

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	100MHz
Connectivity	CANbus, EBI/EMI, I ² C, IrDA, LINbus, MMC/SDIO, QSPI, SAI, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, LCD, POR, PWM, WDT
Number of I/O	114
Program Memory Size	1.5MB (1.5M x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	320K x 8
Voltage - Supply (Vcc/Vdd)	1.7V ~ 3.6V
Data Converters	A/D 16x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	144-LQFP
Supplier Device Package	144-LQFP (20x20)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f413zht6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.9 DMA controller (DMA)

The devices feature two general-purpose dual-port DMAs (DMA1 and DMA2) with 8 streams each. They are able to manage memory-to-memory, peripheral-to-memory and memory-to-peripheral transfers. They feature dedicated FIFOs for APB/AHB peripherals, support burst transfer and are designed to provide the maximum peripheral bandwidth (AHB/APB).

The two DMA controllers support circular buffer management, so that no specific code is needed when the controller reaches the end of the buffer. The two DMA controllers also have a double buffering feature, which automates the use and switching of two memory buffers without requiring any special code.

Each stream is connected to dedicated hardware DMA requests, with support for software trigger on each stream. Configuration is made by software and transfer sizes between source and destination are independent.

The DMA can be used with the main peripherals:

- SPI and I²S
- I²C and I²CFMP
- USART
- General-purpose, basic and advanced-control timers TIMx
- SD/SDIO/MMC/eMMC host interface
- Quad-SPI
- ADC
- DAC
- Digital Filter for sigma-delta modulator (DFSDM) with a separate stream for each filter
- SAI.

3.10 Flexible static memory controller (FSMC)

The Flexible static memory controller (FSMC) includes a NOR/PSRAM memory controller. It features four Chip Select outputs supporting the following modes: SRAM, PSRAM and NOR Flash memory.

The main functions are:

- 8-,16-bit data bus width
- Write FIFO
- Maximum FSMC_CLK frequency for synchronous accesses is 90 MHz.

LCD parallel interface

The FSMC can be configured to interface seamlessly with most graphic LCD controllers. It supports the Intel 8080 and Motorola 6800 modes, and is flexible enough to adapt to specific LCD interfaces. This LCD parallel interface capability makes it easy to build cost-effective graphic applications using LCD modules with embedded controllers or high performance solutions using external controllers with dedicated acceleration.

buses and high-speed APB domains is 100 MHz. The maximum allowed frequency of the low-speed APB domain is 50 MHz.

The devices embed a dedicated PLL (PLLI2S) which allows to achieve audio class performance. In this case, the I^2S master clock can generate all standard sampling frequencies from 8 kHz to 192 kHz.

3.15 Boot modes

At startup, boot pins are used to select one out of three boot options:

- Boot from user Flash memory
- Boot from system memory
- Boot from embedded SRAM

The boot loader is located in system memory. It is used to reprogram the Flash memory by using one of the interface listed in the *Table 3* or the USB OTG FS in device mode through DFU (device firmware upgrade).

Package	USART1 PA9/ PA10	USART2 PD6/ PD5	USART3 PB11/ PB10	l2C1 PB6/ PB7	l2C2 PF0/ PF1	12C3 PA8/ PB4	I2C FMP1 PB14/ PB15	SPI1 PA4/ PA5/ PA6/ PA7	SPI3 PA15/ PC10/ PC11/ PC12	SPI4 PE11/ PE12/ PE13/ PE14	CAN2 PB5/ PB13	USB PA11 /P12
UFQFPN48	Y	-	-	Y	-	Y	Y	Y	-	-	Y	Y
LQFP64	Y	-	-	Y	-	Y	Y	Y	Y	-	Y	Y
WLCSP81	Y	-	-	Y	-	Y	Y	Y	Y	Y	Y	Y
LQFP100	Y	Y	-	Y	-	Y	Y	Y	Y	Y	Y	Y
LQFP144	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
UFBGA100	Y	Y	Y	Y	-	Y	Y	Y	Y	Y	Y	Y
UFBGA144	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y

For more detailed information on the bootloader, refer to Application Note: AN2606, *STM32™ microcontroller system memory boot mode*.

Figure 6. V_{DDUSB} connected to an external independent power supply

3.17 Power supply supervisor

3.17.1 Internal reset ON

This feature is available for V_{DD} operating voltage range 1.8 V to 3.6 V.

On packages embedding the PDR_ON pin, the power supply supervisor is enabled by holding PDR_ON high. On the other package, the power supply supervisor is always enabled.

The device has an integrated power-on reset (POR) / power-down reset (PDR) circuitry coupled with a Brownout reset (BOR) circuitry. At power-on, POR is always active, and ensures proper operation starting from 1.8 V. After the 1.8 V POR threshold level is reached, the option byte loading process starts, either to confirm or modify default thresholds, or to disable BOR permanently. Three BOR thresholds are available through option bytes.

The device remains in reset mode when V_{DD} is below a specified threshold, $V_{POR/PDR}$ or V_{BOR} , without the need for an external reset circuit.

The device also features an embedded programmable voltage detector (PVD) that monitors the V_{DD}/V_{DDA} power supply and compares it to the V_{PVD} threshold. An interrupt can be generated when V_{DD}/V_{DDA} drops below the V_{PVD} threshold and/or when V_{DD}/V_{DDA} is higher than the V_{PVD} threshold. The interrupt service routine can then generate a warning message and/or put the MCU into a safe state. The PVD is enabled by software.

Timer type	Timer	Counter resolution	Counter type	Prescaler factor	DMA request generation	Capture/ compare channels	Complemen- tary output	Max. interface clock (MHz)	Max. timer clock (MHz)
Basic timers	TIM6, TIM7	16-bit	Up	Any integer between 1 and 65536	Yes	0	No	50	100
Low- power timer	LPTIM1	16-bit	Up	Between 1 and 128	No	2	No	50	100

 Table 5. Timer feature comparison (continued)

3.22.1 Advanced-control timers (TIM1, TIM8)

The advanced-control timers (TIM1/8) can be seen as three-phase PWM generator multiplexed on 4 independent channels. They have complementary PWM outputs with programmable inserted dead times. They can also be considered as complete general-purpose timers. Their 4 independent channels can be used for:

- Input capture
- Output compare
- PWM generation (edge- or center-aligned modes)
- One-pulse mode output

If configured as standard 16-bit timers, they have the same features as the general-purpose TIMx timers. If configured as a 16-bit PWM generator, they have full modulation capability (0-100%).

The advanced-control timers can work together with the TIMx timers via the Timer Link feature for synchronization or event chaining.

TIM1 and TIM8 support independent DMA request generation.

3.22.2 General-purpose timers (TIMx)

There are elven synchronizable general-purpose timers embedded in the STM32F413xG/H (see *Table 5* for differences).

• TIM2, TIM3, TIM4, TIM5

The STM32F413xG/H devices include 4 full-featured general-purpose timers: TIM2. TIM3, TIM4 and TIM5. TIM2 and TIM5 timers are based on a 32-bit auto-reload up/downcounter and a 16-bit prescaler while TIM3 and TIM4 timers are based on a 16-bit auto-reload up/downcounter plus a 16-bit prescaler. They all features four

	1	2	3	4	5	6	7	8	9	10	11	12
Α	PC13	PE3	PE2	PE1	PE0	PB4	PB3	PD6	PD7	PA15	PA14	PA13
в	PC14- OSC32_IN	PE4	PE5	PE6	PB9	PB5	PG15	PG12	PD5	PC11	PC10	PA12
с	PC15- OSC32_OUT	VBAT	PF0	PF1	PB8	PB6	PG14	PG11	PD4	PC12	VDDUSB	PA11
D	PH0 - OSC_IN	vss	VDD	PF2	BOOT0	PB7	PG13	PG10	PD3	PD1	PA10	PA9
E	PH1 - OSC_OUT	PF3	PF4	PF5	PDR_ON	VSS	VSS	PG9	PD2	PD0	PC9	PA8
F	NRST	PF7	PF6	VDD	VDD	VDD	VDD	VDD	VDD	VDD	PC8	PC7
G	PF10	PF9	PF8	VSS	VDD	VDD	VDD	VSS	VCAP_2	VSS	PG8	PC6
н	PC0	PC1	PC2	PC3	BYPASS_ REG	VSS	VCAP_1	PE11	PD11	PG7	PG6	PG5
J	VSSA	PA0	PA4	PC4	PB2	PG1	PE10	PE12	PD10	PG4	PG3	PG2
к	VREF-	PA1	PA5	PC5	PF13	PG0	PE9	PE13	PD9	PD13	PD14	PD15
L	VREF+	PA2	PA6	PB0	PF12	PF15	PE8	PE14	PD8	PD12	PB14	PB15
м	VDDA	PA3	PA7	PB1	PF11	PF14	PE7	PE15	PB10	PB11	PB12	PB13

Figure 17. STM32F413xG/H UFBGA144 pinout

1. The above figure shows the package top view.

Table 9. Legend/abbreviations used in the pinout table

Name	Abbreviation	Definition					
Pin name	Unless otherwise reset is the same	specified in brackets below the pin name, the pin function during and after as the actual pin name					
	S	Supply pin					
Pin type	I	Input only pin					
	I/O	Input/ output pin					
	FT	5 V tolerant I/O					
	FTf	5 V tolerant I/O, I2C FM+ option					
I/O atruatura	TC	Standard 3.3 V I/O					
	ТТа	3.3 V tolerant I/O directly connected to DAC					
	В	Dedicated BOOT0 pin					
	NRST	Bidirectional reset pin with embedded weak pull-up resistor					
Notes	Unless otherwise	specified by a note, all I/Os are set as floating inputs during and after reset					
Alternate functions	Functions selected	d through GPIOx_AFR registers					
Additional functions	Functions directly selected/enabled through peripheral registers						

		Ρ	in Nu	mber								
UFQFPN48	LQFP64	WLCSP81	LQFP100	UFBGA100	UFBGA144	LQFP144	Pin name (function after reset) ⁽¹⁾	Pin type	I/O structure	Notes	Alternate functions	Additional functions
-	-	-	-	-	D4	12	PF2	I/O	FT	-	I2C2_SMBA, FSMC_A2, EVENTOUT	-
-	-	-	-	-	E2	13	PF3	I/O	FT	-	TIM5_CH1, FSMC_A3, EVENTOUT	-
-	-	-	-	-	E3	14	PF4	I/O	FT	-	TIM5_CH2, FSMC_A4, EVENTOUT	-
-	-	-	-	-	E4	15	PF5	I/O	FT	-	TIM5_CH3, FSMC_A5, EVENTOUT	-
-	-	D8	10	F2	D2	16	VSS	S	-	-	-	-
-	-	E8	11	G2	D3	17	VDD	S	-	-	-	-
-	-	-	-	-	F3	18	PF6	I/O	FT	-	TRACED0, TIM10_CH1, SAI1_SD_B, UART7_Rx, QUADSPI_BK1_IO3, EVENTOUT	-
-	-	-	-	-	F2	19	PF7	I/O	FT	-	TRACED1, TIM11_CH1, SAI1_MCLK_B, UART7_Tx, QUADSPI_BK1_IO2, EVENTOUT	-
-	-	-	-	-	G3	20	PF8	I/O	FT	-	SAI1_SCK_B, UART8_RX, TIM13_CH1, QUADSPI_BK1_IO0, EVENTOUT	-
-	-	-	-	-	G2	21	PF9	I/O	FT	-	SAI1_FS_B, UART8_TX, TIM14_CH1, QUADSPI_BK1_IO1, EVENTOUT	-
-	-	-	-	-	G1	22	PF10	I/O	FT	-	TIM1_ETR, TIM5_CH4, EVENTOUT	-
5	5	E9	12	F1	D1	23	PH0 - OSC_IN	I/O	FT	(6)	EVENTOUT	OSC_IN
6	6	F9	13	G1	E1	24	PH1 - OSC_OUT	I/O	FT	(6)	EVENTOUT	OSC_OUT
7	7	G9	14	H2	F1	25	NRST	I/O	RST	-	-	NRST
-	8	F8	15	H1	H1	26	PC0	I/O	FT	-	LPTIM1_IN1, DFSDM2_CKIN4, SAI1_MCLK_B, EVENTOUT	ADC1_IN10, WKUP2

Table 10. STM32F413xG/H pin definition (continued)

		Р	'in Nu	mber								
UFQFPN48	LQFP64	WLCSP81	LQFP100	UFBGA100	UFBGA144	LQFP144	Pin name (function after reset) ⁽¹⁾	Pin type	I/O structure	Notes	Alternate functions	Additional functions
-	18	H7	27	-	-	38	VSS	S	-	-	-	-
-	-	F6	-	E3	H5	-	BYPASS_ REG	I	FT	-	-	-
-	19	J8	28	-	F4	39	VDD	s	-	-	-	-
14	20	E5	29	M3	J3	40	PA4	I/O	TTa	-	SPI1_NSS/I2S1_WS, SPI3_NSS/I2S3_WS, USART2_CK, DFSDM1_DATIN1, FSMC_D6/FSMC_DA6, EVENTOUT	ADC1_IN4, DAC_OUT1
15	21	G6	30	K4	КЗ	41	PA5	I/O	TTa	-	TIM2_CH1/TIM2_ETR, TIM8_CH1N, SPI1_SCK/I2S1_CK, DFSDM1_CKIN1, FSMC_D7/FSMC_DA7, EVENTOUT	ADC1_IN5, DAC_OUT2
16	22	F5	31	L4	L3	42	PA6	I/O	FT	-	TIM1_BKIN, TIM3_CH1, TIM8_BKIN, SPI1_MISO, I2S2_MCK, DFSDM2_CKIN1, TIM13_CH1, QUADSPI_BK2_IO0, SDIO_CMD, EVENTOUT	ADC1_IN6
17	23	J7	32	M4	М3	43	PA7	I/O	FT	-	TIM1_CH1N, TIM3_CH2, TIM8_CH1N, SPI1_MOSI/I2S1_SD, DFSDM2_DATIN1, TIM14_CH1, QUADSPI_BK2_IO1, EVENTOUT	ADC1_IN7
-	24	H6	33	K5	J4	44	PC4	I/O	FT	-	DFSDM2_CKIN2, I2S1_MCK, QUADSPI_BK2_IO2, FSMC_NE4, EVENTOUT	ADC1_IN14
-	25	J6	34	L5	К4	45	PC5	I/O	FT	-	DFSDM2_DATIN2, I2CFMP1_SMBA, USART3_RX, QUADSPI_BK2_IO3, FSMC_NOE, EVENTOUT	ADC1_IN15

Table 10. STM32F413xG/H pin definition (continued)

		Ρ	in Nu	mber								
UFQFPN48	LQFP64	WLCSP81	LQFP100	UFBGA100	UFBGA144	LQFP144	Pin name (function after reset) ⁽¹⁾	Pin type	I/O structure	Notes	Alternate functions	Additional functions
-	-	NC	62	H10	K12	86	PD15	I/O	FTf	(2)	TIM4_CH4, I2CFMP1_SDA, DFSDM2_DATIN0, UART9_TX, FSMC_D1/FSMC_DA1, EVENTOUT	-
-	-	-	-	-	J12	87	PG2	I/O	FT	-	FSMC_A12, EVENTOUT	-
-	-	-	-	-	J11	88	PG3	I/O	FT	-	FSMC_A13, EVENTOUT	-
-	-	-	-	-	J10	89	PG4	I/O	FT	-	FSMC_A14, EVENTOUT	-
-	-	-	-	-	H12	90	PG5	I/O	FT	-	FSMC_A15, EVENTOUT	-
-	-	-	-	-	H11	91	PG6	I/O	FT	-	QUADSPI_BK1_NCS, EVENTOUT	-
-	-	-	-	-	H10	92	PG7	I/O	FT	-	USART6_CK, EVENTOUT	-
-	-	-	-	-	G11	93	PG8	I/O	FT	-	USART6_RTS, EVENTOUT	-
-	-	-	-	-	-	94	VSS	S	-	-	-	-
-	-	-	-	-	F10	-	VDD	S	-	-	-	-
-	-	F1	-	-	C11	95	VDDUSB	S	-	-	-	-
-	37	D5	63	E12	G12	96	PC6	I/O	FTf	-	TIM3_CH1, TIM8_CH1, I2CFMP1_SCL, I2S2_MCK, DFSDM1_CKIN3, DFSDM2_DATIN6, USART6_TX, FSMC_D1/FSMC_DA1, SDIO_D6, EVENTOUT	-
-	38	D4	64	E11	F12	97	PC7	I/O	FTf	-	TIM3_CH2, TIM8_CH2, I2CFMP1_SDA, SPI2_SCK/I2S2_CK, I2S3_MCK, DFSDM2_CKIN6, USART6_RX, DFSDM1_DATIN3, SDIO_D7, EVENTOUT	-

Table 10. STM32F413xG/H pin definition (continued)

Symbol	Ratings	Max.	Unit
ΣI_{VDD}	Total current into sum of all V_{DD_x} power lines (source) ⁽¹⁾	180	
ΣI_{VSS}	Total current out of sum of all V_{SS_x} ground lines (sink) ⁽¹⁾	-180	
ΣI_{VDDUSB}	Total current into V _{DDUSB} power lines (source)	25	
I _{VDD}	Maximum current into each V _{DD_x} power line (source) ⁽¹⁾	100	
I _{VSS}	Maximum current out of each V _{SS_x} ground line (sink) ⁽¹⁾	-100	
	Output current sunk by any I/O and control pin	25	
IO	Output current sourced by any I/O and control pin	-25	
	Total output current sunk by sum of all I/O and control pins ⁽²⁾	120	mA
Σl _{IO}	Total output current sunk by sum of all USB I/Os	25	
	Total output current sourced by sum of all I/Os and control pins ⁽²⁾	-120	
	Injected current on FT and TC pins ⁽⁴⁾	=	
I _{INJ(PIN)} ⁽³⁾	Injected current on NRST and B pins (4)	- 5/ + 0	
	Injected current on TTa pins ⁽⁵⁾	± 5	
Σl _{INJ(PIN)}	Total injected current (sum of all I/O and control pins) ⁽⁶⁾	± 25	1

1. All main power (V_{DD}, V_{DDA}, V_{DDUSB}) and ground (V_{SS}, V_{SSA}) pins must always be connected to the external power supply, in the permitted range.

2. This current consumption must be correctly distributed over all I/Os and control pins.

3. Negative injection disturbs the analog performance of the device. See note in Section 6.3.20: 12-bit ADC characteristics.

4. Positive injection is not possible on these I/Os and does not occur for input voltages lower than the specified maximum value.

- 5. A positive injection is induced by VIN>VDDA in the same time a negative injection is induced by VIN<VSS. IINJ(PIN) must never be exceeded. Refer to *Table 14* for the values of the maximum allowed input voltage.
- 6. When several inputs are submitted to a current injection, the maximum $\Sigma I_{INJ(PIN)}$ is the absolute sum of the positive and negative injected currents (instantaneous values).

Symbol	Ratings	Value	Unit
T _{STG}	Storage temperature range	–65 to +150	
TJ	Maximum junction temperature	125	
T _{LEAD}	Maximum lead temperature during soldering (WLCSP81, LQFP64/100/144, UFQFPN48, UFBGA100/144)	see note ⁽¹⁾	°C

Table 16. Thermal characteristics

 Compliant with JEDEC Std J-STD-020D (for small body, Sn-Pb or Pb assembly), the ST ECOPACK[®] 7191395 specification, and the European directive on Restrictions on Hazardous Substances (ROHS directive 2011/65/EU, July 2011).

3. When the ADC is ON (ADON bit set in the ADC_CR2 register), add an additional power consumption of 1.6 mA for the analog part.

		Conditions	£	Тур	Max ⁽¹⁾				
Symbol	Parameter		'HCLK (MHz)	T _A = 25 °C	Т _А = 25 °С	Т _А = 85 °С	T _A = 105 °C	T _A = 125 °C	Unit
		External clock, PLL ON, all peripherals enabled ⁽²⁾	100	33.3	35.32 ⁽³⁾	35.65	37.65	41.26 ⁽³⁾	mA
			84	26.8	28.45 ⁽³⁾	28.97	30.82	34.39 ⁽³⁾	
	Supply current in Run mode		64	18.6	19.74 ⁽³⁾	20.35	22.11	25.35 ⁽³⁾	
			50	14.6	15.57	16.41	18.21	21.46	
			25	7.8	8.37	9.64	11.32	14.68	
			20	6.7	7.25	8.40	10.25	13.45	
		HSI, PLL OFF ⁽⁴⁾ , all peripherals enabled ⁽²⁾	16	4.6	4.96	6.39	8.20	11.54	
			1	0.8	0.86	2.51	4.34	7.65	
I _{DD}		e	100	15.7	16.74 ⁽³⁾	17.62	19.50	23.16 ⁽³⁾	
			84	12.7	13.57 ⁽³⁾	14.60	16.38	19.98 ⁽³⁾	
		PLL ON,	64	9.0	9.62 ⁽³⁾	10.60	12.37	15.58 ⁽³⁾	
		all peripherals disabled ⁽²⁾	50	7.1	7.69	8.79	10.63	13.79	
			25	4.0	4.52	5.68	7.44	10.68	
			20	3.4	4.03	5.23	6.90	10.27	
		HSI, PLL OFF, all peripherals disabled ⁽²⁾	16	2.3	2.44	4.00	5.81	9.13	
			1	0.6	0.70	2.35	4.18	7.49	

Table 24. Typical and maximum current consumption, code with data processing (ARTaccelerator disabled) running from SRAM - V_{DD} = 3.6 V

1. Guaranteed by characterization results.

2. When the ADC is ON (ADON bit set in the ADC_CR2 register), add an additional power consumption of 1.6 mA for the analog part.

3. Tested in production

4. When analog peripheral blocks such as ADC, HSE, LSE, HSI, or LSI are ON, an additional power consumption has to be considered

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{OSC_IN}	Oscillator frequency		4	-	26	MHz
R _F	Feedback resistor		-	200	-	kΩ
I _{DD}	HSE current consumption	V _{DD} =3.3 V, ESR= 30 Ω C _L =5 pF @25 MHz	- 450		-	
		V _{DD} =3.3 V, ESR= 30 Ω C _L =10 pF @25 MHz	-	530	-	μΑ
ACC _{HSE} ⁽²⁾	HSE accuracy	-	-500	-	500	ppm
G _{m_crit_max}	Maximum critical crystal g _m	Startup	-	-	1	mA/V
t _{SU(HSE)} ⁽³⁾	Startup time	V _{DD} is stabilized	-	2	-	ms

 Table 43. HSE 4-26 MHz oscillator characteristics⁽¹⁾

1. Guaranteed by design.

2. This parameter depends on the crystal used in the application. The minimum and maximum values must be respected to comply with USB standard specifications.

 t_{SU(HSE)} is the startup time measured from the moment it is enabled (by software) to a stabilized 8 MHz oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer

For C_{L1} and C_{L2} , it is recommended to use high-quality external ceramic capacitors in the 5 pF to 25 pF range (Typ.), designed for high-frequency applications, and selected to match the requirements of the crystal or resonator (see *Figure 29*). C_{L1} and C_{L2} are usually the same size. The crystal manufacturer typically specifies a load capacitance which is the series combination of C_{L1} and C_{L2} . PCB and MCU pin capacitance must be included (10 pF can be used as a rough estimate of the combined pin and board capacitance) when sizing C_{L1} and C_{L2} .

Note: For information on selecting the crystal, refer to the application note AN2867 "Oscillator design guide for ST microcontrollers" available from the ST website www.st.com.

Figure 29. Typical application with an 8 MHz crystal

1. R_{FXT} value depends on the crystal characteristics.

Low-speed external clock generated from a crystal/ceramic resonator

The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal/ceramic resonator oscillator. All the information given in this paragraph are based on characterization results obtained with typical external components specified in *Table 44*. In the application, the resonator and the load capacitors have to be placed as close as

Symbol	Parameter		Conditions	Min	Тур	Мах	Unit
	I/O input leakage current ⁽⁴⁾		$V_{SS} \leq V_{IN} \leq V_{DD}$	-	-	±1	
l _{lkg}	I/O FT/TC input leakage current		V _{IN} = 5 V	-	-	3	μA
R _{PU}	Weak pull-up equivalent	All pins except for PA10 (OTG_FS_ID)	V _{IN} = V _{SS}	30	40	50	
		PA10 (OTG_FS_ID)	-	7	10	14	ko
Weak pull-down R _{PD} equivalent		All pins except for PA10 (OTG_FS_ID)	$V_{IN} = V_{DD}$	30	40	50	K22
		PA10 (OTG_FS_ID)	-	7	10	14	
C _{IO} ⁽⁸⁾	I/O pin capacitance		-	-	5	-	pF

Table 59. I/O static characteristics (continued)

1. Guaranteed by test in production.

2. Guaranteed by design.

3. With a minimum of 200 mV.

- 4. Leakage could be higher than the maximum value, if negative current is injected on adjacent pins, Refer to Table 58: I/O current injection susceptibility
- To sustain a voltage higher than VDD +0.3 V, the internal pull-up/pull-down resistors must be disabled. Leakage could be higher than the maximum value, if negative current is injected on adjacent pins. Refer to Table 58: I/O current injection susceptibility
- Pull-up resistors are designed with a true resistance in series with a switchable PMOS. This PMOS contribution to the series resistance is minimum (~10% order).
- 7. Pull-down resistors are designed with a true resistance in series with a switchable NMOS. This NMOS contribution to the series resistance is minimum (~10% order).
- 8. Hysteresis voltage between Schmitt trigger switching levels. Guaranteed by characterization results.

All I/Os are CMOS and TTL compliant (no software configuration required). Their characteristics cover more than the strict CMOS-technology or TTL parameters. The coverage of these requirements for FT and TC I/Os is shown in *Figure 35*.

General PCB design guidelines

Power supply decoupling should be performed as shown in *Figure 50* or *Figure 51*, depending on whether V_{REF+} is connected to V_{DDA} or not. The 10 nF capacitors should be ceramic (good quality). They should be placed them as close as possible to the chip.

1. V_{REF+} and V_{REF-} inputs are both available on UFBGA100. V_{REF+} is also available on LQFP100. When V_{REF+} and V_{REF-} are not available, they are internally connected to V_{DDA} and V_{SSA} .

Figure 53. Asynchronous non-multiplexed SRAM/PSRAM/NOR read waveforms

1. Mode 2/B, C and D only. In Mode 1, FSMC_NADV is not used.

Figure 64. WLCSP81- 81-ball, 4.039 x 3.951 mm, 0.4 mm pitch wafer level chip scale package recommended footprint

O O O O O O O Dpad O O O O O O Dsm O O O O O O Dsm O O O O O O O O O O O O O O O O O O O O O O O O O O O O	W/ CCD94 A095 FD V/
	WLCSP81_A08B_FP_V1

Table 104. WLCSP81 recommended PCB design rules (0.4 mm pitch)

Dimension	Recommended values
Pitch	0.4 mm
Dpad	0.225 mm
Dsm	0.290 mm typ. (depends on the soldermask registration tolerance)
Stencil opening	0.250 mm
Stencil thickness	0.100 mm

7.2 UFQFPN48 package information

Figure 66. UFQFPN48 - 48-lead, 7x7 mm, 0.5 mm pitch, ultra thin fine pitch quad flat package outline

1. Drawing is not to scale.

- 2. All leads/pads should also be soldered to the PCB to improve the lead/pad solder joint life.
- 3. There is an exposed die pad on the underside of the UFQFPN package. It is recommended to connect and solder this back-side pad to PCB ground.

7.3 LQFP64 package information

Figure 69. LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat package outline

1. Drawing is not to scale.

Device marking for UFBGA100

The following figure gives an example of topside marking and ball 1 position identifier location.

Other optional marking or inset/upset marks, which identify the parts throughout supply chain operations, are not indicated below.

Figure 80. UFBGA100 marking example (package top view)

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering Samples to run qualification activity.

Table 111. UFBGA144 - 144-ball, 10 x 10 mm, 0.80 mm pitch, ultra fine pitch ball gridarray package mechanical data (continued)

Symbol	millimeters			inches ⁽¹⁾			
Symbol	Min.	Тур.	Max.	Min.	Тур.	Max.	
F	0.550	0.600	0.650	0.0177	0.0197	0.0217	
ddd	-	-	0.080	-	-	0.0039	
eee	-	-	0.150	-	-	0.0059	
fff	-	-	0.080	-	-	0.0020	

1. Values in inches are converted from mm and rounded to 4 decimal digits.

Figure 82. UFBGA144 - 144-pin, 10 x 10 mm, 0.80 mm pitch, ultra fine pitch ball grid array recommended footprint

A02Y_FP_V1

Table 112. UFBGA144 recommended PCB design rules (0.80 mm pitch BGA)

Dimension	Recommended values
Pitch	0.80 mm
Dpad	0.400 mm
Dsm	0.550 mm typ. (depends on the soldermask registration tolerance)

Note:

4 to 6 mils solder paste screen printing process. Stencil opening is 0.400 mm. Stencil thickness is between 0.100 mm and 0.125 mm. Pad trace width is 0.120 mm.

Non solder mask defined (NSMD) pads are recommended.

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2017 STMicroelectronics – All rights reserved

DocID029162 Rev 4

