

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Active
Number of LABs/CLBs	-
Number of Logic Elements/Cells	109000
Total RAM Bits	7782400
Number of I/O	170
Number of Gates	-
Voltage - Supply	0.97V ~ 1.08V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	325-LFBGA, FCBGA
Supplier Device Package	325-FCBGA (11x11)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/mpf100t-fcsg325i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1 Revision History

The revision history describes the changes that were implemented in the document. The changes are listed by revision, starting with the most current publication.

1.1 Revision 1.3

Revision 1.3 was published in June 2018. The following is a summary of changes.

- The System Services section was updated. For more information, see System Services (see page 59).
- The Non-Volatile Characteristics section was updated. For more information, see Non-Volatile Characteristics (see page 51).
- The Fabric Macros section was updated. For more information, see Fabric Macros (see page 60).
- The Transceiver Switching Characteristics section was updated. For more information, see Transceiver Switching Characteristics (see page 42).

1.2 Revision 1.2

Revision 1.2 was published in June 2018. The following is a summary of changes.

• The datasheet has moved to preliminary status. Every table has been updated.

1.3 Revision 1.1

Revision 1.1 was published in August 2017. The following is a summary of changes.

- LVDS specifications changed to 1.25G. For more information, see HSIO Maximum Input Buffer Speed and HSIO Maximum Output Buffer Speed.
- LVDS18, LVDS25/LVDS33, and LVDS25 specifications changed to 800 Mbps. For more information, see I/O Standards Specifications.
- A note was added indicting a zeroization cycle counts as a programming cycle. For more information, see Non-Volatile Characteristics.
- A note was added defining power down conditions for programming recovery conditions. For more information, see Power-Supply Ramp Times.

1.4 Revision 1.0

Revision 1.0 was the first publication of this document.

4 Device Offering

The following table lists the PolarFire FPGA device options using the MPF300T as an example. The MPF100T, MPF200T, and MPF500T device densities have identical offerings.

Table 1 • PolarFire FPGA Device Options

Device Options	Extended Commercial 0 °C–100 °C	Industrial –40 °C–100 °C	STD	-1	Transceivers T	Lower Static Power L	Data Security S
MPF300T	Yes	Yes	Yes	Yes	Yes		
MPF300TL	Yes	Yes	Yes		Yes	Yes	
MPF300TS		Yes	Yes	Yes	Yes		Yes
MPF300TLS		Yes	Yes		Yes	Yes	Yes

5 Silicon Status

There are three silicon status levels:

- Advanced—initial estimated information based on simulations
- Preliminary—information based on simulation and/or initial characterization
- Production—final production silicon data

The following table shows the status of the PolarFire FPGA device.

Table 2 • PolarFire FPGA Silicon Status

Device	Silicon Status
MPF100T, TL, TS, TLS	Preliminary
MPF200T, TL, TS, TLS	Preliminary
MPF300T, TL, TS, TLS	Preliminary
MPF500T, TL, TS, TLS	Preliminary

PolarFire

SSTL1351 1.283 1.35 1.418 -0.3 Vmr - Vmr + Vmr 0.09 1.418 SSTL13511 1.283 1.35 1.418 -0.3 Vmr - Vmr + 1.418 SSTL13511 1.283 1.35 1.418 -0.3 Vmr - Vmr + 1.418 SSTL13511 1.425 1.5 1.575 -0.3 Vmr - Vmr + 1.575 HSTL1511 1.425 1.5 1.575 -0.3 Vmr - Vmr + 1.575 HSTL1511 1.425 1.5 1.575 -0.3 Vmr - Vmr + 1.418 HSTL1351 1.283 1.35 1.418 -0.3 Vmr + Vmr + 1.418 HSTL1351 1.283 1.35 1.418 -0.3 Vmr + Vmr + 1.418 HSTL121 1.14 1.2 1.26 -0.3 Vmr + Vmr + 1.26 HSTL1211 1.14 1.2 1.26 -0.3 Vmr + Vmr + 1.26 HSUL181 1.71 1.8 1.89 -0.3 0.3 <td< th=""><th>I/O Standard</th><th>Vooi Min (V)</th><th>Vooi Typ (V)</th><th>Vodi Max (V)</th><th>V⊾ Min (V)</th><th>V⊫ Max (V)</th><th>Vін Min (V)</th><th>Vін¹ Max (V)</th></td<>	I/O Standard	Vooi Min (V)	Vooi Typ (V)	Vodi Max (V)	V⊾ Min (V)	V⊫ Max (V)	Vін Min (V)	Vін¹ Max (V)
SSTL135II 1.283 1.35 1.418 -0.3 Var - - 0.09 Var - - 0.09 Var - - - 0.09 1.418 HSTL15I 1.425 1.5 1.575 -0.3 Var - 0.1 Var - - 0.1 Var - - 0.1 1.575 HSTL15I 1.425 1.5 1.575 -0.3 Var - 0.1 Var - - - Var - - Var - - Var - - 1.575 HSTL15I 1.425 1.5 1.575 -0.3 Var - Var - Var - 1.575 HSTL15I 1.283 1.35 1.418 -0.3 Var - Var - 1.418 HSTL12I 1.283 1.35 1.418 -0.3 Var - Var - 1.418 HSTL12I 1.14 1.2 1.26 -0.3 Var - Var - 1.26 HSUL18I 1.71 1.8 1.89 -0.3 0.3 0.7 1.89 HSUL18I 1.71 1.8 1.89 -0.3 Var - Var - 1.26 HSUL12I <	SSTL135I	1.283	1.35	1.418	-0.3	Vref	Vref +	1.418
SSTL135II 1.283 1.35 1.418 -0.3 Vmer - Vmer + Vmer - Vmer + 1.418 HSTL15I 1.425 1.5 1.575 -0.3 Vmer - Vmer + 1.575 HSTL15I 1.425 1.5 1.575 -0.3 Vmer - Vmer + 1.575 HSTL15II 1.425 1.5 1.575 -0.3 Vmer - Vmer + 1.575 HSTL15II 1.425 1.5 1.575 -0.3 Vmer - Vmer + 1.575 HSTL135I 1.283 1.35 1.418 -0.3 Vmer - 1.418 HSTL135II 1.283 1.35 1.418 -0.3 Vmer - 1.418 HSTL12I 1.14 1.2 1.26 -0.3 Vmer - 1.418 HSTL12I 1.14 1.2 1.26 -0.3 Vmer - 1.26 HSUL18I 1.71 1.8 1.89 -0.3 0.3 0.7 1.89 HSUL18I 1.71 1.8 1.89 -0.3 0.3 0.7 1.89 HSUL						0.09	0.09	
- + - + 1425 1.425 1.57 -0.3 Mer Var 1.575 HSTL15I 1.425 1.5 1.575 -0.3 Var Var 1.575 HSTL15II 1.425 1.5 1.575 -0.3 Var Var 1.575 HSTL15II 1.425 1.5 1.575 -0.3 Var Var 1.575 HSTL13SI 1.428 1.575 -0.3 Var Var 1.418 HSTL13SI 1.283 1.35 1.418 -0.3 Var Var 1.418 HSTL13SII 1.283 1.35 1.418 -0.3 Var Var 1.418 HSTL12I 1.14 1.2 1.26 -0.3 Var Var 1.26 HSTL12I 1.14 1.2 1.26 -0.3 Var Var 1.26 HSUL18I 1.71 1.8 1.89 -0.3 0.3 0.7 1.89	SSTL135II	1.283	1.35	1.418	-0.3	VREF	VREF	1.418
HSTL15I 1.425 1.5 1.575 -0.3 Verer - 0.1 Verer 0.1 1.575 -0.3 Verer - 0.1 Verer 0.1 1.575 -0.3 Verer - 0.1 1.575 -0.3 Verer - 0.1 0.1 1.418 -0.3 Verer - 0.09 0.09 1.418 HSTL135II 1.283 1.35 1.418 -0.3 Verer - 0.1 1.418 -<						-	+	
HSILLSI 1.423 1.3 1.373 -0.3 VREP VREP 1.373 -1.375 HSTL15II 1.425 1.5 1.575 -0.3 VREP VREP 1.575 HSTL15II 1.425 1.5 1.575 -0.3 VREP VREP 1.575 HSTL13SI 1.283 1.35 1.418 -0.3 VREP VREP 1.418 HSTL13SI 1.283 1.35 1.418 -0.3 VREP VREP 1.418 HSTL13SI 1.283 1.35 1.418 -0.3 VREP VREP 1.418 HSTL12I 1.283 1.35 1.418 -0.3 VREP VREP 1.418 HSTL12I 1.14 1.2 1.26 -0.3 VREP VREP 1.26 HSTL12I 1.14 1.2 1.26 -0.3 VREP VREP 1.26 HSUL18I 1.71 1.8 1.89 -0.3 0.3 0.7 1.89 H		1 425	1 Г	1 575	0.2	0.09	0.09	1 575
HSTL15II 1.425 1.5 1.575 -0.3 Veer - - 0.1 Veer + 0.1 1.575 + 0.1 1.575 + 0.1 HSTL135I 1.283 1.35 1.418 -0.3 Veer - 0.09 Veer - 0.09 Veer + 0.09 1.418 - 0.09 1.418 - - - - - - - - - - 1.418 - - - - - - - - - - - 1.418 - - - - - - - - - - - - - - - - - - -	HSILISI	1.425	1.5	1.575	-0.3	V REF	V REF	1.575
HSTL15II 1.425 1.5 1.575 -0.3 VREF - 0.1 VREF + 0.1 1.575 + 0.0 HSTL135I 1.283 1.35 1.418 -0.3 VREF - 0.09 VREF - 0.09 1.418 HSTL135II 1.283 1.35 1.418 -0.3 VREF - 0.09 VREF - 0.09 1.418 HSTL135II 1.283 1.35 1.418 -0.3 VREF - 0.09 VREF 1.418 HSTL12I 1.14 1.2 1.26 -0.3 VREF - 0.1 VREF 1.26 HSTL12I 1.14 1.2 1.26 -0.3 VREF - 0.1 1.26 - HSTL12II 1.14 1.2 1.26 -0.3 VREF - 0.1 1.26 - HSUL18I 1.71 1.8 1.89 -0.3 0.3 0.7 1.89 HSUL12I 1.14 1.2 1.26 - - + 1.26 HSUL12I 1.14 1.2 1.26 -0.3 VREF - + 1.26						0.1	0.1	
HIND	HSTI 15II	1 425	15	1 575	-0.3	VREE	VREE	1 575
HSTL135I 1.283 1.35 1.418 -0.3 VREF VREF 1.418 HSTL135I 1.283 1.35 1.418 -0.3 VREF VREF 1.418 HSTL135II 1.283 1.35 1.418 -0.3 VREF VREF 1.418 HSTL135II 1.283 1.35 1.418 -0.3 VREF VREF 1.418 HSTL12I 1.14 1.2 1.26 -0.3 VREF VREF 1.26 HSTL12I 1.14 1.2 1.26 -0.3 VREF VREF 1.26 HSUL18I 1.14 1.2 1.26 -0.3 VREF VREF 1.26 HSUL18I 1.71 1.8 1.89 -0.3 0.3 0.7 1.89 HSUL12I 1.71 1.8 1.89 -0.3 VREF VREF 1.26 HSUL12I 1.14 1.2 1.26 -0.3 VREF VREF 1.26 POD12I 1.14		1.125	1.5	1.575	0.5	_	+	1.575
HSTL1351 1.283 1.35 1.418 -0.3 VRF VRF 1.418 HSTL121 1.24 1.26 -0.3 VRF VRF 1.26 HSTL121 1.14 1.2 1.26 -0.3 VRF VRF 1.26 HSTL121 1.14 1.2 1.26 -0.3 VRF VRF 1.26 HSUL181 1.14 1.2 1.26 -0.3 0.3 0.7 1.89 HSUL181 1.71 1.8 1.89 -0.3 0.3 0.7 1.89 HSUL181 1.71 1.8 1.89 -0.3 VRF VRF 1.26 HSUL121 1.14 1.2 1.26 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.1</td> <td>0.1</td> <td></td>						0.1	0.1	
- + - + 1.281 1.35 1.418 -0.3 Vref Vref 1.418 - - - - - - - + 1.09 0.09 0.09 - - - + - - + - - + - - + - <td>HSTL135I</td> <td>1.283</td> <td>1.35</td> <td>1.418</td> <td>-0.3</td> <td>VREF</td> <td>VREF</td> <td>1.418</td>	HSTL135I	1.283	1.35	1.418	-0.3	VREF	VREF	1.418
HSTL135II 1.283 1.35 1.418 -0.3 VREF - 0.09 VREF - 0.09 1.418 HSTL12I 1.14 1.2 1.26 -0.3 VREF - 0.1 VREF 1.26 HSTL12I 1.14 1.2 1.26 -0.3 VREF - 0.1 VREF 1.26 HSTL12I 1.14 1.2 1.26 -0.3 VREF - 0.1 VREF 1.26 HSTL12II 1.14 1.2 1.26 -0.3 VREF VREF 1.26 HSUL18I 1.71 1.8 1.89 -0.3 0.3 0.7 1.89 HSUL18I 1.71 1.8 1.89 -0.3 0.3 0.7 1.89 HSUL12I 1.14 1.2 1.26 -0.3 VREF VREF 1.26 HSUL12I 1.14 1.2 1.26 -0.3 VREF VREF 1.26 HSUL12I 1.14 1.2 1.26 -0.3 VREF VREF 1.26 - <td< td=""><td></td><td></td><td></td><td></td><td></td><td>-</td><td>+</td><td></td></td<>						-	+	
HSTL135II 1.283 1.35 1.418 -0.3 VREF VREF 1.418 - - + 0.09 0.09 - - + HSTL12I 1.14 1.2 1.26 -0.3 VREF VREF 1.26 HSTL12I 1.14 1.2 1.26 -0.3 VREF VREF 1.26 HSTL12II 1.14 1.2 1.26 -0.3 VREF VREF 1.26 HSTL12II 1.14 1.2 1.26 -0.3 VREF VREF 1.26 HSUL18I 1.14 1.2 1.26 -0.3 VREF VREF 1.89 HSUL18I 1.71 1.8 1.89 -0.3 0.3 0.7 1.89 HSUL12I 1.71 1.8 1.89 -0.3 VREF VREF 1.26 HSUL12I 1.14 1.2 1.26 -0.3 VREF VREF 1.26 POD12I 1.14 1.2						0.09	0.09	
- + - + 0.09 0.09 0.09 1.26 -0.3 VREF VREF 1.26 - + 1.26 - + 0.1 0.1 1.26 - - + 0.1 0.1 1.26 - - + 0.1 0.1 1.26 - - + 0.1 0.1 1.26 - - - + 0.1 0.1 1.26 - - - - - - 1.26 - 0.3 0.1 1.26 - 0.3 0.1 1.89 - 0.3 0.7 1.89 - <td< td=""><td>HSTL135II</td><td>1.283</td><td>1.35</td><td>1.418</td><td>-0.3</td><td>VREF</td><td>VREF</td><td>1.418</td></td<>	HSTL135II	1.283	1.35	1.418	-0.3	VREF	VREF	1.418
HSTL12I 1.14 1.2 1.26 -0.3 VREF - 1.0 VREF + 0.1 VREF + 0.1 1.26 HSTL12II 1.14 1.2 1.26 -0.3 VREF - 1.10 VREF + 0.1 1.26 HSUL18I 1.71 1.8 1.89 -0.3 0.3 0.7 1.89 HSUL18I 1.71 1.8 1.89 -0.3 0.3 0.7 1.89 HSUL18II 1.71 1.8 1.89 -0.3 0.3 0.7 1.89 HSUL18II 1.71 1.8 1.89 -0.3 0.3 0.7 1.89 HSUL12I 1.14 1.2 1.26 -0.3 VREF VREF 1.26 POD12I 1.14 1.2 1.26 -0.3 VREF VREF 1.26 - - - - - + 0.08 0.08 POD12I 1.14 1.2 1.26 -0.3 VREF VREF 1.26 - -						-	+	
HSTL12I 1.14 1.2 1.26 -0.3 VREF VREF 1.26 - HSTL12I 1.14 1.2 1.26 -0.3 VREF VREF 1.26 HSTL12II 1.14 1.2 1.26 -0.3 VREF VREF 1.26 HSUL18I 1.71 1.8 1.89 -0.3 0.3 0.7 1.89 HSUL18I 1.71 1.8 1.89 -0.3 0.3 0.7 1.89 HSUL18II 1.71 1.8 1.89 -0.3 0.3 0.7 1.89 HSUL18II 1.71 1.8 1.89 -0.3 0.3 0.7 1.89 HSUL12I 1.14 1.2 1.26 -0.3 VREF VREF 1.26 POD12I 1.14 1.2 1.26 -0.3 VREF VREF 1.26 - - - - - + 0.10 - POD12I 1.14 1.2						0.09	0.09	
- + NSUL12II 1.14 1.2 1.26 -0.3 VREF VREF 1.26 HSTL12II 1.14 1.2 1.26 -0.3 VREF 1.26 HSUL18I 1.71 1.8 1.89 -0.3 0.3 0.7 1.89 HSUL18I 1.71 1.8 1.89 -0.3 0.3 0.7 1.89 HSUL18II 1.71 1.8 1.89 -0.3 0.3 0.7 1.89 HSUL12I 1.71 1.8 1.89 -0.3 0.3 0.7 1.89 HSUL12I 1.14 1.2 1.26 -0.3 VREF VREF 1.26 -	HSTL12I	1.14	1.2	1.26	-0.3	VREF	VREF	1.26
HSTL12II 1.14 1.2 1.26 -0.3 VREF VREF 1.26 HSUL18I 1.71 1.8 1.89 -0.3 0.3 0.7 1.89 HSUL18I 1.71 1.8 1.89 -0.3 0.3 0.7 1.89 HSUL18I 1.71 1.8 1.89 -0.3 0.3 0.7 1.89 HSUL18II 1.71 1.8 1.89 -0.3 0.3 0.7 1.89 HSUL12I 1.71 1.8 1.89 -0.3 0.3 0.7 1.89 HSUL12I 1.14 1.2 1.26 -0.3 VREF VREF 1.26 POD12I 1.14 1.2 1.26 -0.3 VREF VREF 1.26 - + 0.08 0.08 - - + 0.08 0.08 POD12II 1.14 1.2 1.26 -0.3 VREF VREF 1.26 - - + 0.08 0.08 - - + 0.09 - - - <t< td=""><td></td><td></td><td></td><td></td><td></td><td>-</td><td>+</td><td></td></t<>						-	+	
HSTL12II 1.14 1.2 1.26 -0.3 VREF VREF VREF 1.26 HSUL18I 1.71 1.8 1.89 -0.3 0.3 0.7 1.89 HSUL18I 1.71 1.8 1.89 -0.3 0.3 0.7 1.89 HSUL18II 1.71 1.8 1.89 -0.3 0.3 0.7 1.89 HSUL18II 1.71 1.8 1.89 -0.3 0.3 0.7 1.89 HSUL12I 1.71 1.8 1.89 -0.3 0.3 0.7 1.89 HSUL12I 1.71 1.8 1.89 -0.3 0.3 0.7 1.89 HSUL12I 1.14 1.2 1.26 -0.3 VREF VREF 1.26 POD12I 1.14 1.2 1.26 -0.3 VREF VREF 1.26 POD12II 1.14 1.2 1.26 -0.3 VREF VREF 1.26 - - - - + 0.08 0.08 0.08						0.1	0.1	
HSUL18I 1.71 1.8 1.89 -0.3 0.3 0.7 1.89 HSUL18I 1.71 1.8 1.89 -0.3 0.3 0.7 1.89 HSUL18II 1.71 1.8 1.89 -0.3 0.3 0.7 1.89 HSUL18II 1.71 1.8 1.89 -0.3 0.3 0.7 1.89 HSUL18II 1.71 1.8 1.89 -0.3 0.3 0.7 1.89 HSUL12I 1.14 1.2 1.26 -0.3 VREF VREF 1.26 POD12I 1.14 1.2 1.26 -0.3 VREF VREF 1.26 POD12II 1.14 1.2 1.26 -0.3 VREF VREF 1.26 POD12II 1.14 1.2 1.26 -0.3 VREF VREF 1.26 POD12II 1.14 1.2 1.26 -0.3 VREF VREF 1.26 - + 0.08 0.09 - + 0.09 - + POD12II 1.14	HSTL12II	1.14	1.2	1.26	-0.3	VREF	VREF	1.26
HSUL18I 1.71 1.8 1.89 -0.3 0.3 0.7 1.89 HSUL18I 1.71 1.8 1.89 -0.3 0.3 0.7 1.89 HSUL18II 1.71 1.8 1.89 -0.3 0.3 0.7 1.89 HSUL12I 1.71 1.8 1.89 -0.3 0.3 0.7 1.89 HSUL12I 1.14 1.2 1.26 -0.3 VREF VREF 1.26 POD12I 1.14 1.2 1.26 -0.3 VREF VREF 1.26 POD12II 1.14 1.2 1.26 -0.3 VREF VREF 1.26 POD12II 1.14 1.2 1.26 -0.3 VREF VREF 1.26 - + 0.08 0.08 - - + - POD12II 1.14 1.2 1.26 -0.3 VREF VREF 1.26 - - - - - - + - 0.08 0.08 - - - - - -						-	+	
HSUL18I 1.71 1.8 1.89 -0.3 0.3 0.7 1.89 HSUL18II 1.14 1.2 1.26 -0.3 VREF VREF 1.26 -						0.1	0.1	
x x x x x x x x x y	HSUL18I	1.71	1.8	1.89	-0.3	0.3	0.7	1.89
HSUL18II 1.71 1.8 1.89 -0.3 0.3 0.7 1.89 × × VDDI VDDI HSUL12I 1.14 1.2 1.26 -0.3 VREF VREF 1.26 - + 0.1 0.1 POD12I 1.14 1.2 1.26 -0.3 VREF VREF 1.26 - + 0.08 0.08 POD12II 1.14 1.2 1.26 -0.3 VREF VREF 1.26 - + 0.08 0.08						×	×	
HSUL18II 1.71 1.8 1.89 -0.3 0.3 0.7 1.89 × × × VDDI VDDI VDDI HSUL12I 1.14 1.2 1.26 -0.3 VREF VREF 1.26 - + 0.1 0.1 POD12I 1.14 1.2 1.26 -0.3 VREF VREF 1.26 - + 0.08 0.08 POD12II 1.14 1.2 1.26 -0.3 VREF VREF 1.26 - + 0.08 0.08						VDDI	VDDI	
x x x VDDI VDDI HSUL12I 1.14 1.2 1.26 -0.3 VREF VREF 1.26 POD12I 1.14 1.2 1.26 -0.3 VREF VREF 1.26 POD12I 1.14 1.2 1.26 -0.3 VREF VREF 1.26 POD12II 1.14 1.2 1.26 -0.3 VREF VREF 1.26 POD12II 1.14 1.2 1.26 -0.3 VREF VREF 1.26 POD12II 0.08 0.08 - - + -	HSUL18II	1.71	1.8	1.89	-0.3	0.3	0.7	1.89
HSUL12I 1.14 1.2 1.26 -0.3 VREF VREF 1.26 POD12I 1.14 1.2 1.26 -0.3 VREF VREF 1.26 POD12I 1.14 1.2 1.26 -0.3 VREF VREF 1.26 POD12II 1.14 1.2 1.26 -0.3 VREF VREF 1.26 POD12II 1.14 1.2 1.26 -0.3 VREF VREF 1.26 POD12II 0.08 0.08 - - + 0.08 -						×	×	
HSUL12I 1.14 1.2 1.26 -0.3 VREF VREF 1.26 - + 0.1 0.1 POD12I 1.14 1.2 1.26 -0.3 VREF VREF 1.26 - + 0.08 0.08 POD12II 1.14 1.2 1.26 -0.3 VREF VREF 1.26 - + 0.08 0.08						VDDI	VDDI	
POD12I 1.14 1.2 1.26 -0.3 VREF VREF 1.26 - + 0.08 0.08 POD12II 1.14 1.2 1.26 -0.3 VREF VREF 1.26 - + 0.08 0.08	HSUL12I	1.14	1.2	1.26	-0.3	VREF	VREF	1.26
POD12I 1.14 1.2 1.26 -0.3 VREF VREF 1.26 - + 0.08 0.08 POD12II 1.14 1.2 1.26 -0.3 VREF VREF 1.26 - + 0.08 0.08						-	+	
POD12I 1.14 1.2 1.26 -0.3 VREF VREF 1.26 - + 0.08 0.08 POD12II 1.14 1.2 1.26 -0.3 VREF VREF 1.26 - + 0.08 0.08						0.1	0.1	
POD12II 1.14 1.2 1.26 -0.3 VREF VREF 1.26 - + 0.08 0.08	POD12I	1.14	1.2	1.26	-0.3	VREF	VREF	1.26
POD12II 1.14 1.2 1.26 -0.3 VREF VREF 1.26 - +						- 0.08	+ 0.08	
POD12II 1.14 1.2 1.26 -0.3 VREF VREF 1.26 - +						0.00	0.00	
	POD12II	1.14	1.2	1.26	-0.3	VREF	VREF	1.26
						- 0.08	+ 0.08	

1. GPIO V^{IH} max is 3.45 V with PCI clamp diode turned off regardless of mode, that is, over-voltage tolerant.

2. For external stub-series resistance. This resistance is on-die for GPIO.

Note: 3.3 V and 2.5 V are only supported in GPIO banks.

I/O Standard	Bank Type	Vосм ¹ Min (V)	Vосм Тур (V)	V _{осм} Max (V)	Voo² Min (V)	Vo⊳² Typ (V)	Vod² Max (V)
MLVDSE25 ³	GPIO		1.25		0.396	0.442	0.453
LVPECLE33 ³	GPIO		1.65		0.664	0.722	0.755
MIPIE25 ³	GPIO		0.25		0.1	0.22	0.3

1. VOCM is the output common mode voltage.

2. Vod is the output differential voltage.

3. Emulated output only.

6.3.3 Complementary Differential DC Input and Output Levels

The following tables list the complementary differential DC I/O levels.

Table 16 • Complementary Differential DC Input Levels

I/O Standard	Vooi Min (V)	V _{DDI} Typ (V)	Vodi Max (V)	V _{ісм^{1,3} Min (V)}	V _{ICM^{1,3} Тур (V)}	V _{ICM^{1,3} Max (V)}	Vı⊳² Min (V)	Vı⊳ Max (V)
SSTL25I	2.375	2.5	2.625	1.164	1.250	1.339	0.1	
SSTL25II	2.375	2.5	2.625	1.164	1.250	1.339	0.1	
SSTL18I	1.71	1.8	1.89	0.838	0.900	0.964	0.1	
SSTL18II	1.71	1.8	1.89	0.838	0.900	0.964	0.1	
SSTL15I	1.425	1.5	1.575	0.698	0.750	0.803	0.1	
SSTL15II	1.425	1.5	1.575	0.698	0.750	0.803	0.1	
SSTL135I	1.283	1.35	1.418	0.629	0.675	0.723	0.1	
SSTL135II	1.283	1.35	1.418	0.629	0.675	0.723	0.1	
HSTL15I	1.425	1.5	1.575	0.698	0.750	0.803	0.1	
HSTL15II	1.425	1.5	1.575	0.698	0.750	0.803	0.1	
HSTL135I	1.283	1.35	1.418	0.629	0.675	0.723	0.1	
HSTL135II	1.283	1.35	1.418	0.629	0.675	0.723	0.1	
HSTL12I	1.14	1.2	1.26	0.559	0.600	0.643	0.1	
HSUL18I	1.71	1.8	1.89	0.838	0.900	0.964	0.1	
HSUL18II	1.71	1.8	1.89	0.838	0.900	0.964	0.1	
HSUL12I	1.14	1.2	1.26	0.559	0.600	0.643	0.1	
POD12I	1.14	1.2	1.26	0.787	0.840	0.895	0.1	
POD12II	1.14	1.2	1.26	0.787	0.840	0.895	0.1	

1. $V_{\mbox{\scriptsize ICM}}$ is the input common mode voltage.

2. V_{ID} is the input differential voltage.

3. VICM rules are as follows:

- a. VICM must be less than VDDI -0.4V;
- b. $V_{ICM} + V_{ID}/2$ must be $\langle V_{DDI} + 0.4 V$;
- c. $V_{ICM} V_{ID}/2$ must be >VSS 0.3 V.

Standard	Description	VL1	VH1	VID ²	VICM ²	Vmeas ^{3, 4}	Vref ^{1, 5}	Unit
HSTL135II	Differential	VICM -	VICM +	0.250	0.675	0		V
	HSTL 1.35 V	.125	.125					
	Class II							
HSTL12	Differential	VICM -	VICM +	0.250	0.600	0		V
	HSTL 1.2 V	.125	.125					
HSUL18I	Differential	VICM -	VICM +	0.250	0.900	0		V
	HSUL 1.8 V	.125	.125					
	Class I							
HSUL18II	Differential	VICM -	VICM +	0.250	0.900	0		V
	HSUL 1.8 V	.125	.125					
	Class II							
HSUL12	Differential	VICM -	VICM +	0.250	0.600	0		V
	HSUL 1.2 V	.125	.125					
POD12I	Differential	VICM -	VICM +	0.250	0.600	0		V
	POD 1.2 V	.125	.125					
	Class I							
POD12II	Differential	VICM -	VICM +	0.250	0.600	0		V
	POD 1.2 V	.125	.125					
	Class II							
MIPI25	Mobile	VICM -	VICM +	0.250	0.200	0		V
	Industry	.125	.125					
	Processor							
	Interface							

- 1. Measurements are made at typical, minimum, and maximum V_{REF} values. Reported delays reflect worst-case of these measurements. V_{REF} values listed are typical. Input waveform switches between V_L and V_H . All rise and fall times must be 1 V/ns.
- 2. Differential receiver standards all use 250 mV V_{ID} for timing. V_{CM} is different between different standards.
- 3. Input voltage level from which measurement starts.
- 4. The value given is the differential input voltage.
- 5. This is an input voltage reference that bears no relation to the V_{REF}/V_{MEAS} parameters found in IBIS models or shown in Output Delay Measurement—Single-Ended Test Setup (see page 27).
- 6. Emulated bi-directional interface.

7.1.2 Output Delay Measurement Methodology

The following section provides information about the methodology for output delay measurement.

Table 23 • Output Delay Measurement Methodology

Standard	Description	Rref (Ω)	Cref (pF)	Vmeas (V)	Vref (V)
PCI	PCIE 3.3 V	25	10	1.65	
LVTTL33	LVTTL 3.3 V	1M	0	1.65	
LVCMOS33	LVCMOS 3.3 V	1M	0	1.65	
LVCMOS25	LVCMOS 2.5 V	1M	0	1.25	
LVCMOS18	LVCMOS 1.8 V	1M	0	0.90	
LVCMOS15	LVCMOS 1.5 V	1M	0	0.75	
LVCMOS12	LVCMOS 1.2 V	1M	0	0.60	
SSTL25I	Stub-series terminated logic 2.5 V Class I	50	0	Vref	1.25
SSTL25II	SSTL 2.5 V Class II	50	0	Vref	1.25

PolarFire

Standard	STD	-1	Unit
HSTL15I	900	1100	Mbps
HSTL15II	900	1100	Mbps
HSTL135I	1066	1066	Mbps
HSTL135II	1066	1066	Mbps
HSUL18I	400	400	Mbps
HSUL18II	400	400	Mbps
HSUL12	1066	1333	Mbps
HSTL12	1066	1266	Mbps
POD12I	1333	1600	Mbps
POD12II	1333	1600	Mbps
LVCMOS18 (12 mA)	500	500	Mbps
LVCMOS15 (10 mA)	500	500	Mbps
LVCMOS12 (8 mA)	300	300	Mbps

1. Performance is achieved with $V_{\text{ID}} \ge 200 \text{ mV}$.

Table 25 • GPIO Maximum Input Buffer Speed

Standard	STD	-1	Unit
LVDS25/LVDS33/LCMDS25/LCMDS33	1250	1600	Mbps
RSDS25/RSDS33	800	800	Mbps
MINILVDS25/MINILVDS33	800	800	Mbps
SUBLVDS25/SUBLVDS33	800	800	Mbps
PPDS25/PPDS33	800	800	Mbps
SLVS25/SLVS33	800	800	Mbps
SLVSE15	800	800	Mbps
HCSL25/HCSL33	800	800	Mbps
BUSLVDSE25	800	800	Mbps
MLVDSE25	800	800	Mbps
LVPECL33	800	800	Mbps
SSTL25I	800	800	Mbps
SSTL25II	800	800	Mbps
SSTL18I	800	800	Mbps
SSTL18II	800	800	Mbps
SSTL15I	800	1066	Mbps
SSTL15II	800	1066	Mbps
HSTL15I	800	900	Mbps
HSTL15II	800	900	Mbps
HSUL18I	400	400	Mbps
HSUL18II	400	400	Mbps
PCI	500	500	Mbps
LVTTL33 (20 mA)	500	500	Mbps
LVCMOS33 (20 mA)	500	500	Mbps
LVCMOS25 (16 mA)	500	500	Mbps

7.1.6 User I/O Switching Characteristics

The following section describes characteristics for user I/O switching.

For more information about user I/O timing, see the *PolarFire I/O Timing Spreadsheet* (to be released).

7.1.6.1 I/O Digital

The following tables provide information about I/O digital.

Table 30 • I/O Digital Receive Single-Data Rate Switching Characteristics

Parameter	Interface Name	Topology	STD Min	STD Typ	STD Max	-1 Min	—1 Тур	-1 Max	Unit	Clock-to-Data Condition
Fмах	RX_SDR_G_A	Rx SDR							MHz	From a global clock source, aligned
Fмах	RX_SDR_L_A	Rx SDR							MHz	From a lane clock source, aligned
Fмах	RX_SDR_G_C	Rx SDR							MHz	From a global clock source, centered
Fмах	RX_SDR_L_C	Rx SDR							MHz	From a lane clock source, centered

Table 31 • I/O Digital Receive Double-Data Rate Switching Characteristics

Parameter	Interface Name	Topology	STD Min	STD Typ	STD Max	–1 Min	—1 Тур	-1 Max	Unit	Clock-to- Data Condition
Fмах	RX_DDR_G_A	Rx DDR		335			335	MHz	MHz	From a global clock source, aligned
Fмах	RX_DDR_L_A	Rx DDR		250			250		MHz	From a lane clock source, aligned
Fмах	RX_DDR_G_C	Rx DDR		335			335		MHz	From a global clock source, centered
Fмах	RX_DDR_L_C	Rx DDR		250			250		MHz	From a lane clock source, centered
Fmax 2:1	RX_DDRX_B_A	Rx DDR digital mode							MHz	From a HS_IO_CLK clock source, aligned

7.3 Fabric Specifications

The following section describes specifications for the fabric.

7.3.1 Math Blocks

The following tables describe math block performance.

Table 41 • Math Block Performance Extended Commercial Range (0 °C to 100 °C)

Parameter	Symbol	Modes	V _{DD} = 1.0 V – STD	V _{DD} = 1.0 V - 1	V _{DD} = 1.05 V – STD	V _{DD} = 1.05 V - 1	Unit
Maximum operating frequency	Fмах	18 × 18 multiplication	370	470	440	500	MHz
		18 × 18 multiplication summed with 48-bit input	370	470	440	500	MHz
		18 × 19 multiplier pre-adder ROM mode	365	465	435	500	MHz
		Two 9 × 9 multiplication	370	470	440	500	MHz
		9 × 9 dot product (DOTP)	370	470	440	500	MHz
		Complex 18 × 19 multiplication	360	455	430	500	MHz

Table 42 • Math Block Performance Industrial Range (-40 °C to 100 °C)

Parameter	Symbol	Modes	VDD = 1.0 V - STD	V _{DD} = 1.0 V – 1	V _{DD} = 1.05 V – STD	V _{DD} = 1.05 V – 1	Unit
Maximum operating	Fmax	18 × 18 multiplication	365	465	435	500	MHz
frequency		18 × 18 multiplication summed with 48-bit input	365	465	435	500	MHz
		18 × 19 multiplier pre-adder ROM mode	355	460	430	500	MHz
		Two 9 × 9 multiplication	365	465	435	500	MHz
		9 × 9 DOTP	365	465	435	500	MHz
		Complex 18 × 19 multiplication	350	450	425	500	MHz

а 🕵 Міскоснір company

Parameter	Symbol	STD	STD	STD	-1	-1	-1	Unit
		Min	Тур	Max	Min	Тур	Max	
Reference clock input	FXCVRREFCLKMAX	20		156	20		156	MHz
rate ^{1, 2, 3}	CASCADE							
Reference clock rate at	FTXREFCLKPFD	20		156	20		156	MHz
the PFD⁴								
Reference clock rate	FTXREFCLKPFD10G	75		156	75		156	MHz
recommended at the								
PFD for Tx rates 10 Gbps								
and above ^₄								
Tx reference clock	FTXREFPN			-110			-110	dBc
phase noise								/Hz
requirements to meet								
jitter specifications (156								
MHz clock at reference								
clock input) ⁵								
Phase noise at 10 KHz	FTXREFPN			-110			-110	dBc
								/Hz
Phase noise at 100 KHz	FTXREFPN			-115			-115	dBc
								/Hz
Phase noise at 1 MHz	FTXREFPN			-135			-135	dBc
								/Hz
Reference clock input	Trefrise		200	500		200	500	ps
rise time (10%–90%)								
Reference clock input	TREFFALL		200	500		200	500	ps
fall time (90%–10%)								
Reference clock duty	TREFDUTY	40		60	40		60	%
cycle								
Spread spectrum	Mod_Spread	0.1		3.1	0.1		3.1	%
modulation spread ⁶								
Spread spectrum	Mod_Freq	TxREF	32	TxREF	TxREF	32	TxREF	KHz
modulation frequency ⁷		CLKPFD/		CLKPFD/	CLKPFD/		CLKPFD/	
		(128)		(128*63)	(128)		(128*63)	

1. See the maximum reference clock rate allowed per input buffer standard.

2. The minimum value applies to this clock when used as an XCVR reference clock. It does not apply when used as a non-XCVR input buffer (DC input allowed).

- 3. Cascaded reference clock.
- 4. After reference clock input divider.
- 5. Required maximum phase noise is scaled based on actual $F_{TxRefClkPFD}$ value by 20 × log10 (TxRefClkPFD /156 MHz). It is assumed that the reference clock divider of 4 is used for these calculations to always meet the maximum PFD frequency specification.
- 6. Programmable capability for depth of down-spread or center-spread modulation.
- 7. Programmable modulation rate based on the modulation divider setting (1 to 63).

7.4.3 Transceiver Reference Clock I/O Standards

The following table describes the differential I/O standards supported as transceiver reference clocks.

Table 48 • Transceiver Differential Reference Clock I/O Standards

I/O Standard	Comment
LVDS25	For DC input levels, se e table Differential DC Input and Output Levels.
HCSL25 (for PCIe)	

Note: The transceiver reference clock differential receiver supports V_{CM} common mode.

7.4.4 Transceiver Interface Performance

The following table describes the single-ended I/O standards supported as transceiver reference clocks.

Table 49 • Transceiver Single-Ended Reference Clock I/O Standards

I/O Standard	Comment
LVCMOS25	For DC input levels, see table DC Input and Output Levels.

7.4.5 Transmitter Performance

The following tables describe performance of the transmitter.

Table 50 • Transceiver Reference Clock Input Termination

Parameter	Symbol	Min	Тур	Max	Unit
Single-ended termination	RefTerm		50		Ω
Single-ended termination	RefTerm		75		Ω
Single-ended termination	RefTerm		150		Ω
Differential termination	RefDiffTerm		115 ¹		Ω
Power-up termination			>50K		Ω

1. Measured at VCM= 1.2 V and VID= 350 mV.

Note: All pull-ups are disabled at power-up to allow hot plug capability.

Table 51 • PolarFire Transceiver User Interface Clocks

Parameter	Modes ¹	STD Min	STD Max	–1 Min	-1 Max	Unit
Transceiver TX_CLK	8-bit, max data rate = 1.6 Gbps		200		200	MHz
range (non-	10-bit, max data rate = 1.6 Gbps		160		160	MHz
with global or regional	16-bit, max data rate = 4.8 Gbps		300		300	MHz
fabric clocks)	20-bit, max data rate = 6.0 Gbps		300		300	MHz
	32-bit, max data rate =		325		325	MHz
	10.3125 Gbps (–STD) / 12.7 Gbps (–1)1					
	40-bit, max data rate =		260		320	MHz
	10.3125 Gbps (–STD) / 12.7 Gbps (–1)1					
	64-bit, max data rate =		165		160	MHz
	10.3125 Gbps (–STD) / 12.7 Gbps (–1)1					
	80-bit, max data rate =		130		130	MHz
	10.3125 Gbps(–STD) / 12.7 Gbps (–1)1					
	Fabric pipe mode 32-bit, max data rate = 6.0 Gbps		150		150	MHz
	8-bit, max data rate = 1.6 Gbps		200		200	MHz

Table 55 • PCI Express Gen2

Parameter	Data Rate	Min	Max	Unit
Total transmit jitter	5.0 Gbps		0.35	UI
Receiver jitter tolerance	5.0 Gbps	0.4		UI

Note: With add-in card as specified in PCI Express CEM Rev 2.0.

7.5.2 Interlaken

The following table describes Interlaken.

Table 56 • Interlaken

Parameter	Data Rate	Min	Max	Unit
Total transmit jitter	6.375 Gbps		0.3	UI
	10.3125 Gbps		0.3	UI
	12.7 Gbps ¹			UI
Receiver jitter tolerance	6.375 Gbps	0.6		UI
	10.3125 Gbps	0.65		UI
	12.7 Gbps ¹			UI

1. For data rates greater than 10.3125 Gbps, VDDA must be set to 1.05 V mode. See supply tolerance in the section Recommended Operating Conditions (see page 6).

7.5.3 10GbE (10GBASE-R, and 10GBASE-KR)

The following table describes 10GbE (10GBASE-R).

Table 57 • 10GbE (10GBASE-R)

Parameter	Data Rate	Min	Max	Unit
Total transmit jitter	10.3125 Gbps		0.28	UI
Receiver jitter tolerance	10.3125 Gbps	0.7		UI

The following table describes 10GbE (10GBASE-KR).

Table 58 • 10GbE (10GBASE-KR)

Parameter	Data Rate	Min	Max	Unit
Total transmit jitter	10.3125 Gbps			UI
Receiver jitter tolerance	10.3125 Gbps			UI

The following table describes 10GbE (XAUI).

Table 59 • 10GbE (XAUI)

Parameter	Data Rate	Min	Max	Unit
Total transmit jitter (near end)	3.125 Gbps		0.35	UI
Total transmit jitter (far end)			0.55	UI
Receiver jitter tolerance	3.125 Gbps	0.65		UI

The following table describes 10GbE (RXAUI).

Table 75 • FPGA Programming Cycles Lifetime Factor

Programming T	Programming Cycles	LF
–40 °C to 100 °C	500	1
–40 °C to 85 °C	1000	0.8
–40 °C to 55 °C	2000	0.6

Notes:

- The maximum number of device digest cycles is 100K.
- Digests are operational only over the -40 °C to 100 °C temperature range.
- After a program cycle, an additional N digests cycles are allowed with the resultant retention characteristics for the total operating and storage temperature shown.
- Retention is specified for total device storage and operating temperature.
- All temperatures are junction temperatures (T_J).
- Example 1—500 digests cycles are performed between programming cycles. N = 500. The operating conditions are -40 °C to 85 °C TJ. 501 programming cycles have occurred. The retention under these operating conditions is 20 × LF = 20 × .8 = 16 years.
- Example 2—one programming cycle has occurred, N = 1500 digest cycles have occurred. Temperature range is -40 °C to 100 °C. The resultant retention is 10 × LF or 10 years over the industrial temperature range.

7.6.5 Digest Time

The following table describes digest time.

Table 76 • Digest Times

Parameter	Devices	Тур	Max	Unit
Setup time	All	2		μs
Fabric digest run time	MPF100T, TL, TS, TLS			ms
	MPF200T, TL, TS, TLS	1005	1072	ms
	MPF300T, TL, TS, TLS	1503.9	1582	ms
	MPF500T, TL, TS, TLS			ms
UFS CC digest run time	MPF100T, TL, TS, TLS			μs
	MPF200T, TL, TS, TLS	33.2	35	μs
	MPF300T, TL, TS, TLS	33.2	35	μs
	MPF500T, TL, TS, TLS			μs
sNVM digest run time ¹	MPF100T, TL, TS, TLS			ms
	MPF200T, TL, TS, TLS	4.4	4.8	ms
	MPF300T, TL, TS, TLS	4.4	4.8	ms
	MPF500T, TL, TS, TLS			ms
UFS UL digest run time	MPF100T, TL, TS, TLS			μs
	MPF200T, TL, TS, TLS	46.6	48.8	μs
	MPF300T, TL, TS, TLS	46.6	48.8	μs
	MPF500T, TL, TS, TLS			μs
User key digest run time ²	MPF100T, TL, TS, TLS			μs
	MPF200T, TL, TS, TLS	525.4	543.3	μs
	MPF300T, TL, TS, TLS	525.4	543.3	μs
	MPF500T, TL, TS, TLS			μs

Parameter	Тур	Max	Unit	Conditions
Time to destroy data in non-volatile memory (non-recoverable) ^{1, 4}			ms	One iteration of scrubbing
Time to scrub the fabric data ¹			S	Full scrubbing
Time to scrub the pNVM data (like new) ^{1, 2}			S	Full scrubbing
Time to scrub the pNVM data (recoverable) ^{1,3}			S	Full scrubbing
Time to scrub the fabric data pNVM data (non-recoverable) $^{\scriptscriptstyle 1}$			S	Full scrubbing
Time to verify ⁵			S	

1. Total completion time after entering zeroization.

- 2. Like new mode—zeroizes user design security setting and sNVM content.
- 3. Recoverable mode—zeroizes user design security setting, sNVM and factory keys.
- 4. Non-recoverable mode—zeroizes user design security setting, sNVM and factory keys, and factory data required for programming.
- 5. Time to verify after scrubbing completes.

7.6.7 Verify Time

The following tables describe verify time.

Table 81 • Standalone Fabric Verify Times

Parameter	Devices	Max	Unit
Standalone verification over JTAG	MPF100T, TL, TS, TLS		S
	MPF200T, TL, TS, TLS	53 ¹	S
	MPF300T, TL, TS, TLS	90 ¹	S
	MPF500T, TL, TS, TLS		S
Standalone verification over SPI	MPF100T, TL, TS, TLS		S
	MPF200T, TL, TS, TLS	37 ²	S
	MPF300T, TL, TS, TLS	55²	S
	MPF500T, TL, TS, TLS		S

- 1. Programmer: FlashPro5, TCK 10 MHz; PC configuration: Intel i7 at 3.6 GHz, 32 GB RAM, Windows 10.
- 2. SmartFusion2 with MSS running at 100 MHz, MSS SPI 0 port running at 6.67 MHz. DirectC version
 - 4.1.

Notes:

- Standalone verify is limited to 2,000 total device hours ove r the industrial –40 °C to 100 °C temperature.
- Use the digest system service, for verify device time more than 2,000 hours.
- Standalone verify checks the programming margin on both the P and N gates of the push-pull cell.
 Digest checks only the P side of the push-pull gate. However, the push-pull gates work in tandem. Digest check is recommended if users believe they will exceed the 2,000-hour verify time specification.

Table 82 • Verify Time by Programming Hardware

Devices	IAP	FlashPro4	FlashPro5	BP	Silicon Sculptor	Units
MPF100T, TL, TS, TLS						
MPF200T, TL, TS, TLS	9	67	53			S
MPF300T, TL, TS, TLS	14	95	90			S

Parameter	Symbol	Min	Тур	Max	Unit	Conditions
Authenticated text read		113.25	114.02	118.5	μs	
Authenticated and decrypted text read		159.59	160.53	166.5	μs	

Notes:

- Page size= 252 bytes (non-authenticated), 236 bytes (authenticated).
- Only page reads and writes allowed.
- TPUF_OVHD is an additional time that occurs on the first R/W, after cold or warm boot, to sNVM using authenticated or authenticated and encrypted text.

7.6.10 Secure NVM Programming Cycles

The following table describes secure NVM programming cycles.

Table 86 • sNVM Programming Cycles vs. Retention Characteristics

Programming Temperature	Programming Cycles per Page, Max	Programming Cycles per Block, Max	Retention Years
–40 °C to 100 °C	10,000	100,000	20
–40 °C to 85 °C	10,000	100,000	20
–40 °C to 55 °C	10,000	100,000	20

Note: Page size = 128 bytes. Block size = 56 KBytes.

7.7 System Services

This section describes system switching and throughput characteristics.

7.7.1 System Services Throughput Characteristics

The following table describes system services throughput characteristics.

Table 87 • System Services Throughput Characteristics

Parameter	Symbol	Service ID	Тур	Max	Unit	Conditions
Serial number	Tserial	00H	65	67	μs	
User code	Tuser	01H	0.8	1.05	μs	
Design information	TDesign	02H	2.4	2.7	μs	
Device certificate	TCert	03H	255	271	ms	
Read digests	T_{digest_read}	04H	201	215	μs	
Query security locks	Tsec_Query	05H	15	17	μs	
Read debug information	T_{Rd_debug}	06H	34	38	μs	
Reserved		07H-0FH				
Secure NVM write plain text	TSNVM_Wr_Plain	10H				Note 1
Secure NVM write authenticated plain text	$T_{SNVM_wr_Auth}$	11H				Note 1
Secure NVM write authenticated cipher text	TSNVM_Wr_Cipher	12H				Note 1
Reserved		13H-				
		17H				

Parameter	Symbol	Service ID	Тур	Max	Unit	Conditions
Secure NVM read	Tsnvm_rd	18H				Note 1
Digital signature service raw	Tsig_raw	19H	174	187	ms	
Digital signature service DER	Tsig_der	1AH	174	187	ms	
Reserved		1BH-				
		1FH				
PUF emulation	TChallenge	20H	1.8	2.0	ms	
Nonce service	TNonce	21H	1.2	1.4	ms	
Bitstream authentication	TBIT_AUTH	22H				Note 4
IAP Image authentication	TIAP_AUTH	23H				Note 4
Reserved		26H–3FH				
In application programming by index	TIAP_Prg_Index	42H				Note 2
In application programming by SPI address	TIAP_Prg_Addr	43H				Note 2
In application verify by index	TIAP_Ver_Index	44H				Note 5
In application verify by SPI address	TIAP_Ver_Addr	45H				Note 5
Auto update	TAutoUpdate	46H				Note 2
Digest check	Tdigest_chk	47H				Note 3

1. See sNVM Read/Write Characteristics (see page 58).

2. See SPI Master Programming Time (see page 52).

3. See Digest Times (see page 54).

4. See Authentication Services Time (see page 58).

5. See Verify Services Time (see page 58).

6. Throughputs described are measured from SS_REQ assertion to BUSY de-assertion.

7.8 Fabric Macros

This section describes switching characteristics of UJTAG, UJTAG_SEC, USPI, system controller, and temper detectors and dynamic reconfiguration details.

7.8.1 UJTAG Switching Characteristics

The following section describes characteristics of UJTAG switching.

Table 88 • UJTAG Performance Characteristics

Parameter	Symbol	Min	Тур	Max	Unit	Condition
TCK frequency	Fтск			25	MHz	

Figure 4 • USPI Switching Characteristics

7.8.4 Tamper Detectors

The following section describes tamper detectors.

Table 91 • ADC Conversion Rate

Parameter	Description	Min	Тур¹	Max
Τςονν1	Time from enable changing from zero to non-zero value to first conversion completes. Minimum value applies when POWEROFF = 0.	420 µs		470 μs
Τςοννν	Time between subsequent channel conversions.		480 µs	
TSETUP	Data channel and output to valid asserted. Data is held until next conversion completes, that is >480 μ s.	0 ns		
Tvalid ²	Width of the valid pulse.	1.625 µs		2 µs
Trate	Time from start of first set of conversions to the start of the next set. Can be considered as the conversion rate. Is set by the conversion rate parameter.	480 µs	Rate × 32 μs	8128 µs

1. Min, typ, and max refer to variation due to functional configuration and the raw TVS value. The actual internal correction time will vary based on the raw TVS value.

2. The pulse width varies depending on the time taken to complete the internal calibration multiplication, this can be up to 375 ns.

Note: Once the TVS block is active, the enable signal is sampled 25 ns before the falling edge of valid. The next enabled channel in the sequence 0-1-2-3 is started; that is, if channel 0 has just completed and only channels 0 and 3 are enabled, the next channel will be 3. When all the enabled channels in the sequence 0-1-2-3 are completed, the TVS waits for the conversion rate timer to expire. The enable signal may be changed at any time if it changes to 4'b0000 while valid is asserted (and 25 ns before valid is deasserted), then no further conversions will be started.

Table 92 • Temperature and Voltage Sensor Electrical Characteristics

Parameter	Min	Тур	Max	Unit	Condition
Temperature sensing range	-40		125	°C	
Temperature sensing accuracy	-10		10	°C	

Parameter	Min	Тур	Max	Unit	Condition
Voltage sensing range	0.9		2.8	V	
Voltage sensing accuracy	-1.5		1.5	%	

Table 93 • Tamper Macro Timing Characteristics—Flags and Clearing

Parameter	Symbol	Тур	Max	Unit
From event detection to flag generation	TJTAG_ACTIVE ^{1, 2}	45	52	ns
	Tmesh_err ²	1.8	2.2	μs
	TCLK_GLITCH ^{1, 2}			ns
	TCLK_FREQ ^{1, 2}			μs
	TLOW_1P05 ²	70	108	μs
	Thigh_1P8 ²	85	120	μs
	Thigh_2p5 ²	130	520	μs
	TGLITCH_1P05 ²			μs
	Tsecdec ^{1, 2}			μs
	Tdri_err ²	14	18	μs
	Twdog ^{1, 2}			μs
	TLOCK_ERR ²			μs
Time from system controller instruction	TINST_BUF_ACCESS ^{2, 3}	4	5	μs
execution to flag generation	TINST_DEBUG ^{2, 3}	3.3	4	μs
	TINST_CHK_DIGEST ^{2, 3}	1.8	3	μs
	TINST_EC_SETUP ^{2, 3}	1.8	2	μs
	TINST_FACT_PRIV ^{2, 3}	3.8	5	μs
	TINST_KEY_VAL ^{2, 3}	2.5	3.1	μs
	TINST_MISC ^{2, 3}	1.5	2	μs
	TINST_PASSCODE_MATCH ^{2, 3}	2.5	3	μs
	TINST_PASSCODE_SETUP ^{2, 3}	4.2	5	μs
	TINST_PROG ^{2, 3}	3.8	4.1	μs
	TINST_PUB_INFO ^{2, 3}	4	4.5	μs
	TINST_ZERO_RECO ^{2, 3}	2.5	3	μs
	TINST_PASSCODE_FAIL ^{2, 3}	170	180	μs
	TINST_KEY_VAL_FAIL ^{2, 3}	92	110	μs
	TINST_UNUSED ^{2, 3}	4	5	μs
Time from sending the CLEAR to deassertion on FLAG	Tclear_flag	17	23	ns

1. Not available during Flash*Freeze.

- 2. The timing does not impact the user design, but it is useful for security analysis.
- 3. System service requests from the fabric will interrupt the system controller delaying the generation of the flag.

Table 94 • Tamper Macro Response Timing Characteristics

Parameter	Symbol	Тур	Max	Unit
Time from triggering the response to all I/Os disabled	TIO_DISABLE	40	50	ns

Figure 5 • Cold Reset Timing

Notes:

- The previous diagram showsthe case where VDDI/VDDAUX of I/O banks are powered either before
 or sufficiently soon after VDD/VDD18/VDD25 that the I/O bank enable time is measured from the
 assertion time of VDD/VDD18/VDD25 (that is, the PUFT specification). If VDDI/VDDAUX of I/O banks
 are powered sufficiently after VDD/VDD18/VDD25, then the I/O bank enable time is measured from
 the assertion of VDDI/VDDAUX and is not specified by the PUFT specification. In this case, I/O
 operation is indicated by the assertion of BANK_i_VDDI_STATUS, rather than being measured
 relative to FABRIC_POR_N negation.
- AUTOCALIB_DONE assertion indicates the completion of calibration for any I/O banks specified by the user for auto-calibration. AUTOCALIB_DONE asserts independently of DEVICE_INIT_DONE. It may assert before or after DEVICE_INIT_DONE and is determined by the following:
 - How long after VDD/VDD18/VDD25 that VDDI/VDDAUX are powered on. Note that if any of the user-specified I/O banks are not powered on within the auto-calibration timeout window, then AUTOCALIB DONE doesn't assert until after this timeout.
 - The specified ramp times of VDDI of each I/O bank designated for auto-calibration.
 - How much auto-initialization is to be performed for the PCIe, SERDES transceivers, and fabric LSRAMs.
- If any of the I/O banks specified for auto-calibration do not have their VDDI/VDDAUX powered on within the auto-calibration timeout window, then it will be approximately auto-calibrated whenever VDDI/VDDAUX is subsequently powered on. To obtain an accurate calibration however, on such IO banks, it is necessary to initiate a re-calibration (using CALIB_START from fabric).
- AVM_ACTIVE only asserts if avionics mode is being used. It is asserted when the later of DEVICE_INIT_DONE or AUTOCALIB_DONE assert.

7.9.2 Warm Reset Initialization Sequence

The following warm reset timing diagram shows the initialization sequencing of the device when either DEVRST_N or TAMPER_RESET_DEVICE signals are asserted.

ECDSA SigVer, P-384/SHA-384	1024	6421841	5759	
	8K	6273510	5759	
Key Agreement (KAS), P- 384		5039125	6514	
Point Multiply, P-256 ¹		5176923	4482	
Point Multiply, P-384 ¹		12043199	5319	
Point Multiply, P-521 ¹		26887187	6698	
Point Addition, P-384		3018067	5779	
KeyGen (PKG), P-384		12055368	6908	
Point Verification, P-384		5091	3049	

1. With DPA counter measures.

Table 120 • IFC (RSA)

Modes	Message Size (bits)	Athena TeraFire Crypto Core Clock-Cycles	CAL Delay In CPU Clock- Cycles
Encrypt, RSA-2048, e=65537	2048	436972	8,972
Encrypt, RSA-3072, e=65537	3072	962162	12,583
Decrypt, RSA-2048 ¹ , CRT	2048	26862392	15900
Decrypt, RSA-3072 ¹ , CRT	3072	75153782	22015
Decrypt, RSA-4096, CRT	4096	89235615	23710
Decrypt, RSA-3072, CRT	3072	37880180	18638
SigGen, RSA-3072/SHA-384 ¹ ,CRT, PKCS #1 V 1 1.5	1024	75197644	20032
	8K	75213653	19303
SigGen, RSA-3072/SHA-384, PKCS #1, V 1.5	1024	148090970	14642
	8K	148102576	13936
SigVer, RSA-3072/SHA-384, e = 65537, PKCS #1 V 1.5	1024	970991	12000
	8K	982011	11769
SigVer, RSA-2048/SHA-256, e = 65537,	1024	443493	8436
PKCS #1 V 1.5	8K	453007	8436
SigGen, RSA-3072/SHA-384, ANSI X9.31	1024	147138254	13945
	8K	147155896	13523
SigVer, RSA-3072/SHA-384, e = 65537,	1024	973269	11313
ANSI X9.31	8K	983255	11146

1. With DPA counter measures.

Table 121 • FFC (DH)

Modes	Message Size (bits)	Athena TeraFire Crypto Core Clock-Cycles	CAL Delay In CPU Clock- Cycles
SigGen, DSA-3072/SHA-3841	1024	27932907	13969
	8K	27942415	13501
SigGen, DSA-3072/SHA-384	1024	12086356	13602
SigVer, DSA-3072/SHA-384	1024	24597916	15662
	8K	24229420	15133