

Welcome to E-XFL.COM

#### Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

#### **Applications of Embedded - FPGAs**

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

#### Details

E·XFI

| Product Status                 | Active                                                                      |
|--------------------------------|-----------------------------------------------------------------------------|
| Number of LABs/CLBs            | -                                                                           |
| Number of Logic Elements/Cells | 109000                                                                      |
| Total RAM Bits                 | 7782400                                                                     |
| Number of I/O                  | 170                                                                         |
| Number of Gates                | -                                                                           |
| Voltage - Supply               | 0.97V ~ 1.08V                                                               |
| Mounting Type                  | Surface Mount                                                               |
| Operating Temperature          | -40°C ~ 100°C (TJ)                                                          |
| Package / Case                 | 325-LFBGA, FCBGA                                                            |
| Supplier Device Package        | 325-FCBGA (11x11)                                                           |
| Purchase URL                   | https://www.e-xfl.com/product-detail/microchip-technology/mpf100ts-fcsg325i |
|                                |                                                                             |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong



| 7.9.4    | Design Dependence of T PUFT and T WRFT               | 67 |
|----------|------------------------------------------------------|----|
| 7.9.5    | Cold Reset to Fabric and I/Os (Low Speed) Functional | 67 |
| 7.9.6    | Warm Reset to Fabric and I/Os (Low Speed) Functional | 67 |
| 7.9.7    | Miscellaneous Initialization Parameters              | 67 |
| 7.9.8    | I/O Calibration                                      | 68 |
| 7.10 Ded | licated Pins                                         | 69 |
| 7.10.1   | JTAG Switching Characteristics                       | 69 |
| 7.10.2   | SPI Switching Characteristics                        | 69 |
| 7.10.3   | SmartDebug Probe Switching Characteristics           | 70 |
| 7.10.4   | DEVRST_N Switching Characteristics                   | 70 |
| 7.10.5   | FF_EXIT Switching Characteristics                    | 70 |
| 7.11 Use | r Crypto                                             | 71 |
| 7.11.1   | TeraFire 5200B Switching Characteristics             | 71 |
| 7.11.2   | TeraFire 5200B Throughput Characteristics            | 71 |



# 6 DC Characteristics

This section lists the DC characteristics of the PolarFire FPGA device.

# 6.1 Absolute Maximum Rating

The following table lists the absolute maximum ratings for PolarFire devices.

#### Table 3 • Absolute Maximum Rating

| Parameter                                               | Symbol                 | Min  | Max  | Unit |
|---------------------------------------------------------|------------------------|------|------|------|
| FPGA core power supply                                  | Vdd                    | -0.5 | 1.13 | V    |
| Transceiver Tx and Rx lanes supply                      | Vdda                   | -0.5 | 1.13 | V    |
| Programming and HSIO receiver supply                    | VDD18                  | -0.5 | 2.0  | V    |
| FPGA core and FPGA PLL high-voltage supply              | VDD25                  | -0.5 | 2.7  | V    |
| Transceiver PLL high-voltage supply                     | VDDA25                 | -0.5 | 2.7  | V    |
| Transceiver reference clock supply                      | Vdd_xcvr_clk           | -0.5 | 3.6  | V    |
| Global VREF for transceiver reference clocks            | XCVRvref               | -0.5 | 3.6  | V    |
| HSIO DC I/O supply <sup>2</sup>                         | VDDIx                  | -0.5 | 2.0  | V    |
| GPIO DC I/O supply <sup>2</sup>                         | VDDIx                  | -0.5 | 3.6  | V    |
| Dedicated I/O DC supply for JTAG and SPI                | Vddi3                  | -0.5 | 3.6  | V    |
| GPIO auxiliary power supply for I/O bank x <sup>2</sup> | Vddauxx                | -0.5 | 3.6  | V    |
| Maximum DC input voltage on GPIO                        | Vin                    | -0.5 | 3.8  | V    |
| Maximum DC input voltage on HSIO                        | Vin                    | -0.5 | 2.2  | V    |
| Transceiver Receiver absolute input voltage             | Transceiver VIN        | -0.5 | 1.26 | V    |
| Transceiver Reference clock absolute input voltage      | Transceiver REFCLK VIN | -0.5 | 3.6  | V    |
| Storage temperature (ambient) <sup>1</sup>              | Тята                   | -65  | 150  | °C   |
| Junction temperature <sup>1</sup>                       | T                      | -55  | 135  | °C   |
| Maximum soldering temperature RoHS                      | Tsolrohs               |      | 260  | °C   |
| Maximum soldering temperature leaded                    | TSOLPB                 |      | 220  | °C   |

- 1. See FPGA Programming Cycles vs Retention Characteristics for retention time vs. temperature. The total time used in calculating the device retention includes storage time and the device stored temperature.
- 2. The power supplies for a given I/O bank x are shown as VDDIx and VDDAUXx.

# 6.2 Recommended Operating Conditions

The following table lists the recommended operating conditions.

#### **Table 4 • Recommended Operating Conditions**

| Parameter                                                                                                    | Symbol | Min  | Тур  | Max  | Unit |
|--------------------------------------------------------------------------------------------------------------|--------|------|------|------|------|
| FPGA core supply at 1.0 V mode <sup>1</sup>                                                                  | Vdd    | 0.97 | 1.00 | 1.03 | V    |
| FPGA core supply at 1.05 V mode <sup>1</sup>                                                                 | Vdd    | 1.02 | 1.05 | 1.08 | V    |
| Transceiver TX and RX lanes supply at 1.0 V mode (when all lane rates are 10.3125 Gbps or less) <sup>1</sup> | Vdda   | 0.97 | 1.00 | 1.03 | V    |



## 6.2.1 DC Characteristics over Recommended Operating Conditions

The following table lists the DC characteristics over recommended operating conditions.

| Parameter                                                   | Symbol                           | Min  | Max  | Unit | Condition                  |
|-------------------------------------------------------------|----------------------------------|------|------|------|----------------------------|
| Input pin capacitance <sup>1</sup>                          | C <sub>IN</sub> (dedicated GPIO) |      | 5.6  | pf   |                            |
|                                                             | CIN (GPIO)                       |      | 5.6  | pf   |                            |
|                                                             | CIN (HSIO)                       |      | 2.8  | pf   |                            |
| Input or output leakage current per pin                     | I∟ (GPIO)                        |      | 10   | μΑ   | I/O disabled, high – Z     |
|                                                             | I∟ (HSIO)                        |      | 10   | μΑ   | I/O disabled, high – Z     |
| Input rise time (10%–90% of $V_{DDix}$ ) <sup>2, 3, 4</sup> | Trise                            | 0.66 | 2.64 | ns   | V <sub>DDIx</sub> = 3.3 V  |
| Input rise time (10%–90% of $V_{DDix}$ ) <sup>2, 3, 4</sup> | _                                | 0.50 | 2.00 | ns   | $V_{DDIx} = 2.5 V$         |
| Input rise time (10%–90% of $V_{DDix}$ ) <sup>2, 3, 4</sup> | _                                | 0.36 | 1.44 | ns   | V <sub>DDix</sub> = 1.8 V  |
| Input rise time (10%–90% of $V_{DDix}$ ) <sup>2, 3, 4</sup> |                                  | 0.30 | 1.20 | ns   | V <sub>DDIx</sub> = 1.5 V  |
| Input rise time (10%–90% of $V_{DDix}$ ) <sup>2, 3, 4</sup> | _                                | 0.24 | 0.96 | ns   | V <sub>DDIx</sub> = 1.2 V  |
| Input fall time (90%–10% of $V_{DDIx}$ ) <sup>2, 3, 4</sup> | TFALL                            | 0.66 | 2.64 | ns   | V <sub>DDix</sub> = 3.3 V  |
| Input fall time (90%–10% of $V_{DDIx}$ ) <sup>2, 3, 4</sup> |                                  | 0.50 | 2.00 | ns   | V <sub>DDIx</sub> = 2.5 V  |
| Input fall time (90%–10% of $V_{DDIx}$ ) <sup>2, 3, 4</sup> | _                                | 0.36 | 1.44 | ns   | V <sub>DDIx</sub> = 1.8 V  |
| Input fall time (90%–10% of $V_{DDIx}$ ) <sup>2, 3, 4</sup> | _                                | 0.30 | 1.20 | ns   | V <sub>DDix</sub> = 1.5 V  |
| Input fall time (90%–10% of $V_{DDIx}$ ) <sup>2, 3, 4</sup> |                                  | 0.24 | 0.96 | ns   | V <sub>DDIx</sub> = 1.2 V  |
| Pad pull-up when $V_{IN} = 0^5$                             | Ipu                              | 137  | 220  | μΑ   | V <sub>DDIx</sub> = 3.3 V  |
| Pad pull-up when $V_{IN} = 0^5$                             | _                                | 102  | 166  | μΑ   | V <sub>DDIx</sub> = 2.5 V  |
| Pad pull-up when $V_{IN} = 0$                               | _                                | 68   | 115  | μΑ   | V <sub>DDIx</sub> = 1.8 V  |
| Pad pull-up when $V_{IN} = 0$                               |                                  | 51   | 88   | μΑ   | V <sub>DDIx</sub> = 1.5 V  |
| Pad pull-up when $V_{IN} = 0^6$                             | _                                | 29   | 73   | μΑ   | V <sub>DDix</sub> = 1.35 V |
| Pad pull-up when $V_{IN} = 0$                               | _                                | 16   | 46   | μΑ   | V <sub>DDix</sub> = 1.2 V  |
| Pad pull-down when $V_{IN}$ = 3.3 V <sup>5</sup>            | IPD                              | 65   | 187  | μΑ   | V <sub>DDix</sub> = 3.3 V  |
| Pad pull-down when $V_{IN}$ = 2.5 V <sup>5</sup>            | _                                | 63   | 160  | μΑ   | V <sub>DDix</sub> = 2.5 V  |
| Pad pull-down when $V_{IN}$ = 1.8 V                         | _                                | 60   | 117  | μΑ   | V <sub>DDix</sub> = 1.8 V  |
| Pad pull-down when $V_{IN}$ = 1.5 V                         | _                                | 57   | 95   | μΑ   | V <sub>DDix</sub> = 1.5 V  |
| Pad pull-down when $V_{IN}$ = 1.35 V                        | _                                | 52   | 86   | μΑ   | V <sub>DDix</sub> = 1.35 V |
| Pad pull-down when $V_{IN} = 1.2 V$                         | _                                | 47   | 79   | μA   | V <sub>DDIx</sub> = 1.2 V  |

#### Table 5 • DC Characteristics over Recommended Operating Conditions

1. Represents the die input capacitance at the pad not the package.

- 2. Voltage ramp must be monotonic.
- 3. Numbers based on rail-to-rail input signal swing and minimum 1 V/ns and maximum 4 V/ns. These are to be used for input delay measurement consistency.
- 4. I/O signal standards with smaller than rail-to-rail input swings can use a nominal value of 200 ps 20%–80% of swing and maximum value of 500 ps 20%–80% of swing.
- 5. GPIO only.

## 6.2.2 Maximum Allowed Overshoot and Undershoot

During transitions, input signals may overshoot and undershoot the voltage shown in the following table. Input currents must be limited to less than 100 mA per latch-up specifications.



| AC (Vin) Overshoot Duration as % at $T_J = 100 ^\circ\text{C}$ | Condition (V) |
|----------------------------------------------------------------|---------------|
| 100                                                            | 3.8           |
| 100                                                            | 3.85          |
| 100                                                            | 3.9           |
| 100                                                            | 3.95          |
| 70                                                             | 4             |
| 50                                                             | 4.05          |
| 33                                                             | 4.1           |
| 22                                                             | 4.15          |
| 14                                                             | 4.2           |
| 9.8                                                            | 4.25          |
| 6.5                                                            | 4.3           |
| 4.4                                                            | 4.35          |
| 3                                                              | 4.4           |
| 2                                                              | 4.45          |
| 1.4                                                            | 4.5           |
| 0.9                                                            | 4.55          |
| 0.6                                                            | 4.6           |

## Table 8 • Maximum Overshoot During Transitions for GPIO

Note: Overshoot level is for VDDI at 3.3 V.

The following table shows the maximum AC input voltage ( $V_{IN}$ ) undershoot duration for GPIO.

| AC (VIN) Undershoot Duration as % at TJ = 100 °C | Condition (V) |
|--------------------------------------------------|---------------|
| 100                                              | -0.5          |
| 100                                              | -0.55         |
| 100                                              | -0.6          |
| 100                                              | -0.65         |
| 100                                              | -0.7          |
| 100                                              | -0.75         |
| 100                                              | -0.8          |
| 100                                              | -0.85         |
| 100                                              | -0.9          |
| 100                                              | -0.95         |
| 100                                              | -1            |
| 100                                              | -1.05         |
| 100                                              | -1.1          |
| 100                                              | -1.15         |
| 100                                              | -1.2          |
| 69                                               | -1.25         |
| 45                                               | -1.3          |

## Table 9 • Maximum Undershoot During Transitions for GPIO



VICM<sup>1,3</sup> VICM<sup>1,3</sup> VICM<sup>1,3</sup> I/O Bank VICM\_RANGE VID<sup>2</sup> Vid Vid Standard Туре Libero Setting Min (V) Typ (V) Max (V) Min (V) Typ (V) Max (V) HCSL256 GPIO Mid (default) 0.6 1.25 2.35 0.1 0.55 1.1 Low 0.05 0.35 0.8 0.1 0.55 1.1 HCSL18⁵ HSIO Mid (default) 0.6 1.0 1.65 0.1 0.55 1.1 Low 0.05 0.4 0.8 0.1 0.55 1.1 0.6 BUSLVDSE25 GPIO Mid (default) 1.25 2.35 0.05 0.1 VDDIn 0.05 0.8 0.05 0.4 0.1 VDDIn Low MLVDSE25 GPIO Mid (default) 2.4 0.6 1.25 2.35 0.05 0.35 0.05 0.05 0.35 Low 0.4 0.8 2.4 LVPECL33 GPIO Mid (default) 0.6 1.65 2.35 0.05 0.8 2.4 Low 0.05 0.4 0.8 0.05 0.8 2.4 LVPECLE33 0.6 0.05 0.8 GPIO Mid (default) 1.65 2.35 2.4 0.05 0.4 0.8 0.05 0.8 2.4 Low MIPI25 GPIO Mid (default) 0.6 1.25 2.35 0.05 0.2 0.3 0.2 Low 0.05 0.8 0.05 0.2 0.3

- 1. VICM is the input common mode.
- 2.  $V_{ID}$  is the input differential voltage.
- 3. VICM rules are as follows:
  - a. VICM must be less than  $V_{DDI} 0.4 V$ ;
  - b.  $V_{ICM} + V_{ID}/2$  must be  $\langle V_{DDI} + 0.4 V$ ;
  - c.  $V_{ICM} V_{ID}/2$  must be >VSS 0.3 V;
  - d. Any differential input with V<sub>ICM</sub> ≤0.6 V requires the low common mode setting in Libero (VICM\_RANGE=LOW).
- 4. VDDI = 1.8 V, VDDAUX = 2.5 V.
- 5. HSIO receiver only.
- 6. GPIO receiver only.

### Table 15 • Differential DC Output Levels

| I/O<br>Standard         | Bank<br>Type  | V <sub>осм</sub> 1<br>Min (V) | Vосм<br>Тур (V) | V <sub>осм</sub><br>Max (V) | Vod²<br>Min (V) | Vop²<br>Typ (V) | Vod²<br>Max (V) |
|-------------------------|---------------|-------------------------------|-----------------|-----------------------------|-----------------|-----------------|-----------------|
| LVDS33                  | GPIO          |                               | 1.2             |                             | 0.25            | 0.35            | 0.45            |
| LVDS25                  | GPIO          |                               | 1.2             |                             | 0.25            | 0.35            | 0.45            |
| LCMDS33                 | GPIO          |                               | 0.6             |                             | 0.25            | 0.35            | 0.45            |
| LCMDS25                 | GPIO          |                               | 0.6             |                             | 0.25            | 0.35            | 0.45            |
| RSDS33                  | GPIO          |                               | 1.2             |                             | 0.17            | 0.2             | 0.23            |
| RSDS25                  | GPIO          |                               | 1.2             |                             | 0.17            | 0.2             | 0.23            |
| MINILVDS33              | GPIO          |                               | 1.2             |                             | 0.3             | 0.4             | 0.6             |
| MINILVDS25              | GPIO          |                               | 1.2             |                             | 0.3             | 0.4             | 0.6             |
| SUBLVDS33               | GPIO          |                               | 0.9             |                             | 0.1             | 0.15            | 0.3             |
| SUBLVDS25               | GPIO          |                               | 0.9             |                             | 0.1             | 0.15            | 0.3             |
| PPDS33                  | GPIO          |                               | 0.8             |                             | 0.17            | 0.2             | 0.23            |
| PPDS25                  | GPIO          |                               | 0.8             |                             | 0.17            | 0.2             | 0.23            |
| SLVSE15 <sup>3</sup>    | GPIO,<br>HSIO |                               | 0.2             |                             | 0.12            | 0.135           | 0.15            |
| BUSLVDSE25 <sup>3</sup> | GPIO          |                               | 1.25            |                             | 0.24            | 0.262           | 0.272           |

## PolarFire



а 🐼 Міскоснір company

| Standard   | Description                                              | ٧Ļ1                        | VH1                        | VID <sup>2</sup> | VICM <sup>2</sup> | Vmeas <sup>3, 4</sup> | VREF <sup>1, 5</sup> | Un |
|------------|----------------------------------------------------------|----------------------------|----------------------------|------------------|-------------------|-----------------------|----------------------|----|
| HSUL18I    | HSUL 1.8 V<br>Class I                                    | V <sub>REF</sub> –<br>0.54 | V <sub>REF</sub> +<br>0.54 |                  |                   | VREF                  | 0.90                 | V  |
| HSUL18II   | HSUL 1.8 V<br>Class II                                   | V <sub>REF</sub> –         | V <sub>REF</sub> +<br>0 54 |                  |                   | Vref                  | 0.90                 | V  |
| HSUL12     | HSUL 1.2 V                                               | V <sub>REF</sub> –         | V <sub>REF</sub> +         |                  |                   | Vref                  | 0.60                 | V  |
|            |                                                          | .22                        | .22                        |                  |                   |                       |                      |    |
| POD12I     | Pseudo open<br>drain (POD)<br>logic 1.2 V<br>Class I     | Vref –<br>.15              | V <sub>REF</sub> +<br>.15  |                  |                   | Vref                  | 0.84                 | V  |
| POD12II    | POD 1.2 V<br>Class II                                    | V <sub>REF</sub> –<br>.15  | V <sub>REF</sub> + .15     |                  |                   | Vref                  | 0.84                 | V  |
| LVDS33     | Low-voltage<br>differential<br>signaling<br>(LVDS) 3.3 V | V <sub>ICM</sub> –<br>.125 | V <sub>ICM</sub> +<br>.125 | 0.250            | 1.250             | 0                     |                      | V  |
| LVDS25     | LVDS 2.5 V                                               | Vісм –<br>.125             | V <sub>ICM</sub> +<br>.125 | 0.250            | 1.250             | 0                     |                      | V  |
| LVDS18     | LVDS 1.8 V                                               | V <sub>ICM</sub> –<br>.125 | V <sub>ICM</sub> +<br>.125 | 0.250            | 0.900             | 0                     |                      | V  |
| RSDS33     | RSDS 3.3 V                                               | V <sub>ICM</sub> –<br>.125 | V <sub>ICM</sub> +<br>.125 | 0.250            | 1.250             | 0                     |                      | V  |
| RSDS25     | RSDS 2.5 V                                               | V <sub>ICM</sub> –<br>.125 | V <sub>ICM</sub> +<br>.125 | 0.250            | 1.250             | 0                     |                      | V  |
| RSDS18     | RSDS 1.8 V                                               | Vісм –<br>.125             | V <sub>ICM</sub> + .125    | 0.250            | 1.250             | 0                     |                      | V  |
| MINILVDS33 | Mini-LVDS<br>3.3 V                                       | V <sub>ICM</sub> –<br>.125 | V <sub>ICM</sub> + .125    | 0.250            | 1.250             | 0                     |                      | V  |
| MINILVDS25 | Mini-LVDS<br>2.5 V                                       | V <sub>ICM</sub> –<br>.125 | V <sub>ICM</sub> + .125    | 0.250            | 1.250             | 0                     |                      | V  |
| MINILVDS18 | Mini-LVDS<br>1.8 V                                       | V <sub>ICM</sub> –<br>.125 | V <sub>ICM</sub> +<br>.125 | 0.250            | 1.250             | 0                     |                      | V  |
| SUBLVDS33  | Sub-LVDS<br>3.3 V                                        | V <sub>ICM</sub> –<br>.125 | V <sub>ICM</sub> +<br>.125 | 0.250            | 0.900             | 0                     |                      | V  |
| SUBLVDS25  | Sub-LVDS<br>2.5 V                                        | V <sub>ICM</sub> –<br>.125 | V <sub>ICM</sub> + .125    | 0.250            | 0.900             | 0                     |                      | V  |
| SUBLVDS18  | Sub-LVDS<br>1.8 V                                        | Vісм –<br>.125             | V <sub>ICM</sub> +<br>.125 | 0.250            | 0.900             | 0                     |                      | V  |
| PPDS33     | Point-to-point<br>differential<br>signaling<br>3.3 V     | V <sub>ICM</sub> –<br>.125 | V <sub>ICM</sub> +<br>.125 | 0.250            | 0.800             | 0                     |                      | V  |
| PPDS25     | PPDS 2.5 V                                               | Vісм –<br>.125             | V <sub>ICM</sub> + .125    | 0.250            | 0.800             | 0                     |                      | V  |
| PPDS18     | PPDS 1.8 V                                               | Vісм –<br>.125             | V <sub>ICM</sub> + .125    | 0.250            | 0.800             | 0                     |                      | V  |
| SLVS33     | Scalable low-<br>voltage<br>signaling                    | V <sub>ICM</sub> –<br>.125 | V <sub>ICM</sub> +<br>.125 | 0.250            | 0.200             | 0                     |                      | V  |

## PolarFire

\_



| Standard              | Description                                             | VL1                        | VH1                        | Vid2  | VICM <sup>2</sup> | Vmeas <sup>3, 4</sup> | Vref <sup>1, 5</sup> | Unit |
|-----------------------|---------------------------------------------------------|----------------------------|----------------------------|-------|-------------------|-----------------------|----------------------|------|
| SLVS25                | SLVS 2.5 V                                              | V <sub>ICM</sub> –<br>.125 | V <sub>ICM</sub> +<br>.125 | 0.250 | 0.200             | 0                     |                      | V    |
| SLVS18                | SLVS 1.8 V                                              | V <sub>ICM</sub> –<br>.125 | V <sub>ICM</sub> +<br>.125 | 0.250 | 0.200             | 0                     |                      | V    |
| HCSL33                | High-speed<br>current<br>steering logic<br>(HCSL) 3.3 V | Vісм –<br>.125             | V <sub>ICM</sub> +<br>.125 | 0.250 | 0.350             | 0                     |                      | V    |
| HCSL25                | HCSL 2.5 V                                              | V <sub>ICM</sub> —<br>.125 | V <sub>ICM</sub> +<br>.125 | 0.250 | 0.350             | 0                     |                      | V    |
| HCSL18                | HCSL 1.8 V                                              | V <sub>ICM</sub> –<br>.125 | V <sub>ICM</sub> +<br>.125 | 0.250 | 0.350             | 0                     |                      | V    |
| BLVDSE25 <sup>6</sup> | Bus LVDS<br>2.5 V                                       | V <sub>ICM</sub> —<br>.125 | V <sub>ICM</sub> +<br>.125 | 0.250 | 1.250             | 0                     |                      | V    |
| MLVDSE256             | Multipoint<br>LVDS 2.5 V                                | Vісм –<br>.125             | Vісм +<br>.125             | 0.250 | 1.250             | 0                     |                      | V    |
| LVPECL33              | Low-voltage<br>positive<br>emitter<br>coupled logic     | V <sub>ICM</sub> —<br>.125 | V <sub>ICM</sub> +<br>.125 | 0.250 | 1.650             | 0                     |                      | V    |
| LVPECLE336            | Low-voltage<br>positive<br>emitter<br>coupled logic     | V <sub>ICM</sub> —<br>.125 | V <sub>ICM</sub> +<br>.125 | 0.250 | 1.650             | 0                     |                      | V    |
| SSTL25I               | Differential<br>SSTL 2.5 V<br>Class I                   | V <sub>ICM</sub> —<br>.125 | V <sub>ICM</sub> +<br>.125 | 0.250 | 1.250             | 0                     |                      | V    |
| SSTL25II              | Differential<br>SSTL 2.5 V<br>Class II                  | Vісм —<br>.125             | Vісм +<br>.125             | 0.250 | 1.250             | 0                     |                      | V    |
| SSTL18I               | Differential<br>SSTL 1.8 V<br>Class I                   | V <sub>ICM</sub> —<br>.125 | V <sub>ICM</sub> +<br>.125 | 0.250 | 0.900             | 0                     |                      | V    |
| SSTL18II              | Differential<br>SSTL 1.8 V<br>Class II                  | V <sub>ICM</sub> —<br>.125 | V <sub>ICM</sub> +<br>.125 | 0.250 | 0.900             | 0                     |                      | V    |
| SSTL15                | Differential<br>SSTL 1.5 V<br>Class I                   | V <sub>ICM</sub> —<br>.125 | V <sub>ICM</sub> +<br>.125 | 0.250 | 0.750             | 0                     |                      | V    |
| SSTL135               | Differential<br>SSTL 1.5 V<br>Class II                  | V <sub>ICM</sub> —<br>.125 | VICM +<br>.125             | 0.250 | 0.750             | 0                     |                      | V    |
| HSTL15I               | Differential<br>HSTL 1.5 V<br>Class I                   | V <sub>ICM</sub> —<br>.125 | V <sub>ICM</sub> +<br>.125 | 0.250 | 0.750             | 0                     |                      | V    |
| HSTL15II              | Differential<br>HSTL 1.5 V<br>Class II                  | V <sub>ICM</sub> –<br>.125 | V <sub>ICM</sub> +<br>.125 | 0.250 | 0.750             | 0                     |                      | V    |
| HSTL135I              | Differential<br>HSTL 1.35 V<br>Class I                  | V <sub>ICM</sub> –<br>.125 | V <sub>ICM</sub> +<br>.125 | 0.250 | 0.675             | 0                     |                      | V    |



| Standard  | Description  | VL1    | VH1    | VID <sup>2</sup> | VICM <sup>2</sup> | Vmeas <sup>3, 4</sup> | Vref <sup>1, 5</sup> | Unit |
|-----------|--------------|--------|--------|------------------|-------------------|-----------------------|----------------------|------|
| HSTL135II | Differential | VICM - | VICM + | 0.250            | 0.675             | 0                     |                      | V    |
|           | HSTL 1.35 V  | .125   | .125   |                  |                   |                       |                      |      |
|           | Class II     |        |        |                  |                   |                       |                      |      |
| HSTL12    | Differential | VICM - | VICM + | 0.250            | 0.600             | 0                     |                      | V    |
|           | HSTL 1.2 V   | .125   | .125   |                  |                   |                       |                      |      |
| HSUL18I   | Differential | VICM - | VICM + | 0.250            | 0.900             | 0                     |                      | V    |
|           | HSUL 1.8 V   | .125   | .125   |                  |                   |                       |                      |      |
|           | Class I      |        |        |                  |                   |                       |                      |      |
| HSUL18II  | Differential | VICM - | VICM + | 0.250            | 0.900             | 0                     |                      | V    |
|           | HSUL 1.8 V   | .125   | .125   |                  |                   |                       |                      |      |
|           | Class II     |        |        |                  |                   |                       |                      |      |
| HSUL12    | Differential | VICM - | VICM + | 0.250            | 0.600             | 0                     |                      | V    |
|           | HSUL 1.2 V   | .125   | .125   |                  |                   |                       |                      |      |
| POD12I    | Differential | VICM - | VICM + | 0.250            | 0.600             | 0                     |                      | V    |
|           | POD 1.2 V    | .125   | .125   |                  |                   |                       |                      |      |
|           | Class I      |        |        |                  |                   |                       |                      |      |
| POD12II   | Differential | VICM - | VICM + | 0.250            | 0.600             | 0                     |                      | V    |
|           | POD 1.2 V    | .125   | .125   |                  |                   |                       |                      |      |
|           | Class II     |        |        |                  |                   |                       |                      |      |
| MIPI25    | Mobile       | VICM - | VICM + | 0.250            | 0.200             | 0                     |                      | V    |
|           | Industry     | .125   | .125   |                  |                   |                       |                      |      |
|           | Processor    |        |        |                  |                   |                       |                      |      |
|           | Interface    |        |        |                  |                   |                       |                      |      |

- 1. Measurements are made at typical, minimum, and maximum  $V_{REF}$  values. Reported delays reflect worst-case of these measurements.  $V_{REF}$  values listed are typical. Input waveform switches between  $V_L$  and  $V_H$ . All rise and fall times must be 1 V/ns.
- 2. Differential receiver standards all use 250 mV V<sub>ID</sub> for timing. V<sub>CM</sub> is different between different standards.
- 3. Input voltage level from which measurement starts.
- 4. The value given is the differential input voltage.
- 5. This is an input voltage reference that bears no relation to the V<sub>REF</sub>/V<sub>MEAS</sub> parameters found in IBIS models or shown in Output Delay Measurement—Single-Ended Test Setup (see page 27).
- 6. Emulated bi-directional interface.

## 7.1.2 Output Delay Measurement Methodology

The following section provides information about the methodology for output delay measurement.

#### Table 23 • Output Delay Measurement Methodology

| Standard | Description                                   | Rref (Ω) | Cref (pF) | Vmeas (V) | Vref (V) |
|----------|-----------------------------------------------|----------|-----------|-----------|----------|
| PCI      | PCIE 3.3 V                                    | 25       | 10        | 1.65      |          |
| LVTTL33  | LVTTL 3.3 V                                   | 1M       | 0         | 1.65      |          |
| LVCMOS33 | LVCMOS 3.3 V                                  | 1M       | 0         | 1.65      |          |
| LVCMOS25 | LVCMOS 2.5 V                                  | 1M       | 0         | 1.25      |          |
| LVCMOS18 | LVCMOS 1.8 V                                  | 1M       | 0         | 0.90      |          |
| LVCMOS15 | LVCMOS 1.5 V                                  | 1M       | 0         | 0.75      |          |
| LVCMOS12 | LVCMOS 1.2 V                                  | 1M       | 0         | 0.60      |          |
| SSTL25I  | Stub-series terminated logic<br>2.5 V Class I | 50       | 0         | Vref      | 1.25     |
| SSTL25II | SSTL 2.5 V Class II                           | 50       | 0         | Vref      | 1.25     |







Figure 2 • Output Delay Measurement—Differential Test Setup



# 7.1.3 Input Buffer Speed

The following tables provide information about input buffer speed.

#### Table 24 • HSIO Maximum Input Buffer Speed

| Standard   | STD  | -1   | Unit |
|------------|------|------|------|
| LVDS18     | 1250 | 1250 | Mbps |
| RSDS18     | 800  | 800  | Mbps |
| MINILVDS18 | 800  | 800  | Mbps |
| SUBLVDS18  | 800  | 800  | Mbps |
| PPDS18     | 800  | 800  | Mbps |
| SLVS18     | 800  | 800  | Mbps |
| SSTL18I    | 800  | 1066 | Mbps |
| SSTL18II   | 800  | 1066 | Mbps |
| SSTL15I    | 1066 | 1333 | Mbps |
| SSTL15II   | 1066 | 1333 | Mbps |
| SSTL135I   | 1066 | 1333 | Mbps |
| SSTL135II  | 1066 | 1333 | Mbps |



| Parameter | Interface Name | Topology                  | STD<br>Min | STD<br>Typ | STD<br>Max | –1<br>Min | —1<br>Тур | -1<br>Max | Unit | Clock-to-<br>Data<br>Condition                      |
|-----------|----------------|---------------------------|------------|------------|------------|-----------|-----------|-----------|------|-----------------------------------------------------|
| Fмах 4:1  | RX_DDRX_B_A    | Rx DDR<br>digital<br>mode |            |            |            |           |           |           | MHz  | From a<br>HS_IO_CLK<br>clock<br>source,<br>aligned  |
| Fmax 8:1  | RX_DDRX_B_A    | Rx DDR<br>digital<br>mode |            |            |            |           |           |           | MHz  | From a<br>HS_IO_CLK<br>clock<br>source,<br>aligned  |
| Fmax 2:1  | RX_DDRX_B_C    | Rx DDR<br>digital<br>mode |            |            |            |           |           |           | MHz  | From a<br>HS_IO_CLK<br>clock<br>source,<br>centered |
| Fmax 4:1  | RX_DDRX_B_C    | Rx DDR<br>digital<br>mode |            |            |            |           |           |           | MHz  | From a<br>HS_IO_CLK<br>clock<br>source,<br>centered |
| Fmax 8:1  | RX_DDRX_B_C    | Rx DDR<br>digital<br>mode |            |            |            |           |           |           | MHz  | From a<br>HS_IO_CLK<br>clock<br>source,<br>centered |
| Fmax 2:1  | RX_DDRX_BL_A   | Rx DDR<br>digital<br>mode |            |            |            |           |           |           | MHz  | From a<br>HS_IO_CLK<br>clock<br>source,<br>aligned  |
| Fmax 4:1  | RX_DDRX_BL_A   | Rx DDR<br>digital<br>mode |            |            |            |           |           |           | MHz  | From a<br>HS_IO_CLK<br>clock<br>source,<br>aligned  |
| Fmax 8:1  | RX_DDRX_BL_A   | Rx DDR<br>digital<br>mode |            |            |            |           |           |           | MHz  | From a<br>HS_IO_CLK<br>clock<br>source,<br>aligned  |
| Fмах 2:1  | RX_DDRX_BL_C   | Rx DDR<br>digital<br>mode |            |            |            |           |           |           | MHz  | From a<br>HS_IO_CLK<br>clock<br>source,<br>centered |
| Fmax 4:1  | RX_DDRX_BL_C   | Rx DDR<br>digital<br>mode |            |            |            |           |           |           | MHz  | From a<br>HS_IO_CLK<br>clock<br>source,<br>centered |



| Parameter <sup>1</sup>                                                      | Symbol      | Min  | Тур | Max  | Unit                   |
|-----------------------------------------------------------------------------|-------------|------|-----|------|------------------------|
| Secondary output clock frequency <sup>2</sup>                               | Foutsf      | 33.3 |     | 800  | MHz                    |
| Input clock cycle-to-cycle jitter                                           | Finj        |      |     | 200  | ps                     |
| Output clock period cycle-to-cycle<br>jitter (w/clean input)                | Toutjitterp |      |     | 300  | ps                     |
| Output clock-to-clock skew between two outputs with the same phase settings | Тѕкеw       |      |     | ±200 | ps                     |
| DLL lock time                                                               | Тьоск       | 16   |     | 16K  | Reference clock cycles |
| Minimum reset pulse width                                                   | Tmrpw       | 3    |     |      | ns                     |
| Minimum input pulse width <sup>3</sup>                                      | TMIPW       | 20   |     |      | ns                     |
| Minimum input clock pulse width high                                        | Тмрwн       | 400  |     |      | ps                     |
| Minimum input clock pulse width low                                         | TMPWL       | 400  |     |      | ps                     |
| Delay step size                                                             | Tdel        | 12.7 | 30  | 35   | ps                     |
| Maximum delay block delay <sup>4</sup>                                      | TDELMAX     | 1.8  |     | 4.8  | ns                     |
| Output clock duty cycle (with 50% duty cycle input) <sup>5</sup>            | TDUTY       | 40   |     | 60   | %                      |
| Output clock duty cycle (in phase reference mode) <sup>5</sup>              | TDUTY50     | 45   |     | 55   | %                      |

- 1. For all DLL modes.
- 2. Secondary output clock divided by four option.
- 3. On load, direction, move, hold, and update input signals.
- 4. 128 delay taps in one delay block.
- 5. Without duty cycle correction enabled.

# 7.2.4 RC Oscillators

\_

The following tables provide internal RC clock resources for user designs and additional information about designing systems with RF front end information about emitters generated on-chip to support programming operations.

#### Table 39 • 2 MHz RC Oscillator Electrical Characteristics

| Parameter                                 | Symbol              | Min | Тур | Max | Unit |
|-------------------------------------------|---------------------|-----|-----|-----|------|
| Operating frequency                       | RC <sub>2FREQ</sub> |     | 2   |     | MHz  |
| Accuracy                                  | RC2FACC             | -4  |     | 4   | %    |
| Duty cycle                                | RC <sub>2DC</sub>   | 46  |     | 54  | %    |
| Peak-to-peak output period jitter         | RC <sub>2PJIT</sub> |     | 5   | 10  | ns   |
| Peak-to-peak output cycle-to-cycle jitter | RC <sub>2CJIT</sub> |     | 5   | 10  | ns   |
| Operating current (VDD25)                 | RC2IVPPA            |     |     | 60  | μA   |
| Operating current (VDD)                   | RC <sub>2IVDD</sub> |     |     | 2.6 | μA   |

#### Table 40 • 160 MHz RC Oscillator Electrical Characteristics

| Parameter                                 | Symbol   | Min | Тур | Max | Unit |
|-------------------------------------------|----------|-----|-----|-----|------|
| Operating frequency                       | RCSCFREQ |     | 160 |     | MHz  |
| Accuracy                                  | RCSCFACC | -4  |     | 4   | %    |
| Duty cycle                                | RCscdc   | 47  |     | 52  | %    |
| Peak-to-peak output period jitter         | RCscpjit |     |     | 600 | ps   |
| Peak-to-peak output cycle-to-cycle jitter | RCsccjit |     |     | 172 | ps   |
| Operating current (VDD25)                 | RCscvppa |     |     | 599 | μA   |



## Table 44 • µSRAM Performance

| Parameter           | Symbol | V <sub>DD</sub> =<br>1.0 V – STD | V <sub>DD</sub> =<br>1.0 V - 1 | V <sub>DD</sub> =<br>1.05 V – STD | V <sub>DD</sub> =<br>1.05 V - 1 | Unit | Condition  |
|---------------------|--------|----------------------------------|--------------------------------|-----------------------------------|---------------------------------|------|------------|
| Operating frequency | Fмах   | 400                              | 415                            | 450                               | 480                             | MHz  | Write-port |
| Read access<br>time | Тас    |                                  | 2                              |                                   | 2                               | ns   | Read-port  |

## Table 45 • µPROM Performance

| Parameter        | Symbol | V <sub>DD</sub> =<br>1.0 V – STD | V <sub>DD</sub> =<br>1.0 V - 1 | VDD =<br>1.05 V – STD | V <sub>DD</sub> =<br>1.05 V – 1 | Unit |
|------------------|--------|----------------------------------|--------------------------------|-----------------------|---------------------------------|------|
| Read access time | Тас    | 10                               | 10                             | 10                    | 10                              | ns   |

# 7.4 Transceiver Switching Characteristics

This section describes transceiver switching characteristics.

# 7.4.1 Transceiver Performance

The following table describes transceiver performance.

## Table 46 • PolarFire Transceiver and TXPLL Performance

| Parameter                                 | Symbol     | STD<br>Min | STD<br>Typ | STD<br>Max | –1<br>Min | —1<br>Тур | -1<br>Max | Unit |
|-------------------------------------------|------------|------------|------------|------------|-----------|-----------|-----------|------|
| Tx data rate <sup>1,2</sup>               | FTXRate    | 0.25       |            | 10.3125    | 0.25      |           | 12.7      | Gbps |
| Tx OOB (serializer bypass) data rate      | FTXRateOOB | DC         |            | 1.5        | DC        |           | 1.5       | Gbps |
| Rx data rate when AC coupled <sup>2</sup> | FRxRateAC  | 0.25       |            | 10.3125    | 0.25      |           | 12.7      | Gbps |
| Rx data rate when DC coupled              | FRxRateDC  | 0.25       |            | 3.2        | 0.25      |           | 3.2       | Gbps |
| Rx OOB (deserializer bypass) data rate    | FTXRateOOB | DC         |            | 1.25       | DC        |           | 1.25      | Gbps |
| TXPLL output frequency <sup>3</sup>       | Ftxpll     | 1.6        |            | 6.35       | 1.6       |           | 6.35      | GHz  |
| Rx CDR mode                               | Frxcdr     | 0.25       |            | 10.3125    | 0.25      |           | 10.3125   | Gbps |
| Rx DFE mode <sup>2</sup>                  | Frxdfe     | 3.0        |            | 10.3125    | 3.0       |           | 12.7      | Gbps |
| Rx Eye Monitor mode <sup>2</sup>          | FRXEyeMon  | 3.0        |            | 10.3125    | 3.0       |           | 12.7      | Gbps |

1. The reference clock is required to be a minimum of 75 MHz for data rates of 10 Gbps and above.

- 2. For data rates greater than 10.3125 Gbps, VDDA must be set to 1.05 V mode. See supply tolerance in the section Recommended Operating Conditions (see page 6).
- 3. The Tx PLL rate is between 0.5x to 5.5x the Tx data rate. The Tx data rate depends on per XCVR lane Tx post-divider settings.

# 7.4.2 Transceiver Reference Clock Performance

The following table describes performance of the transceiver reference clock.

## Table 47 • PolarFire Transceiver Reference Clock AC Requirements

| Parameter                                  | Symbol    | STD<br>Min | STD<br>Typ | STD<br>Max | –1<br>Min | —1<br>Тур | -1<br>Max | Unit |
|--------------------------------------------|-----------|------------|------------|------------|-----------|-----------|-----------|------|
| Reference clock input rate <sup>1, 2</sup> | Ftxrefclk | 20         |            | 800        | 20        |           | 800       | MHz  |



#### Table 48 • Transceiver Differential Reference Clock I/O Standards

| I/O Standard      | Comment                                                                  |
|-------------------|--------------------------------------------------------------------------|
| LVDS25            | For DC input levels, se e table Differential DC Input and Output Levels. |
| HCSL25 (for PCIe) |                                                                          |

**Note:** The transceiver reference clock differential receiver supports V<sub>CM</sub> common mode.

## 7.4.4 Transceiver Interface Performance

The following table describes the single-ended I/O standards supported as transceiver reference clocks.

#### Table 49 • Transceiver Single-Ended Reference Clock I/O Standards

| I/O Standard | Comment                                                    |
|--------------|------------------------------------------------------------|
| LVCMOS25     | For DC input levels, see table DC Input and Output Levels. |

## 7.4.5 Transmitter Performance

The following tables describe performance of the transmitter.

#### Table 50 • Transceiver Reference Clock Input Termination

| Parameter                | Symbol      | Min | Тур              | Max | Unit |
|--------------------------|-------------|-----|------------------|-----|------|
| Single-ended termination | RefTerm     |     | 50               |     | Ω    |
| Single-ended termination | RefTerm     |     | 75               |     | Ω    |
| Single-ended termination | RefTerm     |     | 150              |     | Ω    |
| Differential termination | RefDiffTerm |     | 115 <sup>1</sup> |     | Ω    |
| Power-up termination     |             |     | >50K             |     | Ω    |

1. Measured at VCM= 1.2 V and VID= 350 mV.

Note: All pull-ups are disabled at power-up to allow hot plug capability.

#### Table 51 • PolarFire Transceiver User Interface Clocks

| Parameter               | Modes <sup>1</sup>                                | STD<br>Min | STD<br>Max | –1<br>Min | -1<br>Max | Unit |
|-------------------------|---------------------------------------------------|------------|------------|-----------|-----------|------|
| Transceiver TX_CLK      | 8-bit, max data rate = 1.6 Gbps                   |            | 200        |           | 200       | MHz  |
| range (non-             | 10-bit, max data rate = 1.6 Gbps                  |            | 160        |           | 160       | MHz  |
| with global or regional | 16-bit, max data rate = 4.8 Gbps                  |            | 300        |           | 300       | MHz  |
| fabric clocks)          | 20-bit, max data rate = 6.0 Gbps                  |            | 300        |           | 300       | MHz  |
|                         | 32-bit, max data rate =                           |            | 325        |           | 325       | MHz  |
|                         | 10.3125 Gbps (–STD) / 12.7 Gbps (–1)1             |            |            |           |           |      |
|                         | 40-bit, max data rate =                           |            | 260        |           | 320       | MHz  |
|                         | 10.3125 Gbps (–STD) / 12.7 Gbps (–1)1             |            |            |           |           |      |
|                         | 64-bit, max data rate =                           |            | 165        |           | 160       | MHz  |
|                         | 10.3125 Gbps (–STD) / 12.7 Gbps (–1)1             |            |            |           |           |      |
|                         | 80-bit, max data rate =                           |            | 130        |           | 130       | MHz  |
|                         | 10.3125 Gbps(–STD) / 12.7 Gbps (–1)1              |            |            |           |           |      |
|                         | Fabric pipe mode 32-bit, max data rate = 6.0 Gbps |            | 150        |           | 150       | MHz  |
|                         | 8-bit, max data rate = 1.6 Gbps                   |            | 200        |           | 200       | MHz  |



# 7.6.3 FPGA Bitstream Sizes

The following table describes FPGA bitstream sizes.

## Table 72 • Initialization Client Sizes

| Device               | Plaintext | Ciphertext |
|----------------------|-----------|------------|
| MPF100T, TL, TS, TLS |           |            |
| MPF200T, TL, TS, TLS | 2916 KB   | 3006 KB    |
| MPF300T, TL, TS, TLS | 4265 KB   | 4403 KB    |
| MPF500T, TL, TS, TLS |           |            |

Note: Worst case initializing all fabric LSRAM, USRAM, and UPROM.

#### Table 73 • Bitstream Sizes

| File | Devices              | FPGA   | Security | SNVM<br>(all pages) | FPGA+<br>SNVM | FPGA+<br>Sec | SNVM+<br>Sec | FPGA+<br>SNVM+<br>Sec |
|------|----------------------|--------|----------|---------------------|---------------|--------------|--------------|-----------------------|
| SPI  | MPF100T, TL, TS, TLS |        |          |                     |               |              |              |                       |
| DAT  | MPF100T, TL, TS, TLS |        |          |                     |               |              |              |                       |
| SPI  | MPF200T, TL, TS, TLS | 5.9 MB | 3.4 KB   | 59.7 KB             | 5.9 MB        | 5.9 MB       | 62.2 KB      | 6.0 MB                |
| DAT  | MPF200T, TL, TS, TLS | 5.9 MB | 7.3 KB   | 61.2 KB             | 6.0 MB        | 5.9 MB       | 66.3 KB      | 6.0 MB                |
| SPI  | MPF300T, TL, TS, TLS | 9.3 MB | 3.5 KB   | 59.7 KB             | 9.6 MB        | 9.5 MB       | 62.2 KB      | 9.6 MB                |
| DAT  | MPF300T, TL, TS, TLS | 9.3 MB | 7.6 KB   | 61.2 KB             | 9.6 MB        | 9.5 MB       | 66.3 KB      | 9.6 MB                |
| SPI  | MPF500T, TL, TS, TLS |        |          |                     |               |              |              |                       |
| DAT  | MPF500T, TL, TS, TLS |        |          |                     |               |              |              |                       |

## 7.6.4 Digest Cycles

Digests verify the integrity of the programmed non-volatile data. Digests are a cryptographic hash of various data areas. Any digest that reports back an error raises the digest tamper flag.

|               |                            | Retentio  | n Since Pr | ogrammed    | (N = Numi   | per Digests | During tha  | t Time)¹    |      |           |
|---------------|----------------------------|-----------|------------|-------------|-------------|-------------|-------------|-------------|------|-----------|
| Digest<br>Ti  | Storage and<br>Operating T | N<br>≤300 | N =<br>500 | N =<br>1000 | N =<br>1500 | N =<br>2000 | N =<br>4000 | N =<br>6000 | Unit | Retention |
| –40 to<br>100 | -40 to 100                 | 20×<br>LF | 17×<br>LF  | 12 ×<br>LF  | 10×<br>LF   | 8×<br>LF    | 4×<br>LF    | 2 ×<br>LF   | °C   | Years     |
| –40 to<br>100 | 0 to 100                   | 20×<br>LF | 17×<br>LF  | 12 ×<br>LF  | 10×<br>LF   | 8×<br>LF    | 4×<br>LF    | 2 ×<br>LF   | °C   | Years     |
| –40 to<br>85  | –40 to 85                  | 20×<br>LF | 20 ×<br>LF | 20×<br>LF   | 20×<br>LF   | 16×<br>LF   | 8×<br>LF    | 4 ×<br>LF   | °C   | Years     |
| –40 to<br>55  | –40 to 55                  | 20×<br>LF | 20×<br>LF  | 20×<br>LF   | 20×<br>LF   | 20×<br>LF   | 20×<br>LF   | 20×<br>LF   | °C   | Years     |

#### Table 74 • Maximum Number of Digest Cycles

1. LF = Lifetime factor as defined by the number of programming cycles the device has seen under the conditions listed in the following table.



| Devices              | IAP | FlashPro4 | Flash Pro 5 | BP | Silicon Sculptor | Units |
|----------------------|-----|-----------|-------------|----|------------------|-------|
| MPF500T, TL, TS, TLS |     |           |             |    |                  |       |

#### Notes:

- FlashPro4 4 MHz TCK.
- FlashPro5 10 MHz TCK.
- PC configuration: Intel i7 at 3.6 GHz, 32 GB RAM, Windows 10.

#### Table 83 • Verify System Services

| Parameter                            | Symbol                | ServiceID | Devices              | Тур  | Max | Unit |
|--------------------------------------|-----------------------|-----------|----------------------|------|-----|------|
| In application verify by index       | $T_{IAP\_Ver\_Index}$ | 44H       | MPF100T, TL, TS, TLS |      |     | S    |
|                                      |                       |           | MPF200T, TL, TS, TLS | 8.2  | 9   | S    |
|                                      |                       |           | MPF300T, TL, TS, TLS | 12.4 | 13  | S    |
|                                      |                       |           | MPF500T, TL, TS, TLS |      |     | S    |
| In application verify by SPI address | TIAP_Ver_Addr         | 45H       | MPF100T, TL, TS, TLS |      |     | S    |
|                                      |                       |           | MPF200T, TL, TS, TLS | 8.2  | 9   | S    |
|                                      |                       |           | MPF300T, TL, TS, TLS | 12.4 | 13  | S    |
|                                      |                       |           | MPF500T, TL, TS, TLS |      |     | S    |

## 7.6.8 Authentication Time

The following tables describe authentication system service time.

## Table 84 • Authentication Services

| Parameter                | Symbol    | ServiceID | Devices              | Тур | Max | Unit |
|--------------------------|-----------|-----------|----------------------|-----|-----|------|
| Bitstream Authentication | TBIT_AUTH | 22H       | MPF100T, TL, TS, TLS |     |     | S    |
|                          |           |           | MPF200T, TL, TS, TLS | 3.3 | 3.7 | S    |
|                          |           |           | MPF300T, TL, TS, TLS | 4.9 | 5.4 | S    |
|                          |           |           | MPF500T, TL, TS, TLS |     |     | S    |
| IAP Image Authentication | TIAP_AUTH | 23H       | MPF100T, TL, TS, TLS |     |     | S    |
|                          |           |           | MPF200T, TL, TS, TLS | 3.3 | 3.7 | S    |
|                          |           |           | MPF300T, TL, TS, TLS | 4.9 | 5.4 | S    |
|                          |           |           | MPF500T, TL, TS, TLS |     |     |      |

## 7.6.9 Secure NVM Performance

The following table describes secure NVM performance.

## Table 85 • sNVM Read/Write Characteristics

| Parameter                                            | Symbol    | Min  | Тур  | Max | Unit | Conditions         |
|------------------------------------------------------|-----------|------|------|-----|------|--------------------|
| Plain text programming                               |           | 7.0  | 7.2  | 7.9 | ms   |                    |
| Authenticated text programming                       |           | 7.2  | 7.4  | 9.4 | ms   |                    |
| Authenticated and encrypted text programming         |           | 7.2  | 7.4  | 9.4 | ms   |                    |
| Authentication R/W 1st access from power-up overhead | Tpuf_ovhd |      | 100  | 111 | ms   | From<br>Tfab_ready |
| Plain text read                                      |           | 7.67 | 7.79 | 8.2 | μs   |                    |





#### Figure 4 • USPI Switching Characteristics

## 7.8.4 Tamper Detectors

The following section describes tamper detectors.

#### Table 91 • ADC Conversion Rate

| Parameter           | Description                                                                                                                                                        | Min      | Тур¹         | Max     |
|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--------------|---------|
| Τςοννί              | Time from enable changing from zero to non-zero value to first conversion completes. Minimum value applies when POWEROFF = 0.                                      | 420 µs   |              | 470 μs  |
| Τςοννν              | Time between subsequent channel conversions.                                                                                                                       |          | 480 µs       |         |
| TSETUP              | Data channel and output to valid asserted. Data is held until next conversion completes, that is >480 $\mu$ s.                                                     | 0 ns     |              |         |
| Tvalid <sup>2</sup> | Width of the valid pulse.                                                                                                                                          | 1.625 µs |              | 2 µs    |
| Trate               | Time from start of first set of conversions to the start of the<br>next set. Can be considered as the conversion rate. Is set by<br>the conversion rate parameter. | 480 µs   | Rate × 32 μs | 8128 µs |

1. Min, typ, and max refer to variation due to functional configuration and the raw TVS value. The actual internal correction time will vary based on the raw TVS value.

2. The pulse width varies depending on the time taken to complete the internal calibration multiplication, this can be up to 375 ns.

**Note:** Once the TVS block is active, the enable signal is sampled 25 ns before the falling edge of valid. The next enabled channel in the sequence 0-1-2-3 is started; that is, if channel 0 has just completed and only channels 0 and 3 are enabled, the next channel will be 3. When all the enabled channels in the sequence 0-1-2-3 are completed, the TVS waits for the conversion rate timer to expire. The enable signal may be changed at any time if it changes to 4'b0000 while valid is asserted (and 25 ns before valid is deasserted), then no further conversions will be started.

#### Table 92 • Temperature and Voltage Sensor Electrical Characteristics

| Parameter                    | Min | Тур | Max | Unit | Condition |
|------------------------------|-----|-----|-----|------|-----------|
| Temperature sensing range    | -40 |     | 125 | °C   |           |
| Temperature sensing accuracy | -10 |     | 10  | °C   |           |





#### Figure 6 • Warm Reset Timing

## 7.9.3 Power-On Reset Voltages

## 7.9.3.1 Main Supplies

The start of power-up to functional time (T<sub>PUFT</sub>) is defined as the point at which the latest of the main supplies (VDD, VDD18, VDD25) reach the reference voltage levels specified in the following table. This starts the process of releasing the reset of the device and powering on the FPGA fabric and IOs.

#### Table 97 • POR Ref Voltages

| Supply | Power-On Reset Start Point (V) | Note                                        |
|--------|--------------------------------|---------------------------------------------|
| VDD    | 0.95                           | Applies to both 1.0 V and 1.05 V operation. |
| VDD18  | 1.71                           |                                             |
| VDD25  | 2.25                           |                                             |

### 7.9.3.2 I/O-Related Supplies

For the I/Os to become functional (for low speed, sub 400 MHz operation), the (per-bank) I/O supplies (VDDI, VDDAUX) must reach the trip point voltage levels specified in the following table and the main supplies above must also be powered on.

#### Table 98 • I/O-Related Supplies

| Supply | I/O Power-Up Start Point (V) |
|--------|------------------------------|
| VDDI   | 0.85                         |
| VDDAUX | 1.6                          |

There are no sequencing requirements for the power supplies. However, VDDI3 and must be valid at same time as the main supplies. The other IO supplies (VDDI, VDDAUX) have no effect on power-up of FPGA fabric (that is, the fabric still powers up even if the IO supplies of some IO banks remain powered off).



## Table 101 • Cold and Warm Boot

| Parameter                                                                                                            | Symbol        | Min | Тур                    | Max                             | Unit | Condition |
|----------------------------------------------------------------------------------------------------------------------|---------------|-----|------------------------|---------------------------------|------|-----------|
| The time from T <sub>FAB_READY</sub> to<br>ready to program through<br>JTAG/SPI-Slave                                |               | 0   | 0                      | 0                               | ms   |           |
| The time from T <sub>FAB_READY</sub> to auto-update start                                                            |               |     | Tpuf_ovhd <sup>1</sup> | $T_{PUF\_OVHD^1}$               | ms   |           |
| The time from TFAB_READY to programming recovery start                                                               |               |     | $T_{PUF\_OVHD^1}$      | $T_{\text{PUF}\_\text{OVHD}^1}$ | ms   |           |
| The time from T <sub>FAB_READY</sub> to<br>the tamper flags being<br>available                                       | TTAMPER_READY | 0   | 0                      | 0                               | ms   |           |
| The time from<br>T <sub>FAB_READY</sub> to the Athena<br>Crypto co-processor being<br>available (for S devices only) | Tcrypto_ready | 0   | 0                      | 0                               | ms   |           |

1. Programming depends on the PUF to power up. Refer to TPUF\_OVHD at section Secure NVM Performance (see page 58).

# 7.9.8 I/O Calibration

The following tables specify the initial I/O calibration time for the fastest and slowest supported VDDI ramp times of 0.2 ms to 50 ms, respectively. This only applies to I/O banks specified by the user to be auto-calibrated.

## Table 102 • I/O Initial Calibration Time (TCALIB)

| Ramp Time | Min (ms) | Max (ms) | Condition                      |
|-----------|----------|----------|--------------------------------|
| 0.2 ms    | 0.98     | 2.63     | Applies to HSIO and GPIO banks |
| 50 ms     | 41.62    | 62.19    | Applies to HSIO and GPIO banks |

#### Notes:

- The user may specify any VDDI ramp time in the range specified above. The nominal initial calibration time is given by the specified VDDI ramp time plus 2 ms.
- In order for IO calibration to start, VDDI and VDDAUX of the I/O bank must be higher than the trip point levels specified in I/O-Related Supplies (see page 66).

#### Table 103 • I/O Fast Recalibration Time (TRECALIB)

| I/O Type  | Min (ms) | Typ (ms) | Max (ms) | Condition                           |
|-----------|----------|----------|----------|-------------------------------------|
| GPIO bank | 0.16     | 0.20     | 0.24     | GPIO configured for 3.3 V operation |
| HSIO bank | 0.20     | 0.25     | 0.30     | HSIO configured for 1.8 V operation |

**Note:** In order to obtain fast re-calibration, the user must assert the relevant clock request signal from the FPGA fabric to the I/O bank controller.

The following table describes the time to enter Flash\*Freeze Mode and to exit Flash\*Freeze mode.



# 7.11 User Crypto

The following section describes user crypto.

## 7.11.1 TeraFire 5200B Switching Characteristics

The following table describes TeraFire 5200B switching characteristics.

## Table 112 • TeraFire F5200B Switching Characteristics

| Parameter           | Symbol | VDD =<br>1.0 V STD | VDD =<br>1.0 V - 1 | VDD =<br>1.05 V STD | VDD =<br>1.05 V - 1 | Unit | Condition        |
|---------------------|--------|--------------------|--------------------|---------------------|---------------------|------|------------------|
| Operating frequency | Fмах   | 189                |                    | 189                 |                     | MHz  | –40 °C to 100 °C |

# 7.11.2 TeraFire 5200B Throughput Characteristics

The following tables for each algorithm describe the TeraFire 5200B throughput characteristics.

Note: Throughput cycle count collected with Athena TeraFire Core and RISCV running at 100 MHz.

| Modes                                               | Message Size<br>(bits) | Athena TeraFire Crypto Core Clock-Cycles | CAL Delay In CPU<br>Clock-Cycles |
|-----------------------------------------------------|------------------------|------------------------------------------|----------------------------------|
| AES-ECB-128 encrypt <sup>1</sup>                    | 128                    | 515                                      | 1095                             |
|                                                     | 64K                    | 50157                                    | 933                              |
| AES-ECB-128 decrypt <sup>1</sup>                    | 128                    | 557                                      | 1760                             |
|                                                     | 64K                    | 48385                                    | 1524                             |
| AES-ECB-256 encrypt <sup>1</sup>                    | 128                    | 531                                      | 1203                             |
|                                                     | 64K                    | 58349                                    | 1203                             |
| AES-ECB-256 decrypt <sup>1</sup>                    | 128                    | 589                                      | 1676                             |
|                                                     | 64K                    | 56673                                    | 1671                             |
| AES-CBC-256 encrypt <sup>1</sup>                    | 128                    | 576                                      | 1169                             |
|                                                     | 64K                    | 52547                                    | 1169                             |
| AES-CBC-256 decrypt <sup>1</sup>                    | 128                    | 585                                      | 1744                             |
|                                                     | 64K                    | 48565                                    | 1652                             |
| AES-GCM-128 encrypt <sup>1</sup> ,                  | 128                    | 1925                                     | 2740                             |
| 128-bit tag, (full message encrypted/authenticated) | 64К                    | 60070                                    | 2158                             |
| AES-GCM-256 encrypt <sup>1</sup> ,                  | 128                    | 1973                                     | 2268                             |
| 128-bit tag, (full message encrypted/authenticated) | 64K                    | 60102                                    | 2151                             |

#### Table 113 • AES

1. With DPA counter measures.

## Table 114 • GMAC

| Modes                                   | Message Size<br>(bits) | Athena TeraFire Crypto Core Clock-<br>Cycles | CAL Delay In CPU Clock-<br>Cycles |
|-----------------------------------------|------------------------|----------------------------------------------|-----------------------------------|
| AES-GCM-256 <sup>1</sup> , 128-bit tag, | 128                    | 1863                                         | 2211                              |
| (message is only<br>authenticated)      | 64К                    | 49707                                        | 2128                              |





Microsemi Headquarters

One Enterprise, Aliso Viejo, CA 92656 USA Within the USA: +1 (800) 713-4113 Outside the USA: +1 (949) 380-6100 Sales: +1 (949) 380-6136 Fax: +1 (949) 215-4996 Email: sales.support@microsemi.com www.microsemi.com

© 2018 Microsemi. All rights reserved. Microsemi and the Microsemi logo are trademarks of Microsemi Corporation. All other trademarks and service marks are the property of their respective owners. Microsemi makes no warranty, representation, or guarantee regarding the information contained herein or the suitability of its products and services for any particular purpose, nor does Microsemi assume any liability whatsoever arising out of the application or use of any product or circuit. The products sold by Microsemi have been subject to limited testing and should not be used in conjunction with mision-critical equipment or applications. Any performance specifications are believed to be reliable but are not verified, and Buyer must conduct and complete all performance and other testing of the products, alone and together with, or installed in, any end-products. Buyer shall not rely on any data and performance specifications or parameters provided by Microsemi. It is the Buyer's responsibility to indpendently determine suitability of any products and to test and verify the same. The information provided by Microsemi des not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other IP rights, whether with regard to such information itself or anything described by such information. Information provided in this document is provider by such information. Information provided in this document is provider any time without notice.

Microsemi, a wholly owned subsidiary of Microchip Technology Inc. (Nasdaq: MCHP), offers a comprehensive portfolio of semiconductor and system solutions for aerospace & defense, communications, data center and industrial markets. Products include high-performance and radiation-hardened analog mixed-signal integrated circuits, FPGAS, SoCs and ASICs; power management products; timing and synchronization devices and precise time solutions; security technologies and scalable anti-tamper products; thermet solutions; discrete components; enterprise storage and communication solutions; security technologies and scalable anti-tamper products; thermet solutions; Power-over-Ethernet ICs and midspans; as well as custom design capabilities and services. Microsemi is headquartered in Aliso Viejo, California, and has approximately 4,800 employees globally. Learn more at www microsemi.com.

51700141