWAIT timings^{(1)(2)}

Symbol	ol Parameter		Мах	Unit
t _{w(NE)}	t _{w(NE)} FSMC_NE low time 8 * t _{HCLK} - 1		8 * t _{HCLK} + 1	
t _{w(NWE)}	FSMC_NWE low time	6 * t _{HCLK} - 1.5	6 * t _{HCLK} + 0.5	ns
t _{su(NWAIT_NE)}	FSMC_NWAIT valid before FSMC_NEx high	6 * t _{HCLK} - 1	-	115
t _{h(NE_NWAIT)}	FSMC_NEx hold time after FSMC_NWAIT invalid	4 * t _{HCLK} + 2	-	


1. C_L = 30 pF.

2. Based on characterization.

Figure 55. Asynchronous multiplexed PSRAM/NOR read waveforms

Symbol	Parameter	Conditions	Min	Тур	Max	Unit		
f _{PP}	Clock frequency in data transfer mode	-	0	-	50	MHz		
-	SDIO_CK/fPCLK2 frequency ratio	-	-	-	8/3	-		
t _{W(CKL)}	Clock low time	fpp =50MHz	9.5	10.5	-			
t _{W(CKH)}	Clock high time	fpp =50MHz	8.5	9.5	-	ns		
CMD, D inputs (referenced to CK) in MMC and SD HS mode								
t _{ISU}	Input setup time HS	fpp =50MHz	5	-	-			
t _{IH}	Input hold time HS	fpp =50MHz	1	-	-	– ns		
CMD, D out	tputs (referenced to CK) in MMC and S	SD HS mode		•	•			
t _{OV}	Output valid time HS	fpp =50MHz	-	12	13.5			
t _{OH}	Output hold time HS	fpp =50MHz	10.5	-	-	ns		
CMD, D inputs (referenced to CK) in SD default mode								
t _{ISUD}	Input setup time SD	fpp =25MHz	5	-	-			
t _{IHD}	Input hold time SD	fpp =25MHz	1	-	-	ns		
CMD, D outputs (referenced to CK) in SD default mode								
t _{OVD}	Output valid default time SD	fpp =25 MHz	-	2	3			
t _{OHD}	Output hold default time SD	fpp =25 MHz	1	-	-	ns		
t _{OVD}	Output valid default time SD	fpp =25 MHz	- 1	2	3			

Table 100	. SD /	MMC	characteristics ⁽¹⁾⁽²⁾
-----------	--------	-----	-----------------------------------

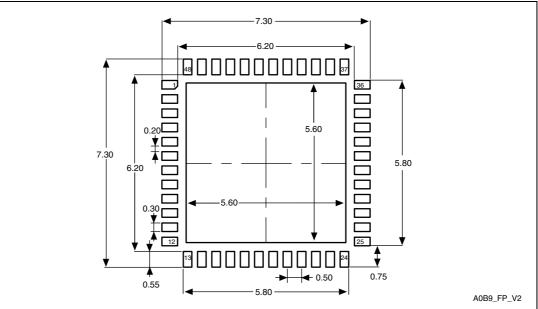
1. Guaranteed by characterization results.

2. V_{DD} = 2.7 to 3.6 V.

Table 101. eMMC characteristics V_{DD} = 1.7 V to 1.9 V⁽¹⁾⁽²⁾

Symbol	Parameter	Conditions	Min	Тур	Max	Unit	
f _{PP}	Clock frequency in data transfer mode	-	0	-	50	MHz	
-	SDIO_CK/fPCLK2 frequency ratio	-	-	-	8/3	-	
t _{W(CKL)}	Clock low time	fpp =50MHz	9.5	10.5	-	ne	
t _{W(CKH)}	Clock high time	fpp =50MHz	8.5	9.5	-	ns	
CMD, D inputs (referenced to CK) in eMMC mode							
t _{ISU}	Input setup time HS	fpp =50MHz	3	-	-	n 0	
t _{IH}	Input hold time HS	fpp =50MHz	2.5	-	-	ns	
CMD, D outputs (referenced to CK) in eMMC mode							
t _{OV}	Output valid time HS	fpp =50MHz	-	15	15.5	50	
t _{OH}	Output hold time HS	fpp =50MHz	13	-	-	ns	

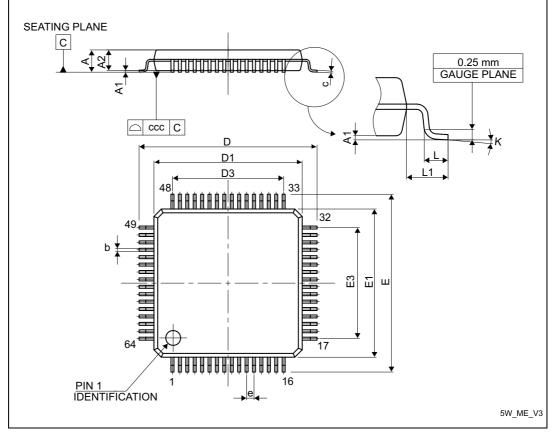
1. Guaranteed by characterization results.


2. C_{LOAD} = 20 pF.

puoliago moonamour auta							
Cumb al		millimeters			inches ⁽¹⁾		
Symbol	Min.	Тур.	Max.	Min.	Тур.	Max.	
А	0.500	0.550	0.600	0.0197	0.0217	0.0236	
A1	0.000	0.020	0.050	0.0000	0.0008	0.0020	
D	6.900	7.000	7.100	0.2717	0.2756	0.2795	
E	6.900	7.000	7.100	0.2717	0.2756	0.2795	
D2	5.500	5.600	5.700	0.2165	0.2205	0.2244	
E2	5.500	5.600	5.700	0.2165	0.2205	0.2244	
L	0.300	0.400	0.500	0.0118	0.0157	0.0197	
Т	-	0.152	-	-	0.0060	-	
b	0.200	0.250	0.300	0.0079	0.0098	0.0118	
е	-	0.500	-	-	0.0197	-	
ddd	-	-	0.080	-	-	0.0031	

Table 105. UFQFPN48 - 48-lead, 7x7 mm, 0.5 mm pitch, ultra thin fine pitch quad flatpackage mechanical data

1. Values in inches are converted from mm and rounded to 4 decimal digits.


Figure 67. UFQFPN48 recommended footprint

1. Dimensions are in millimeters.

7.3 LQFP64 package information

Figure 69. LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat package outline

1. Drawing is not to scale.

