

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Active
Number of LABs/CLBs	-
Number of Logic Elements/Cells	109000
Total RAM Bits	7782400
Number of I/O	284
Number of Gates	-
Voltage - Supply	0.97V ~ 1.08V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 100°C (TJ)
Package / Case	484-BFBGA
Supplier Device Package	484-FPBGA (19x19)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/mpf100t-1fcvg484e

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

	7.3.2	SRAM Blocks	41
7.4	Trans	ceiver Switching Characteristics	42
	7.4.1	Transceiver Performance	42
	7.4.2	Transceiver Reference Clock Performance	42
	7.4.3	Transceiver Reference Clock I/O Standards	43
	7.4.4	Transceiver Interface Performance	44
	7.4.5	Transmitter Performance	44
	7.4.6	Receiver Performance	47
7.5	Trans	ceiver Protocol Characteristics	48
	7.5.1	PCI Express	48
	7.5.2	Interlaken	49
	7.5.3	10GbE (10GBASE-R, and 10GBASE-KR)	49
	7.5.4	1GbE (1000BASE-T)	50
	7.5.5	SGMII and QSGMII	50
	7.5.6	SDI	50
	7.5.7	CPRI	51
	7.5.8	JESD204B	51
7.6	Non-	/olatile Characteristics	51
	7.6.1	FPGA Programming Cycle and Retention	52
	7.6.2	FPGA Programming Time	52
	7.6.3	FPGA Bitstream Sizes	53
	7.6.4	Digest Cycles	53
	7.6.5	Digest Time	54
	7.6.6	Zeroization Time	55
	7.6.7	Verify Time	57
	7.6.8	Authentication Time	58
	7.6.9	Secure NVM Performance	58
	7.6.10	Secure NVM Programming Cycles	59
7.7	Syste	m Services	59
	7.7.1	System Services Throughput Characteristics	59
7.8	Fabri	c Macros	60
	7.8.1	UJTAG Switching Characteristics	60
	7.8.2	UJTAG_SEC Switching Characteristics	61
	7.8.3	USPI Switching Characteristics	62
	7.8.4	Tamper Detectors	62
	7.8.5	System Controller Suspend Switching Characteristics	64
	7.8.6	Dynamic Reconfiguration Interface	64
7.9	Powe	r-Up to Functional Timing	64
	7.9.1	Power-On (Cold) Reset Initialization Sequence	64
	7.9.2	Warm Reset Initialization Sequence	65
	7.9.3	Power-On Reset Voltages	66

4 Device Offering

The following table lists the PolarFire FPGA device options using the MPF300T as an example. The MPF100T, MPF200T, and MPF500T device densities have identical offerings.

Table 1 • PolarFire FPGA Device Options

Device Options	Extended Commercial 0 °C–100 °C	Industrial –40 °C–100 °C	STD	-1	Transceivers T	Lower Static Power L	Data Security S
MPF300T	Yes	Yes	Yes	Yes	Yes		
MPF300TL	Yes	Yes	Yes		Yes	Yes	
MPF300TS		Yes	Yes	Yes	Yes		Yes
MPF300TLS		Yes	Yes		Yes	Yes	Yes

6.2.2.1 Power-Supply Ramp Times

The following table shows the allowable power-up ramp times. Times shown correspond to the ramp of the supply from 0 V to the minimum recommended voltage as specified in the section Recommended Operating Conditions (see page 6). All supplies must rise and fall monotonically.

Table 10	Power-S	upply R	amp Times
----------	---------	---------	-----------

Parameter	Symbol	Min	Max	Unit
FPGA core supply	Vdd	0.2	50	ms
Transceiver core supply	Vdda	0.2	50	ms
Must connect to 1.8 V supply	Vdd18	0.2	50	ms
Must connect to 2.5 V supply	VDD25	0.2	50	ms
Must connect to 2.5 V supply	VDDA25	0.2	50	ms
HSIO bank I/O power supplies	VDDI[0,1,6,7]	0.2	50	ms
GPIO bank I/O power supplies	VDDI[2,4,5]	0.2	50	ms
Bank 3 dedicated I/O buffers (GPIO)	Vddi3	0.2	50	ms
GPIO bank auxiliary power supplies	VDDAUX[2,4,5]	0.2	50	ms
Transceiver reference clock supply	Vdd_xcvr_clk	0.2	50	ms
Global V_{REF} for transceiver reference clocks	XCVRvref	0.2	50	ms

Note: For proper operation of programming recovery mode, if a VDD supply brownout occurs during programming, a minimum supply ramp down time for only the VDD supply is recommended to be 10 ms or longer by using a programmable regulator or on-board capacitors.

6.2.2.2 Hot Socketing

The following table lists the hot-socketing DC characteristics over recommended operating conditions.

Table 11 • Hot Socketing DC Characteristics over Recommended Operating Conditions

Parameter	Symbol	Min	Тур	Max	Unit	Condition
Current per transceiver Rx input pin (P or N single-ended) ^{1, 2}	XCVRRX_HS			±4	mA	V _{DDA} = 0 V
Current per transceiver Tx output pin (P or N single-ended) ³	XCVRTX_HS			±10	mA	V _{DDA} = 0 V
Current per transceiver reference clock input pin (P or N single-ended) ⁴	XCVRREF_HS			±1	mA	Vdd_xcvr_clk = 0 V
Current per GPIO pin (P or N single-ended)⁵	Igpio_hs			±1	mA	V _{DDix} = 0 V
Current per HSIO pin (P or N single-ended)						Hot socketing is not supported in HSIO.

1. Assumes that the device is powered-down, all supplies are grounded, AC-coupled interface, and input pin pairs are driven by a CML driver at the maximum amplitude (1 V pk-pk) that is toggling at any rate with PRBS7 data.

- 2. Each P and N transceiver input has less than the specified maximum input current.
- 3. Each P and N transceiver output is connected to a 40 Ω resistor (50 Ω CML termination 20% tolerance) to the maximum allowed output voltage (V_{DDAmax} + 0.3 V = 1.4 V) through an AC-coupling capacitor with all PolarFire device supplies grounded. This shows the current for a worst-case DC coupled interface. As an AC-coupled interface, the output signal will settle at ground and no hot socket current will be seen.
- 4. Vdd_xcvr_clk is powered down and the device is driven to -0.3 V < VIN < Vdd_xcvr_clk.
- 5. V_{DDIx} is powered down and the device is driven to $-0.3 V < V_{IN} < GPIO V_{DDImax}$.

PolarFire

SSTL1351 1.283 1.35 1.418 -0.3 Vmr - Vmr + Vmr 0.09 1.418 SSTL13511 1.283 1.35 1.418 -0.3 Vmr - Vmr + 1.418 SSTL13511 1.283 1.35 1.418 -0.3 Vmr - Vmr + 1.418 SSTL13511 1.425 1.5 1.575 -0.3 Vmr - Vmr + 1.575 HSTL1511 1.425 1.5 1.575 -0.3 Vmr - Vmr + 1.575 HSTL1511 1.425 1.5 1.575 -0.3 Vmr - Vmr + 1.418 HSTL1351 1.283 1.35 1.418 -0.3 Vmr + Vmr + 1.418 HSTL1351 1.283 1.35 1.418 -0.3 Vmr + Vmr + 1.418 HSTL121 1.14 1.2 1.26 -0.3 Vmr + Vmr + 1.26 HSTL1211 1.14 1.2 1.26 -0.3 Vmr + Vmr + 1.26 HSUL181 1.71 1.8 1.89 -0.3 0.3 <td< th=""><th>I/O Standard</th><th>Vooi Min (V)</th><th>Vooi Typ (V)</th><th>Vooi Max (V)</th><th>V⊫ Min (V)</th><th>V⊫ Max (V)</th><th>Vін Min (V)</th><th>Vін¹ Max (V)</th></td<>	I/O Standard	Vooi Min (V)	Vooi Typ (V)	Vooi Max (V)	V⊫ Min (V)	V⊫ Max (V)	Vін Min (V)	Vін¹ Max (V)
SSTL135II 1.283 1.35 1.418 -0.3 Var - - 0.09 Var - - 0.09 Var - - - 0.1 Var - - - 0.1 1.418 HSTL15I 1.425 1.5 1.575 -0.3 Var - 0.1 Var - - 0.1 Var - - 0.1 1.575 HSTL15I 1.425 1.5 1.575 -0.3 Var - 0.1 Var - - - Var - - Var - - 1.575 HSTL15I 1.425 1.5 1.575 -0.3 Var - Var - Var - 1.575 HSTL15I 1.283 1.35 1.418 -0.3 Var - Var - 1.418 HSTL12I 1.283 1.35 1.418 -0.3 Var - Var - 1.418 HSTL12I 1.14 1.2 1.26 -0.3 Var - Var - 1.26 HSUL18I 1.71 1.8 1.89 -0.3 0.3 0.7 1.89 Non 1.71 1.8 1.89 -0.3 Var - Var - 1.26 HSUL18I	SSTL135I	1.283	1.35	1.418	-0.3	Vref	Vref +	1.418
SSTL135II 1.283 1.35 1.418 -0.3 Vmer - Vmer + Vmer - Vmer + 1.418 HSTL15I 1.425 1.5 1.575 -0.3 Vmer - Vmer + 1.575 HSTL15I 1.425 1.5 1.575 -0.3 Vmer - Vmer + 1.575 HSTL15II 1.425 1.5 1.575 -0.3 Vmer - Vmer + 1.575 HSTL15II 1.425 1.5 1.575 -0.3 Vmer - Vmer + 1.575 HSTL135I 1.283 1.35 1.418 -0.3 Vmer - 1.418 HSTL135II 1.283 1.35 1.418 -0.3 Vmer - 1.418 HSTL12I 1.14 1.2 1.26 -0.3 Vmer - 1.418 HSTL12I 1.14 1.2 1.26 -0.3 Vmer - 1.26 HSUL18I 1.71 1.8 1.89 -0.3 0.3 0.7 1.89 HSUL18I 1.71 1.8 1.89 -0.3 0.3 0.7 1.89 HSUL						0.09	0.09	
- + - + 1425 1.425 1.57 -0.3 Mer Var 1.575 HSTL15I 1.425 1.5 1.575 -0.3 Var Var 1.575 HSTL15II 1.425 1.5 1.575 -0.3 Var Var 1.575 HSTL15II 1.425 1.5 1.575 -0.3 Var Var 1.575 HSTL13SI 1.428 1.575 -0.3 Var Var 1.418 HSTL13SI 1.283 1.35 1.418 -0.3 Var Var 1.418 HSTL13SII 1.283 1.35 1.418 -0.3 Var Var 1.418 HSTL12I 1.14 1.2 1.26 -0.3 Var Var 1.26 HSTL12I 1.14 1.2 1.26 -0.3 Var Var 1.26 HSUL18I 1.71 1.8 1.89 -0.3 0.3 0.7 1.89	SSTL135II	1.283	1.35	1.418	-0.3	VREF	VREF	1.418
HSTL15I 1.425 1.5 1.575 -0.3 Verer - 0.1 Verer 0.1 1.575 -0.3 Verer - 0.1 Verer 0.1 1.575 -0.3 Verer - 0.1 1.575 -0.3 Verer - 0.1 0.1 1.418 -0.3 Verer - 0.09 0.09 1.418 HSTL135II 1.283 1.35 1.418 -0.3 Verer - 0.1 1.418 -<						-	+	
HSILLSI 1.423 1.3 1.373 -0.3 VREP VREP 1.373 -1.375 HSTLLSI 1.425 1.5 1.575 -0.3 VREP VREP 1.575 HSTL15II 1.425 1.5 1.575 -0.3 VREP VREP 1.575 HSTL13SI 1.283 1.35 1.418 -0.3 VREP VREP 1.418 HSTL13SI 1.283 1.35 1.418 -0.3 VREP VREP 1.418 HSTL13SI 1.283 1.35 1.418 -0.3 VREP VREP 1.418 HSTL12I 1.283 1.35 1.418 -0.3 VREP VREP 1.418 HSTL12I 1.14 1.2 1.26 -0.3 VREP VREP 1.26 HSTL12I 1.14 1.2 1.26 -0.3 VREP VREP 1.26 HSUL18I 1.71 1.8 1.89 -0.3 0.3 0.7 1.89 HS		1 425	1 Г	1 575	0.2	0.09	0.09	1 575
HSTL15II 1.425 1.5 1.575 -0.3 Veer - - 0.1 Veer + 0.1 1.575 + 0.1 1.575 + 0.1 HSTL135I 1.283 1.35 1.418 -0.3 Veer - 0.09 Veer - 0.09 Veer + 0.09 1.418 - 0.09 1.418 - - - - - - - - - - - - - - 1.418 - - - - - - - - - - - - - - - - 1.418 - - - - - - - - - - - - - - - - - - -	HSILISI	1.425	1.5	1.575	-0.3	V REF	V REF	1.575
HSTL15II 1.425 1.5 1.575 -0.3 VREF - 0.1 VREF + 0.1 1.575 + 0.0 HSTL135I 1.283 1.35 1.418 -0.3 VREF - 0.09 VREF - 0.09 1.418 HSTL135II 1.283 1.35 1.418 -0.3 VREF - 0.09 VREF - 0.09 1.418 HSTL135II 1.283 1.35 1.418 -0.3 VREF - 0.09 VREF 1.418 HSTL12I 1.14 1.2 1.26 -0.3 VREF - 0.1 VREF 1.26 HSTL12I 1.14 1.2 1.26 -0.3 VREF - 0.1 1.26 - HSTL12II 1.14 1.2 1.26 -0.3 VREF - 0.1 1.26 - HSUL18I 1.71 1.8 1.89 -0.3 0.3 0.7 1.89 HSUL12I 1.14 1.2 1.26 - - + 1.26 HSUL12I 1.14 1.2 1.26 -0.3 VREF - + 1.26						0.1	0.1	
HIND	HSTI 15II	1 425	15	1 575	-0.3	VREE	VREE	1 575
HSTL135I 1.283 1.35 1.418 -0.3 VREF VREF 1.418 HSTL135I 1.283 1.35 1.418 -0.3 VREF VREF 1.418 HSTL135II 1.283 1.35 1.418 -0.3 VREF VREF 1.418 HSTL135II 1.283 1.35 1.418 -0.3 VREF VREF 1.418 HSTL12I 1.14 1.2 1.26 -0.3 VREF VREF 1.26 HSTL12I 1.14 1.2 1.26 -0.3 VREF VREF 1.26 HSUL18I 1.14 1.2 1.26 -0.3 VREF VREF 1.26 HSUL18I 1.71 1.8 1.89 -0.3 0.3 0.7 1.89 HSUL12I 1.71 1.8 1.89 -0.3 VREF VREF 1.26 HSUL12I 1.14 1.2 1.26 -0.3 VREF VREF 1.26 POD12I 1.14		1.125	1.5	1.575	0.5	_	+	1.575
HSTL1351 1.283 1.35 1.418 -0.3 VRF VRF 1.418 HSTL121 1.24 1.26 -0.3 VRF VRF 1.26 HSTL121 1.14 1.2 1.26 -0.3 VRF VRF 1.26 HSTL121 1.14 1.2 1.26 -0.3 VRF VRF 1.26 HSUL181 1.14 1.2 1.26 -0.3 0.3 0.7 1.89 HSUL181 1.71 1.8 1.89 -0.3 0.3 0.7 1.89 HSUL181 1.71 1.8 1.89 -0.3 VRF VRF 1.26 HSUL121 1.14 1.2 1.26 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.1</td> <td>0.1</td> <td></td>						0.1	0.1	
- + - + 1.281 1.35 1.418 -0.3 Vref Vref 1.418 - - - - - - - + 1.09 0.09 0.09 - - - + - - + - - + - - + - <td>HSTL135I</td> <td>1.283</td> <td>1.35</td> <td>1.418</td> <td>-0.3</td> <td>VREF</td> <td>VREF</td> <td>1.418</td>	HSTL135I	1.283	1.35	1.418	-0.3	VREF	VREF	1.418
HSTL135II 1.283 1.35 1.418 -0.3 VREF - 0.09 VREF - 0.09 1.418 HSTL12I 1.14 1.2 1.26 -0.3 VREF - 0.1 VREF 1.26 HSTL12I 1.14 1.2 1.26 -0.3 VREF - 0.1 VREF 1.26 HSTL12I 1.14 1.2 1.26 -0.3 VREF - 0.1 VREF 1.26 HSTL12II 1.14 1.2 1.26 -0.3 VREF VREF 1.26 HSUL18I 1.71 1.8 1.89 -0.3 0.3 0.7 1.89 HSUL18I 1.71 1.8 1.89 -0.3 0.3 0.7 1.89 HSUL12I 1.14 1.2 1.26 -0.3 VREF VREF 1.26 HSUL12I 1.14 1.2 1.26 -0.3 VREF VREF 1.26 HSUL12I 1.14 1.2 1.26 -0.3 VREF VREF 1.26 - <td< td=""><td></td><td></td><td></td><td></td><td></td><td>-</td><td>+</td><td></td></td<>						-	+	
HSTL135II 1.283 1.35 1.418 -0.3 VREF VREF 1.418 - - + 0.09 0.09 - - + HSTL12I 1.14 1.2 1.26 -0.3 VREF VREF 1.26 HSTL12I 1.14 1.2 1.26 -0.3 VREF VREF 1.26 HSTL12II 1.14 1.2 1.26 -0.3 VREF VREF 1.26 HSTL12II 1.14 1.2 1.26 -0.3 VREF VREF 1.26 HSUL18I 1.14 1.2 1.26 -0.3 VREF VREF 1.89 HSUL18I 1.71 1.8 1.89 -0.3 0.3 0.7 1.89 HSUL12I 1.71 1.8 1.89 -0.3 VREF VREF 1.26 HSUL12I 1.14 1.2 1.26 -0.3 VREF VREF 1.26 POD12I 1.14 1.2						0.09	0.09	
- + - + 0.09 0.09 0.09 1.26 -0.3 VREF VREF 1.26 - + 1.26 - + 0.1 0.1 1.26 - - + 0.1 0.1 1.26 - - + 0.1 0.1 1.26 - - + 0.1 0.1 1.26 - - - + 0.1 0.1 1.26 - - - - - - 1.26 - 0.3 0.1 1.26 - 0.3 0.1 1.89 - 0.3 0.7 1.89 - <td< td=""><td>HSTL135II</td><td>1.283</td><td>1.35</td><td>1.418</td><td>-0.3</td><td>VREF</td><td>VREF</td><td>1.418</td></td<>	HSTL135II	1.283	1.35	1.418	-0.3	VREF	VREF	1.418
HSTL12I 1.14 1.2 1.26 -0.3 VREF - 1.0 VREF + 0.1 VREF + 0.1 1.26 HSTL12II 1.14 1.2 1.26 -0.3 VREF - 1.10 VREF + 0.1 1.26 HSUL18I 1.71 1.8 1.89 -0.3 0.3 0.7 1.89 HSUL18I 1.71 1.8 1.89 -0.3 0.3 0.7 1.89 HSUL18II 1.71 1.8 1.89 -0.3 0.3 0.7 1.89 HSUL18II 1.71 1.8 1.89 -0.3 0.3 0.7 1.89 HSUL12I 1.14 1.2 1.26 -0.3 VREF VREF 1.26 POD12I 1.14 1.2 1.26 -0.3 VREF VREF 1.26 - - - - - + 0.08 0.08 POD12I 1.14 1.2 1.26 -0.3 VREF VREF 1.26 - -						-	+	
HSTL12I 1.14 1.2 1.26 -0.3 VREF VREF 1.26 - HSTL12I 1.14 1.2 1.26 -0.3 VREF VREF 1.26 HSTL12II 1.14 1.2 1.26 -0.3 VREF VREF 1.26 HSUL18I 1.71 1.8 1.89 -0.3 0.3 0.7 1.89 HSUL18I 1.71 1.8 1.89 -0.3 0.3 0.7 1.89 HSUL18II 1.71 1.8 1.89 -0.3 0.3 0.7 1.89 HSUL18II 1.71 1.8 1.89 -0.3 0.3 0.7 1.89 HSUL12I 1.14 1.2 1.26 -0.3 VREF VREF 1.26 POD12I 1.14 1.2 1.26 -0.3 VREF VREF 1.26 - - - - - + 0.10 - POD12I 1.14 1.2						0.09	0.09	
- + NSUL12II 1.14 1.2 1.26 -0.3 VREF VREF 1.26 HSTL12II 1.14 1.2 1.26 -0.3 VREF 1.26 HSUL18I 1.71 1.8 1.89 -0.3 0.3 0.7 1.89 HSUL18I 1.71 1.8 1.89 -0.3 0.3 0.7 1.89 HSUL18II 1.71 1.8 1.89 -0.3 0.3 0.7 1.89 HSUL12I 1.71 1.8 1.89 -0.3 0.3 0.7 1.89 HSUL12I 1.14 1.2 1.26 -0.3 VREF VREF 1.26 -	HSTL12I	1.14	1.2	1.26	-0.3	VREF	VREF	1.26
HSTL12II 1.14 1.2 1.26 -0.3 VREF VREF 1.26 HSUL18I 1.71 1.8 1.89 -0.3 0.3 0.7 1.89 HSUL18I 1.71 1.8 1.89 -0.3 0.3 0.7 1.89 HSUL18I 1.71 1.8 1.89 -0.3 0.3 0.7 1.89 HSUL18II 1.71 1.8 1.89 -0.3 0.3 0.7 1.89 HSUL12I 1.71 1.8 1.89 -0.3 0.3 0.7 1.89 HSUL12I 1.14 1.2 1.26 -0.3 VREF VREF 1.26 POD12I 1.14 1.2 1.26 -0.3 VREF VREF 1.26 - - + 0.1 0.1 - - + 0.08 0.08 - POD12I 1.14 1.2 1.26 -0.3 VREF VREF 1.26 - - - + 0.08 0.08 - - - - - <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td>+</td> <td></td>						-	+	
HSTL12II 1.14 1.2 1.26 -0.3 VREF VREF VREF 1.26 HSUL18I 1.71 1.8 1.89 -0.3 0.3 0.7 1.89 HSUL18I 1.71 1.8 1.89 -0.3 0.3 0.7 1.89 HSUL18II 1.71 1.8 1.89 -0.3 0.3 0.7 1.89 HSUL18II 1.71 1.8 1.89 -0.3 0.3 0.7 1.89 HSUL12I 1.71 1.8 1.89 -0.3 0.3 0.7 1.89 HSUL12I 1.71 1.8 1.89 -0.3 0.3 0.7 1.89 HSUL12I 1.14 1.2 1.26 -0.3 VREF VREF 1.26 POD12I 1.14 1.2 1.26 -0.3 VREF VREF 1.26 POD12II 1.14 1.2 1.26 -0.3 VREF VREF 1.26 - - - - + 0.08 0.08 0.08						0.1	0.1	
HSUL18I 1.71 1.8 1.89 -0.3 0.3 0.7 1.89 HSUL18I 1.71 1.8 1.89 -0.3 0.3 0.7 1.89 HSUL18II 1.71 1.8 1.89 -0.3 0.3 0.7 1.89 HSUL18II 1.71 1.8 1.89 -0.3 0.3 0.7 1.89 HSUL18II 1.71 1.8 1.89 -0.3 0.3 0.7 1.89 HSUL12I 1.14 1.2 1.26 -0.3 VREF VREF 1.26 POD12I 1.14 1.2 1.26 -0.3 VREF VREF 1.26 POD12II 1.14 1.2 1.26 -0.3 VREF VREF 1.26 POD12II 1.14 1.2 1.26 -0.3 VREF VREF 1.26 POD12II 1.14 1.2 1.26 -0.3 VREF VREF 1.26 - + 0.08 0.09 - + 0.09 - + POD12II 1.14	HSTL12II	1.14	1.2	1.26	-0.3	VREF	VREF	1.26
HSUL18I 1.71 1.8 1.89 -0.3 0.3 0.7 1.89 HSUL18I 1.71 1.8 1.89 -0.3 0.3 0.7 1.89 HSUL18II 1.71 1.8 1.89 -0.3 0.3 0.7 1.89 HSUL12I 1.71 1.8 1.89 -0.3 0.3 0.7 1.89 HSUL12I 1.14 1.2 1.26 -0.3 VREF VREF 1.26 POD12I 1.14 1.2 1.26 -0.3 VREF VREF 1.26 POD12II 1.14 1.2 1.26 -0.3 VREF VREF 1.26 POD12II 1.14 1.2 1.26 -0.3 VREF VREF 1.26 - + 0.08 0.08 - - + - POD12II 1.14 1.2 1.26 -0.3 VREF VREF 1.26 - - - - - - + - 0.08 0.08 - - - - - -						-	+	
HSUL18I 1.71 1.8 1.89 -0.3 0.3 0.7 1.89 HSUL18II 1.14 1.2 1.26 -0.3 VREF VREF 1.26 -						0.1	0.1	
x x x x x x x x x y	HSUL18I	1.71	1.8	1.89	-0.3	0.3	0.7	1.89
HSUL18II 1.71 1.8 1.89 -0.3 0.3 0.7 1.89 × × VDDI VDDI HSUL12I 1.14 1.2 1.26 -0.3 VREF VREF 1.26 - + 0.1 0.1 POD12I 1.14 1.2 1.26 -0.3 VREF VREF 1.26 - + 0.08 0.08 POD12II 1.14 1.2 1.26 -0.3 VREF VREF 1.26 - + 0.08 0.08						×	×	
HSUL18II 1.71 1.8 1.89 -0.3 0.3 0.7 1.89 × × × VDDI VDDI VDDI HSUL12I 1.14 1.2 1.26 -0.3 VREF VREF 1.26 - + 0.1 0.1 POD12I 1.14 1.2 1.26 -0.3 VREF VREF 1.26 - + 0.08 0.08 POD12II 1.14 1.2 1.26 -0.3 VREF VREF 1.26 - + 0.08 0.08						V DDI	VDDI	
x x x VDDI VDDI HSUL12I 1.14 1.2 1.26 -0.3 VREF VREF 1.26 POD12I 1.14 1.2 1.26 -0.3 VREF VREF 1.26 POD12I 1.14 1.2 1.26 -0.3 VREF VREF 1.26 POD12II 1.14 1.2 1.26 -0.3 VREF VREF 1.26 POD12II 1.14 1.2 1.26 -0.3 VREF VREF 1.26 POD12II 0.08 0.08 - - + -	HSUL18II	1.71	1.8	1.89	-0.3	0.3	0.7	1.89
HSUL12I 1.14 1.2 1.26 -0.3 VREF VREF 1.26 POD12I 1.14 1.2 1.26 -0.3 VREF VREF 1.26 POD12I 1.14 1.2 1.26 -0.3 VREF VREF 1.26 POD12II 1.14 1.2 1.26 -0.3 VREF VREF 1.26 POD12II 1.14 1.2 1.26 -0.3 VREF VREF 1.26 POD12II 0.08 0.08 - - + 0.08 -						×	×	
HSUL12I 1.14 1.2 1.26 -0.3 VREF VREF 1.26 - + 0.1 0.1 POD12I 1.14 1.2 1.26 -0.3 VREF VREF 1.26 - + 0.08 0.08 POD12II 1.14 1.2 1.26 -0.3 VREF VREF 1.26 - + 0.08 0.08						VDDI	VDDI	
POD12I 1.14 1.2 1.26 -0.3 VREF VREF 1.26 - + 0.08 0.08 POD12II 1.14 1.2 1.26 -0.3 VREF VREF 1.26 - + 0.08 0.08	HSUL12I	1.14	1.2	1.26	-0.3	VREF	VREF	1.26
POD12I 1.14 1.2 1.26 -0.3 VREF VREF 1.26 - + 0.08 0.08 POD12II 1.14 1.2 1.26 -0.3 VREF VREF 1.26 - + 0.08 0.08						-	+	
POD12I 1.14 1.2 1.26 -0.3 VREF VREF 1.26 - + 0.08 0.08 POD12II 1.14 1.2 1.26 -0.3 VREF VREF 1.26 - + 0.08 0.08						0.1	0.1	
POD12II 1.14 1.2 1.26 -0.3 VREF VREF 1.26 - + 0.08 0.08	POD12I	1.14	1.2	1.26	-0.3	VREF	VREF	1.26
POD12II 1.14 1.2 1.26 -0.3 VREF VREF 1.26 - +						- 0.08	+ 0.08	
POD12II 1.14 1.2 1.26 -0.3 VREF VREF 1.26 - +						0.00	0.00	
	POD12II	1.14	1.2	1.26	-0.3	VREF	VREF	1.26
						- 0.08	+ 0.08	

1. GPIO V^{IH} max is 3.45 V with PCI clamp diode turned off regardless of mode, that is, over-voltage tolerant.

2. For external stub-series resistance. This resistance is on-die for GPIO.

Note: 3.3 V and 2.5 V are only supported in GPIO banks.

I/O Standard	Bank Type	Vосм ¹ Min (V)	Vосм Тур (V)	V _{осм} Max (V)	Voo² Min (V)	Vo⊳² Typ (V)	Vod² Max (V)
MLVDSE25 ³	GPIO		1.25		0.396	0.442	0.453
LVPECLE33 ³	GPIO		1.65		0.664	0.722	0.755
MIPIE25 ³	GPIO		0.25		0.1	0.22	0.3

1. VOCM is the output common mode voltage.

2. Vod is the output differential voltage.

3. Emulated output only.

6.3.3 Complementary Differential DC Input and Output Levels

The following tables list the complementary differential DC I/O levels.

Table 16 • Complementary Differential DC Input Levels

I/O Standard	Vooi Min (V)	V _{DDI} Typ (V)	Vodi Max (V)	V _{ісм^{1,3} Min (V)}	V _{ICM^{1,3} Тур (V)}	V _{ICM^{1,3} Max (V)}	Vı⊳² Min (V)	Vı⊳ Max (V)
SSTL25I	2.375	2.5	2.625	1.164	1.250	1.339	0.1	
SSTL25II	2.375	2.5	2.625	1.164	1.250	1.339	0.1	
SSTL18I	1.71	1.8	1.89	0.838	0.900	0.964	0.1	
SSTL18II	1.71	1.8	1.89	0.838	0.900	0.964	0.1	
SSTL15I	1.425	1.5	1.575	0.698	0.750	0.803	0.1	
SSTL15II	1.425	1.5	1.575	0.698	0.750	0.803	0.1	
SSTL135I	1.283	1.35	1.418	0.629	0.675	0.723	0.1	
SSTL135II	1.283	1.35	1.418	0.629	0.675	0.723	0.1	
HSTL15I	1.425	1.5	1.575	0.698	0.750	0.803	0.1	
HSTL15II	1.425	1.5	1.575	0.698	0.750	0.803	0.1	
HSTL135I	1.283	1.35	1.418	0.629	0.675	0.723	0.1	
HSTL135II	1.283	1.35	1.418	0.629	0.675	0.723	0.1	
HSTL12I	1.14	1.2	1.26	0.559	0.600	0.643	0.1	
HSUL18I	1.71	1.8	1.89	0.838	0.900	0.964	0.1	
HSUL18II	1.71	1.8	1.89	0.838	0.900	0.964	0.1	
HSUL12I	1.14	1.2	1.26	0.559	0.600	0.643	0.1	
POD12I	1.14	1.2	1.26	0.787	0.840	0.895	0.1	
POD12II	1.14	1.2	1.26	0.787	0.840	0.895	0.1	

1. $V_{\mbox{\scriptsize ICM}}$ is the input common mode voltage.

2. V_{ID} is the input differential voltage.

3. VICM rules are as follows:

- a. VICM must be less than VDDI -0.4V;
- b. $V_{ICM} + V_{ID}/2$ must be $\langle V_{DDI} + 0.4 V$;
- c. $V_{ICM} V_{ID}/2$ must be >VSS 0.3 V.

Min (%)	Тур	Max (%)	Unit	Condition
-20	60	20	Ω	V _{DDI} = 1.2 V
-20	120	20	Ω	V _{DDI} = 1.2 V

Note: Thevenin impedance is calculated based on independent P and N as measured at 50% of V_{DDI}. For 50 $\Omega/75 \Omega/150 \Omega$ cases, nearest supported values of 40 $\Omega/60 \Omega/120 \Omega$ are used.

Table 19 • Single-Ended Termination to VDDI (Internal Parallel Termination to VDDI)

Min (%)	Тур	Max (%)	Unit	Condition
-20	34	20	Ω	V _{DDI} = 1.2 V
-20	40	20	Ω	V _{DDI} = 1.2 V
-20	48	20	Ω	V _{DDI} = 1.2 V
-20	60	20	Ω	V _{DDI} = 1.2 V
-20	80	20	Ω	V _{DDI} = 1.2 V
-20	120	20	Ω	V _{DDI} = 1.2 V
-20	240	20	Ω	V _{DDI} = 1.2 V

Note: Measured at 80% of VDDI.

Table 20 • Single-Ended Termination to VSS (Internal Parallel Termination to VSS)

Min (%)	Тур	Max (%)	Unit	Condition
-20	120	20	Ω	V _{DDI} = 1.8 V/1.5 V
-20	240	20	Ω	V _{DDI} = 1.8 V/1.5 V
-20	120	20	Ω	V _{DDI} = 1.2 V
-20	240	20	Ω	V _{DDI} = 1.2 V

Note: Measured at 50% of V_{DDI}.

6.3.5 GPIO On-Die Termination

The following table lists the on-die termination calibration accuracy specifications for GPIO bank.

Table 21 • On-Die Termination Calibration Accuracy Specifications for GPIO Bank

Parameter	Description	Min (%)	Тур	Max (%)	Unit	Condition
Differential	Internal	-20	100	20	Ω	VICM < 0.8 V
termination ¹	differential	-20	100	40	Ω	0.6 V < V _{ICM} < 1.65 V
	termination	-20	100	80	Ω	1.4 V < VICM
Single-ended	Internal	-40	50	20	Ω	V _{DDI} = 1.8 V/1.5 V
thevenin termination ^{2, 3}	parallel	-40	75	20	Ω	V _{DDI} = 1.8 V
	termination	-40	150	20	Ω	V _{DDI} = 1.8 V
		-20	20	20	Ω	V _{DDI} = 1.5 V
		-20	30	20	Ω	V _{DDI} = 1.5 V
		-20	40	20	Ω	V _{DDI} = 1.5 V
		-20	60	20	Ω	V _{DDI} = 1.5 V
		-20	120	20	Ω	V _{DDI} = 1.5 V

Standard	Description	VL1	VH1	VID ²	VICM ²	Vmeas ^{3, 4}	Vref ^{1, 5}	Unit
HSTL135II	Differential	VICM -	VICM +	0.250	0.675	0		V
	HSTL 1.35 V	.125	.125					
	Class II							
HSTL12	Differential	VICM -	VICM +	0.250	0.600	0		V
	HSTL 1.2 V	.125	.125					
HSUL18I	Differential	VICM -	VICM +	0.250	0.900	0		V
	HSUL 1.8 V	.125	.125					
	Class I							
HSUL18II	Differential	VICM -	VICM +	0.250	0.900	0		V
	HSUL 1.8 V	.125	.125					
	Class II							
HSUL12	Differential	VICM -	VICM +	0.250	0.600	0		V
	HSUL 1.2 V	.125	.125					
POD12I	Differential	VICM -	VICM +	0.250	0.600	0		V
	POD 1.2 V	.125	.125					
	Class I							
POD12II	Differential	VICM -	VICM +	0.250	0.600	0		V
	POD 1.2 V	.125	.125					
	Class II							
MIPI25	Mobile	VICM -	VICM +	0.250	0.200	0		V
	Industry	.125	.125					
	Processor							
	Interface							

- 1. Measurements are made at typical, minimum, and maximum V_{REF} values. Reported delays reflect worst-case of these measurements. V_{REF} values listed are typical. Input waveform switches between V_L and V_H . All rise and fall times must be 1 V/ns.
- 2. Differential receiver standards all use 250 mV V_{ID} for timing. V_{CM} is different between different standards.
- 3. Input voltage level from which measurement starts.
- 4. The value given is the differential input voltage.
- 5. This is an input voltage reference that bears no relation to the V_{REF}/V_{MEAS} parameters found in IBIS models or shown in Output Delay Measurement—Single-Ended Test Setup (see page 27).
- 6. Emulated bi-directional interface.

7.1.2 Output Delay Measurement Methodology

The following section provides information about the methodology for output delay measurement.

Table 23 • Output Delay Measurement Methodology

Standard	Description	Rref (Ω)	Cref (pF)	Vmeas (V)	Vref (V)
PCI	PCIE 3.3 V	25	10	1.65	
LVTTL33	LVTTL 3.3 V	1M	0	1.65	
LVCMOS33	LVCMOS 3.3 V	1M	0	1.65	
LVCMOS25	LVCMOS 2.5 V	1M	0	1.25	
LVCMOS18	LVCMOS 1.8 V	1M	0	0.90	
LVCMOS15	LVCMOS 1.5 V	1M	0	0.75	
LVCMOS12	LVCMOS 1.2 V	1M	0	0.60	
SSTL25I	Stub-series terminated logic 2.5 V Class I	50	0	Vref	1.25
SSTL25II	SSTL 2.5 V Class II	50	0	Vref	1.25

PolarFire

Standard	Description	Rref (Ω)	Cref (pF)	Vmeas (V)	Vref (V)
SSTL18I	SSTL 1.8 V Class I	50	0	VREF	0.9
SSTL18II	SSTL 1.8 V Class II	50	0	VREF	0.9
SSTL15I	SSTL 1.5 V Class I	50	0	VREF	0.75
SSTL15II	SSTL 1.5 V Class II	50	0	VREF	0.75
SSTL135I	SSTL 1.35 V Class I	50	0	VREF	0.675
SSTL135II	SSTL 1.35 V Class II	50	0	VREF	0.675
HSTL15I	High-speed transceiver logic (HSTL) 1.5 V Class I	50	0	Vref	0.75
HSTL15II	HSTL 1.5 V Class II	50	0	VREF	0.75
HSTL135I	HSTL 1.35 V Class I	50	0	VREF	0.675
HSTL135II	HSTL 1.35 V Class II	50	0	VREF	0.675
HSTL12	HSTL 1.2 V	50	0	VREF	0.6
HSUL18I	High-speed unterminated logic 1.8 V Class I	50	0	Vref	0.9
HSUL18II	HSUL 1.8 V Class II	50	0	VREF	0.9
HSUL12	HSUL 1.2 V	50	0	VREF	0.6
POD12I	Pseudo open drain (POD) logic 1.2 V Class I	50	0	Vref	0.84
POD12II	POD 1.2 V Class II	50	0	VREF	0.84
LVDS33	LVDS 3.3 V	100	0	01	0
LVDS25	LVDS 2.5 V	100	0	01	0
LVDS18	LVDS 1.8 V	100	0	01	0
RSDS33	Reduced swing differential signaling 3.3 V	100	0	01	0
RSDS25	RSDS 2.5 V	100	0	01	0
RSDS18	RSDS 1.8 V	100	0	01	0
MINILVDS33	Mini-LVDS 3.3 V	100	0	01	0
MINILVDS25	Mini-LVDS 2.5 V	100	0	01	0
SUBLVDS33	Sub-LVDS 3.3 V	100	0	01	0
SUBLVDS25	Sub-LVDS 2.5 V	100	0	01	0
PPDS33	Point-to-point differential signaling 3.3 V	100	0	01	0
PPDS25	PPDS 2.5 V	100	0	01	0
BUSLVDSE25	Bus LVDS	100	0	01	0
MLVDSE25	Multipoint LVDS 2.5 V	100	0	01	0
LVPECLE33	Low-voltage positive emitter-coupled logic	100	0	01	0
MIPIE25	Mobile industry processor interface 2.5 V	100	0	01	0

1. The value given is the differential output voltage.

Standard	STD	-1	Unit
LVCMOS12 (8 mA)	250	300	Mbps

Table 27 • GPIO Maximum Output Buffer Speed

Standard	STD	-1	Unit
LVDS25/LCMDS25	1250	1250	Mbps
LVDS33/LCMDS33	1250	1600	Mbps
RSDS25	800	800	Mbps
MINILVDS25	800	800	Mbps
SUBLVDS25	800	800	Mbps
PPDS25	800	800	Mbps
SLVSE15	500	500	Mbps
BUSLVDSE25	500	500	Mbps
MLVDSE25	500	500	Mbps
LVPECLE33	500	500	Mbps
SSTL25I	800	800	Mbps
SSTL25II	800	800	Mbps
SSTL25I (differential)	800	800	Mbps
SSTL25II (differential)	800	800	Mbps
SSTL18I	800	800	Mbps
SSTL18II	800	800	Mbps
SSTL18I (differential)	800	800	Mbps
SSTL18II (differential)	800	800	Mbps
SSTL15I	800	1066	Mbps
SSTL15II	800	1066	Mbps
SSTL15I (differential)	800	1066	Mbps
SSTL15II (differential)	800	1066	Mbps
HSTL15I	900	900	Mbps
HSTL15II	900	900	Mbps
HSTL15I (differential)	900	900	Mbps
HSTL15II (differential)	900	900	Mbps
HSUL18I	400	400	Mbps
HSUL18II	400	400	Mbps
HSUL18I (differential)	400	400	Mbps
HSUL18II (differential)	400	400	Mbps
PCI	500	500	Mbps
LVTTL33 (20 mA)	500	500	Mbps
LVCMOS33 (20 mA)	500	500	Mbps
LVCMOS25 (16 mA)	500	500	Mbps
LVCMOS18 (12 mA)	500	500	Mbps
LVCMOS15 (10 mA)	500	500	Mbps
LVCMOS12 (8 mA)	250	300	Mbps
MIPIE25	500	500	Mbps

7.1.5 Maximum PHY Rate for Memory Interface IP

The following tables provide information about the maximum PHY rate for memory interface IP.

Memory Standard	Gearing Ratio	Vddaux	Vddi	STD (Mbps)	–1 (Mbps)	Fabric STD (MHz)	Fabric –1 (MHz)
DDR4	8:1	1.8 V	1.2 V	1333	1600	167	200
DDR3	8:1	1.8 V	1.5 V	1067	1333	133	167
DDR3L	8:1	1.8 V	1.35 V	1067	1333	133	167
LPDDR3	8:1	1.8 V	1.2 V	1067	1333	133	167
QDRII+	8:1	1.8 V	1.5 V	900	1100	112.5	137.5
RLDRAM3 ¹	8:1	1.8 V	1.35 V	1067	1067	133	133
RLDRAM3 ¹	4:1	1.8 V	1.35 V	667	800	167	200
RLDRAM3 ¹	2:1	1.8 V	1.35 V	333	400	167	200
RLDRAM2 ¹	8:1	1.8 V	1.8 V	800	1067	100	133
RLDRAM2 ¹	4:1	1.8 V	1.8 V	667	800	167	200
RLDRAM2 ¹	2:1	1.8 V	1.8 V	333	400	167	200

Table 28 • Maximum PHY Rate for Memory Interfaces IP for HSIO Banks

1. RLDRAM2 and RLDRAM3 are not supported with a soft IP controller currently.

Table 29 • Maximum PHY Rate for Memory Interfaces IP for GPIO Banks

Memory Standard	Gearing Ratio	Vddaux	Vddi	STD (Mbps)	−1 (Mbps)	Fabric STD (MHz)	Fabric –1 (MHz)
DDR3	8:1	2.5 V	1.5 V	800	1067	100	133
QDRII+	8:1	2.5 V	1.5 V	900	900	113	113
RLDRAM2 ¹	4:1	2.5 V	1.8 V	800	800	200	200
RLDRAM2 ¹	2:1	2.5 V	1.8 V	400	400	200	200

1. RLDRAM2 is currently not supported with a soft IP controller.

Parameter	Interface Name	Topology	STD Min	STD Typ	STD Max	-1 Min	—1 Тур	-1 Max	Unit	Clock-to- Data Condition
Fmax 8:1	RX_DDRX_BL_C	Rx DDR digital mode							MHz	From a HS_IO_CLK clock source, centered

Table 32 • I/O Digital Transmit Single-Data Rate Switching Characteristics

Parameter	Interface Name	Topology	STD Min	STD Typ	STD Max	–1 Min	—1 Тур	-1 Max	Unit	Forwarded Clock-to-Data Skew
Output F _{MAX}	TX_SDR_G_A	Tx SDR							MHz	From a global clock source, aligned ¹
	TX_SDR_G_C	Tx SDR							MHz	From a global clock source, centered ¹

1. A centered clock-to-data interface can be created with a negedge launch of the data.

Parameter	Interface Name	Topology	STD Min	STD Typ	STD Max	–1 Min	—1 Тур	-1 Max	Unit	Forwarded Clock-to- Data Skew
Output Fmax	TX_DDR_G_A	Tx DDR			335			335	MHz	From a global clock source, aligned
	TX_DDR_G_C	Tx DDR			335			335	MHz	From a global clock source, centered
	TX_DDR_L_A	Tx DDR			250			250	MHz	From a lane clock source, aligned
	TX_DDR_L_C	Tx DDR			250			250	MHz	From a lane clock source, centered
Output Fmax 2:1	TX_DDRX_B_A	Tx DDR digital mode							MHz	From a HS_IO_CLK clock source, aligned
Output Fmax 4:1	TX_DDRX_B_A	Tx DDR digital mode							MHz	From a HS_IO_CLK clock source, aligned
Output FMAX 8:1	TX_DDRX_B_A	Tx DDR digital mode							MHz	From a HS_IO_CLK clock source, aligned

Table 33 • I/O Digital Transmit Double-Data Rate Switching Characteristics

Parameter	Symbol	Min	Тур	Max	Unit	Condition
		0.41			UI	>3.2–8.5 Gbps⁵
		0.41			UI	>1.6 to 3.2 Gbps ⁵
		0.41			UI	>0.8 to 1.6 Gbps ⁵
		0.41			UI	250 to 800 Mpbs ⁵
Total jitter tolerance with	TIJTOLSE	0.65			UI	3.125 Gbps⁵
stressed eye		0.65			UI	6.25 Gbps ⁶
		0.7			UI	10.3125 Gbps ⁶
					UI	12.7 Gbps ^{6, 10}
Sinusoidal jitter tolerance with	TSJTOLSE	0.1			UI	3.125 Gbps⁵
stressed eye		0.05			UI	6.25 Gbps ⁶
		0.05			UI	10.3125 Gbps ⁶
					UI	12.7 Gbps ^{6, 10}
CTLE DC gain (all stages, max settings)				10	dB	
CTLE AC gain (all stages, max settings)				16	dB	
DFE AC gain (per 5 stages, max settings)				7.5	dB	

1. Valid at 3.2 Gbps and below.

- 2. Data vs. Rx reference clock frequency.
- 3. Achieves compliance with PCIe electrical idle detection.
- 4. Achieves compliance with SATA OOB specification.
- 5. Rx jitter values based on bit error ratio (BER) of 10−12, AC coupled input with 400 mV V_{ID}, all stages of Rx CTLE enabled, DFE disabled, 80 MHz sinusoidal jitter injected to Rx data.
- 6. Rx jitter values based on bit error ratio (BER) of 10−12, AC coupled input with 400 mV V_{ID}, all stages of Rx CTLE enabled, DFE enabled, 80 MHz sinusoidal jitter injected to Rx data.
- 7. For PCIe: Low Threshold Setting = 1, High Threshold Setting = 2.
- 8. For SATA: Low Threshold Setting = 2, High Threshold Setting = 3.
- 9. Loss of signal detection is valid for input signals that transition at a density ≥1 Gbps for PRBS7 data or 6 Gbps for PRBS31 data.
- 10. For data rates greater than 10.3125 Gbps, VDDA must be set to 1.05 V mode. See supply tolerance in the section Recommended Operating Conditions (see page 6).

7.5 Transceiver Protocol Characteristics

The following section describes transceiver protocol characteristics.

7.5.1 PCI Express

The following tables describe the PCI express.

Table 54 • PCI Express Gen1

Parameter	Data Rate	Min	Max	Unit
Total transmit jitter	2.5 Gbps		0.25	UI
Receiver jitter tolerance	2.5 Gbps	0.4		UI

Note: With add-in card, as specified in PCI Express CEM Rev 2.0.

Parameter	Тур	Max	Unit	Conditions
Time to destroy data in non-volatile memory (recoverable) ^{1, 3}			ms	One iteration of scrubbing
Time to destroy data in non-volatile memory (non-recoverable) ^{1, 4}			ms	One iteration of scrubbing
Time to scrub the fabric data ¹			S	Full scrubbing
Time to scrub the pNVM data (like new) ^{1, 2}			S	Full scrubbing
Time to scrub the pNVM data (recoverable) ^{1,3}			S	Full scrubbing
Time to scrub the fabric data PNVM data (non-recoverable) 1,4			S	Full scrubbing
Time to verify⁵			S	

1. Total completion time after interning zeroization.

- 2. Like new mode—zeroizes user design security setting and sNVM content.
- 3. Recoverable mode—zeroizes user design security setting, sNVM and factory keys.
- 4. Non-recoverable mode—zeroizes user design security setting, sNVM and factory keys, and factory data required for programming.
- 5. Time to verify after scrubbing completes.

Table 79 • Zeroization Times for MPF300T, TL, TS, and TLS Devices

Parameter	Тур	Max	Unit	Conditions
Time to enter zeroization			ms	Zip flag set
Time to destroy the fabric data ¹			ms	Data erased
Time to destroy data in non-volatile memory (like new) ^{1, 2}			ms	One iteration of scrubbing
Time to destroy data in non-volatile memory (recoverable) ^{1, 3}			ms	One iteration of scrubbing
Time to destroy data in non-volatile memory (non- recoverable) ^{1, 4}			ms	One iteration of scrubbing
Time to scrub the fabric data ¹			S	Full scrubbing
Time to scrub the pNVM data (like new) ^{1, 2}			S	Full scrubbing
Time to scrub the pNVM data (recoverable) ^{1, 3}			S	Full scrubbing
Time to scrub the fabric data pNVM data (non-recoverable) 1,4			S	Full scrubbing
Time to verify⁵			S	

- 1. Total completion time after interning zeroization.
- 2. Like new mode—zeroizes user design security setting and sNVM content.
- 3. Recoverable mode—zeroizes user design security setting, sNVM and factory keys.
- 4. Non-recoverable mode—zeroizes user design security setting, sNVM and factory keys, and factory data required for programming.
- 5. Time to verify after scrubbing completes.

_

Table 80 • Zeroization Times for MPF500T, TL, TS, and TLS Devices

Parameter	Тур	Max	Unit	Conditions
Time to enter zeroization			ms	Zip flag set
Time to destroy the fabric data ¹			ms	Data erased
Time to destroy data in non-volatile memory (like new) ^{1, 2}			ms	One iteration of scrubbing
Time to destroy data in non-volatile memory (recoverable) $^{\rm 1,3}$			ms	One iteration of scrubbing

Devices	IAP	P FlashPro4 FlashPr		BP	Silicon Sculptor	Units
MPF500T, TL, TS, TLS						

Notes:

- FlashPro4 4 MHz TCK.
- FlashPro5 10 MHz TCK.
- PC configuration: Intel i7 at 3.6 GHz, 32 GB RAM, Windows 10.

Table 83 • Verify System Services

Parameter	Symbol	ServiceID	Devices	Тур	Max	Unit
In application verify by index	$T_{IAP_Ver_Index}$	44H	MPF100T, TL, TS, TLS			S
			MPF200T, TL, TS, TLS	8.2	9	S
			MPF300T, TL, TS, TLS	12.4	13	S
			MPF500T, TL, TS, TLS			S
In application verify by SPI address	TIAP_Ver_Addr	44H MPF100T, TL, TS, TLS MPF200T, TL, TS, TLS 8.2 9 MPF300T, TL, TS, TLS 12.4 13 MPF500T, TL, TS, TLS 12.4 13 MPF100T, TL, TS, TLS 12.4 13 MPF200T, TL, TS, TLS 12.4 13 MPF300T, TL, TS, TLS 12.4 13 MPF500T, TL, TS, TLS 12.4 13		S		
			MPF200T, TL, TS, TLS	8.2	9	S
			MPF300T, TL, TS, TLS	12.4	13	S
			MPF500T, TL, TS, TLS			S

7.6.8 Authentication Time

The following tables describe authentication system service time.

Table 84 • Authentication Services

Parameter	Symbol	ServiceID	Devices	Тур	Max	Unit
Bitstream Authentication	TBIT_AUTH	22H	MPF100T, TL, TS, TLS			S
			MPF200T, TL, TS, TLS	3.3	3.7	S
			MPF300T, TL, TS, TLS	4.9	5.4	S
			MPF500T, TL, TS, TLS			S
IAP Image Authentication	TIAP_AUTH	23H	MPF100T, TL, TS, TLS			S
			MPF200T, TL, TS, TLS	3.3	3.7	S
			MPF300T, TL, TS, TLS	4.9	5.4	S
			MPF500T, TL, TS, TLS			

7.6.9 Secure NVM Performance

The following table describes secure NVM performance.

Table 85 • sNVM Read/Write Characteristics

Parameter	Symbol	Min	Тур	Max	Unit	Conditions
Plain text programming		7.0	7.2	7.9	ms	
Authenticated text programming		7.2	7.4	9.4	ms	
Authenticated and encrypted text programming		7.2	7.4	9.4	ms	
Authentication R/W 1st access from power-up overhead	Tpuf_ovhd		100	111	ms	From Tfab_ready
Plain text read		7.67	7.79	8.2	μs	

Figure 4 • USPI Switching Characteristics

7.8.4 Tamper Detectors

The following section describes tamper detectors.

Table 91 • ADC Conversion Rate

Parameter	Description	Min	Тур¹	Max
Τςονν1	Time from enable changing from zero to non-zero value to first conversion completes. Minimum value applies when POWEROFF = 0.	420 µs		470 μs
Τςοννν	Time between subsequent channel conversions.		480 µs	
TSETUP	Data channel and output to valid asserted. Data is held until next conversion completes, that is >480 μ s.	0 ns		
Tvalid ²	Width of the valid pulse.	1.625 µs		2 µs
Trate	Time from start of first set of conversions to the start of the next set. Can be considered as the conversion rate. Is set by the conversion rate parameter.	480 µs	Rate × 32 μs	8128 µs

1. Min, typ, and max refer to variation due to functional configuration and the raw TVS value. The actual internal correction time will vary based on the raw TVS value.

2. The pulse width varies depending on the time taken to complete the internal calibration multiplication, this can be up to 375 ns.

Note: Once the TVS block is active, the enable signal is sampled 25 ns before the falling edge of valid. The next enabled channel in the sequence 0-1-2-3 is started; that is, if channel 0 has just completed and only channels 0 and 3 are enabled, the next channel will be 3. When all the enabled channels in the sequence 0-1-2-3 are completed, the TVS waits for the conversion rate timer to expire. The enable signal may be changed at any time if it changes to 4'b0000 while valid is asserted (and 25 ns before valid is deasserted), then no further conversions will be started.

Table 92 • Temperature and Voltage Sensor Electrical Characteristics

Parameter	Min	Тур	Max	Unit	Condition
Temperature sensing range	-40		125	°C	
Temperature sensing accuracy	-10		10	°C	

Parameter	Symbol	Тур	Max	Unit
Time from negation of RESPONSE to all I/Os re-enabled	$T_{CLR_IO_DISABLE}$	28	38	μs
Time from triggering the response to security locked	TLOCKDOWN			ns
Time from negation of RESPONSE to earlier security unlock condition	Tclr_lockdown			ns
Time from triggering the response to device enters RESET	Ttr_RESET	11.7	14	μs
Time from triggering the response to start of zeroization	Ttr_ZEROLISE	7.4	8.2	ms

7.8.5 System Controller Suspend Switching Characteristics

The following table describes the characteristics of system controller suspend switching.

Table 95 • System Controller Suspend Entry and Exit Characteristics

Parameter	Symbol	Definition	Тур	Max	Unit
Time from TRSTb falling edge to SUSPEND_EN signal assertion	Tsuspend_Tr ^{1, 2}	Suspend entry time from TRST_N assertion	42	44	ns
Time from TRSTb rising edge to ACTIVE signal assertion	Tsuspend_exit	Suspend exit time from TRST_N negation	361	372	ns

1. ACTIVE indicates that the system controller is inactive or active regardless of the state of SUSPEND_EN.

2. ACTIVE signal must never be asserted with SUSPEND_EN is asserted.

7.8.6 Dynamic Reconfiguration Interface

The following table provides interface timing information for the DRI, which is an embedded APB slave interface within the FPGA fabric that does not use FPGA resources.

Table 96 • Dynamic Reconfiguration Interface Timing Characteristics

Parameter	Symbol	Max	Unit
PCLK frequency	FPD_PCLK	200	MHz

7.9 Power-Up to Functional Timing

Microsemi non-volatile FPGA technology offers the fastest boot-time of any mid-range FPGA in the market. The following tables describes both cold-boot (from power-on) and warm-boot (assertion of DEVRST_N pin or assertion of reset from the tamper macro) timing. The power-up diagrams assume all power supplies to the device are stable.

7.9.1 Power-On (Cold) Reset Initialization Sequence

The following cold reset timing diagram shows the initialization sequencing of the device.

Figure 6 • Warm Reset Timing

7.9.3 Power-On Reset Voltages

7.9.3.1 Main Supplies

The start of power-up to functional time (T_{PUFT}) is defined as the point at which the latest of the main supplies (VDD, VDD18, VDD25) reach the reference voltage levels specified in the following table. This starts the process of releasing the reset of the device and powering on the FPGA fabric and IOs.

Table 97 • POR Ref Voltages

Supply	Power-On Reset Start Point (V)	Note
VDD	0.95	Applies to both 1.0 V and 1.05 V operation.
VDD18	1.71	
VDD25	2.25	

7.9.3.2 I/O-Related Supplies

For the I/Os to become functional (for low speed, sub 400 MHz operation), the (per-bank) I/O supplies (VDDI, VDDAUX) must reach the trip point voltage levels specified in the following table and the main supplies above must also be powered on.

Table 98 • I/O-Related Supplies

Supply	I/O Power-Up Start Point (V)	
VDDI	0.85	
VDDAUX	1.6	

There are no sequencing requirements for the power supplies. However, VDDI3 and must be valid at same time as the main supplies. The other IO supplies (VDDI, VDDAUX) have no effect on power-up of FPGA fabric (that is, the fabric still powers up even if the IO supplies of some IO banks remain powered off).

7.9.4 Design Dependence of T PUFT and T WRFT

Some phases of the device initialization are user design-dependent, as the device automatically initializes certain resources to user-specified configurations if those resources are used in the design. It is necessary to compute the overall power-up to functional time by referencing the following tables and adding the relevant phases, according to the design configuration. The following equation refers to timing parameters specified in the above timing diagrams. Please note T_{PCIE}, T_{XCVR}, T_{LSRAM}, and T_{USRAM} can be found in the PolarFire FPGA device power-up and resets user guide UG0725.

TPUFT = TFAB_READY(cold) + max((TPCIE + TXCVR + TLSRAM + TUSRAM), TCALIB)

TWRFT = TFAB_READY(warm) + max((TPCIE + TXCVR + TLSRAM + TUSRAM), TCALIB)

Note: TPCIE, TXCVR, TLSRAM, TUSRAM, and TCALIB are common to both cold and warm reset scenarios.

Auto-initialization of FPGA (if required) occurs in parallel with I/O calibration. The device may be considered fully functional only when the later of these two activities has finished, which may be either one, depending on the configuration, as may be calculated from the following tables. Note that I/O calibration may extend beyond T_{PUFT} (as I/O calibration process is independent of main device power-on and is instead dependent on I/O bank supply relative power-on time and ramp times). The previous timing diagram for power-on initialization shows the earliest that I/Os could be enabled, if the I/O power supplies are powered on before or at the same time as the main supplies.

7.9.5 Cold Reset to Fabric and I/Os (Low Speed) Functional

The following table specifies the minimum, typical, and maximum times from the power supplies reaching the above trip point levels until the FPGA fabric is operational and the FPGA IOs are functional for low-speed (sub 400 MHz) operation.

Table 99 • Cold Boot

Power-On (Cold) Reset to Fabric and I/O Operational	Min	Тур	Max	Unit
Time when input pins start working – $T_{\text{IN}_\text{ACTIVE(cold)}}$	1.17	4.51	7.84	ms
Time when weak pull-ups are enabled – TPU_PD_ACTIVE(cold)	1.17	4.51	7.84	ms
Time when fabric is operational – TFAB_READY(cold)	1.20	4.54	7.87	ms
Time when output pins start driving – Tout_ACTIVE(cold)	1.22	4.56	7.89	ms

7.9.6 Warm Reset to Fabric and I/Os (Low Speed) Functional

The following table specifies the minimum, typical, and maximum times from the negation of the warm reset event until the FPGA fabric is operational and the FPGA IOs are functional for low-speed (sub 400 MHz) operation.

Table 100 • Warm Boot

Warm Reset to Fabric and I/O Operational		Тур	Max	Unit
Time when input pins start working – TIN_ACTIVE(warm)	0.91	1.76	2.62	ms
Time when weak pull-ups/pull-downs are enabled – $T_{PU_PD_ACTIVE(warm)}$	0.91	1.76	2.62	ms
Time when fabric is operational – TFAB_READY(warm)	0.94	1.79	2.65	ms
Time when output pins start driving – Tout_ACTIVE(warm)	0.96	1.81	2.67	ms

7.9.7 Miscellaneous Initialization Parameters

In the following table, T_{FAB_READY} refers to either T_{FAB_READY(cold)} or T_{FAB_READY(warm)} as specified in the previous tables, depending on whether the initialization is occurring as a result of a cold or warm reset, respectively.

1. With DPA counter measures.

Table 115 • HMAC

Modes	Message Size (bits)	Athena TeraFire Crypto Core Clock-Cycles	CAL Delay In CPU Clock-Cycles
HMAC-SHA-256 ¹ ,	512	7477	2361
256-bit key	64K	88367	2099
HMAC-SHA-384 ¹ ,	1024	13049	2257
384-bit key	64K	106103	2153

1. With DPA counter measures.

Table 116 • CMAC

Modes	Message Size (bits)	Athena TeraFire Crypto Core Clock- Cycles	CAL Delay In CPU Clock- Cycles
AES-CMAC-2561	128	446	9058
(message is only authenticated)	64К	45494	111053

1. With DPA counter measures.

Table 117 • KEY TREE

Modes	Message Size (bits)	Athena TeraFire Crypto Core Clock-Cycles	CAL Delay In CPU Clock-Cycles
128-bit nonce +		102457	2751
8-bit optype			
256-bit nonce +		103218	2089
8-bit optype			

Table 118 • SHA

Modes	Message Size (bits)	Athena TeraFire Crypto Core Clock-Cycles	CAL Delay In CPU Clock-Cycles
SHA-1 ¹	512	2386	1579
	64K	77576	990
SHA-256 ¹	512	2516	884
	64K	84752	938
SHA-3841	1024	4154	884
	64K	100222	938
SHA-512 ¹	1024	4154	881
	64K	100222	935

1. With DPA counter measures.

Table 119 • ECC

Modes	Message Size (bits)	Athena TeraFire Crypto Core Clock- Cycles	CAL Delay In CPU Clock- Cycles
ECDSA SigGen,	1024	12528912	6944
P-384/SHA-384 ¹	8К	12540448	5643
ECDSA SigGen, P-384/SHA-384	1024	5502928	6155

Microsemi Headquarters

One Enterprise, Aliso Viejo, CA 92656 USA Within the USA: +1 (800) 713-4113 Outside the USA: +1 (949) 380-6100 Sales: +1 (949) 380-6136 Fax: +1 (949) 215-4996 Email: sales.support@microsemi.com www.microsemi.com

© 2018 Microsemi. All rights reserved. Microsemi and the Microsemi logo are trademarks of Microsemi Corporation. All other trademarks and service marks are the property of their respective owners. Microsemi makes no warranty, representation, or guarantee regarding the information contained herein or the suitability of its products and services for any particular purpose, nor does Microsemi assume any liability whatsoever arising out of the application or use of any product or circuit. The products sold by Microsemi have been subject to limited testing and should not be used in conjunction with mision-critical equipment or applications. Any performance specifications are believed to be reliable but are not verified, and Buyer must conduct and complete all performance and other testing of the products, alone and together with, or installed in, any end-products. Buyer shall not rely on any data and performance specifications or parameters provided by Microsemi. It is the Buyer's responsibility to indpendently determine suitability of any products and to test and verify the same. The information provided by Microsemi des not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other IP rights, whether with regard to such information itself or anything described by such information. Information provided in this document is provider by such information. Information provided in this document is provider any time without notice.

Microsemi, a wholly owned subsidiary of Microchip Technology Inc. (Nasdaq: MCHP), offers a comprehensive portfolio of semiconductor and system solutions for aerospace & defense, communications, data center and industrial markets. Products include high-performance and radiation-hardened analog mixed-signal integrated circuits, FPGAS, SoCs and ASICs; power management products; timing and synchronization devices and precise time solutions; security technologies and scalable anti-tamper products; thermet solutions; discrete components; enterprise storage and communication solutions; security technologies and scalable anti-tamper products; thermet solutions; Power-over-Ethernet ICs and midspans; as well as custom design capabilities and services. Microsemi is headquartered in Aliso Viejo, California, and has approximately 4,800 employees globally. Learn more at www microsemi.com.

51700141