

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

ĿXFl

Product Status	Active
Number of LABs/CLBs	-
Number of Logic Elements/Cells	192000
Total RAM Bits	13619200
Number of I/O	300
Number of Gates	-
Voltage - Supply	0.97V ~ 1.08V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	536-LFBGA, CSPBGA
Supplier Device Package	536-CSPBGA (16x16)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/mpf200t-fcsg536i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

6.2.1 DC Characteristics over Recommended Operating Conditions

The following table lists the DC characteristics over recommended operating conditions.

Parameter	Symbol	Min	Max	Unit	Condition
Input pin capacitance ¹	C _{IN} (dedicated GPIO)		5.6	pf	
	CIN (GPIO)		5.6	pf	
	CIN (HSIO)		2.8	pf	
Input or output leakage current per pin	I∟ (GPIO)		10	μΑ	I/O disabled, high – Z
	I∟ (HSIO)		10	μΑ	I/O disabled, high – Z
Input rise time (10%–90% of V_{DDix}) ^{2, 3, 4}	Trise	0.66	2.64	ns	V _{DDIx} = 3.3 V
Input rise time (10%–90% of V_{DDix}) ^{2, 3, 4}	_	0.50	2.00	ns	$V_{DDIx} = 2.5 V$
Input rise time (10%–90% of V_{DDix}) ^{2, 3, 4}	_	0.36	1.44	ns	V _{DDix} = 1.8 V
Input rise time (10%–90% of V_{DDix}) ^{2, 3, 4}		0.30	1.20	ns	V _{DDIx} = 1.5 V
Input rise time (10%–90% of V_{DDix}) ^{2, 3, 4}	_	0.24	0.96	ns	V _{DDIx} = 1.2 V
Input fall time (90%–10% of V_{DDIx}) ^{2, 3, 4}	TFALL	0.66	2.64	ns	V _{DDix} = 3.3 V
Input fall time (90%–10% of V_{DDIx}) ^{2, 3, 4}		0.50	2.00	ns	V _{DDIx} = 2.5 V
Input fall time (90%–10% of V_{DDIx}) ^{2, 3, 4}	_	0.36	1.44	ns	V _{DDIx} = 1.8 V
Input fall time (90%–10% of V_{DDIx}) ^{2, 3, 4}	_	0.30	1.20	ns	V _{DDix} = 1.5 V
Input fall time (90%–10% of V_{DDIx}) ^{2, 3, 4}		0.24	0.96	ns	V _{DDIx} = 1.2 V
Pad pull-up when $V_{IN} = 0^5$	Ipu	137	220	μΑ	V _{DDIx} = 3.3 V
Pad pull-up when $V_{IN} = 0^5$	_	102	166	μΑ	V _{DDIx} = 2.5 V
Pad pull-up when $V_{IN} = 0$	_	68	115	μΑ	V _{DDIx} = 1.8 V
Pad pull-up when $V_{IN} = 0$		51	88	μΑ	V _{DDIx} = 1.5 V
Pad pull-up when $V_{IN} = 0^6$	_	29	73	μΑ	V _{DDix} = 1.35 V
Pad pull-up when $V_{IN} = 0$	_	16	46	μΑ	V _{DDix} = 1.2 V
Pad pull-down when V_{IN} = 3.3 V ⁵	IPD	65	187	μΑ	V _{DDix} = 3.3 V
Pad pull-down when V_{IN} = 2.5 V ⁵	_	63	160	μΑ	V _{DDix} = 2.5 V
Pad pull-down when V_{IN} = 1.8 V	_	60	117	μΑ	V _{DDix} = 1.8 V
Pad pull-down when V_{IN} = 1.5 V	_	57	95	μΑ	V _{DDix} = 1.5 V
Pad pull-down when V_{IN} = 1.35 V	_	52	86	μΑ	V _{DDix} = 1.35 V
Pad pull-down when $V_{IN} = 1.2 V$	_	47	79	μA	V _{DDIx} = 1.2 V

Table 5 • DC Characteristics over Recommended Operating Conditions

1. Represents the die input capacitance at the pad not the package.

- 2. Voltage ramp must be monotonic.
- 3. Numbers based on rail-to-rail input signal swing and minimum 1 V/ns and maximum 4 V/ns. These are to be used for input delay measurement consistency.
- 4. I/O signal standards with smaller than rail-to-rail input swings can use a nominal value of 200 ps 20%–80% of swing and maximum value of 500 ps 20%–80% of swing.
- 5. GPIO only.

6.2.2 Maximum Allowed Overshoot and Undershoot

During transitions, input signals may overshoot and undershoot the voltage shown in the following table. Input currents must be limited to less than 100 mA per latch-up specifications.

The maximum overshoot duration is specified as a high-time percentage over the lifetime of the device. A DC signal is equivalent to 100% of the duty-cycle.

The following table shows the maximum AC input voltage (V_{IN}) overshoot duration for HSIO.

AC (VIN) Overshoot Duration as % at TJ = 100 °C	Condition (V)
100	1.8
100	1.85
100	1.9
100	1.95
100	2
100	2.05
100	2.1
100	2.15
100	2.2
90	2.25
30	2.3
7.5	2.35
1.9	2.4

Table 6 • Maximum Overshoot During Transitions for HSIO

Note: Overshoot level is for VDDI at 1.8 V.

The following table shows the maximum AC input voltage (V_{IN}) undershoot duration for HSIO.

AC (V _I N) Undershoot Duration as % at T₁ = 100 °C	Condition (V)
100	-0.05
100	-0.1
100	-0.15
100	-0.2
100	-0.25
100	-0.3
100	-0.35
100	-0.4
44	-0.45
14	-0.5
4.8	-0.55
1.6	-0.6

Table 7 • Maximum Undershoot During Transitions for HSIO

The following table shows the maximum AC input voltage (V_{IN}) overshoot duration for GPIO.

VICM^{1,3} VICM^{1,3} VICM^{1,3} I/O Bank VICM_RANGE VID² Vid Vid Standard Туре Libero Setting Min (V) Typ (V) Max (V) Min (V) Typ (V) Max (V) HCSL256 GPIO Mid (default) 0.6 1.25 2.35 0.1 0.55 1.1 Low 0.05 0.35 0.8 0.1 0.55 1.1 HCSL18⁵ HSIO Mid (default) 0.6 1.0 1.65 0.1 0.55 1.1 Low 0.05 0.4 0.8 0.1 0.55 1.1 0.6 BUSLVDSE25 GPIO Mid (default) 1.25 2.35 0.05 0.1 VDDIn 0.05 0.8 0.05 0.4 0.1 VDDIn Low MLVDSE25 GPIO Mid (default) 2.4 0.6 1.25 2.35 0.05 0.35 0.05 0.05 0.35 Low 0.4 0.8 2.4 LVPECL33 GPIO Mid (default) 0.6 1.65 2.35 0.05 0.8 2.4 Low 0.05 0.4 0.8 0.05 0.8 2.4 LVPECLE33 0.6 0.05 0.8 GPIO Mid (default) 1.65 2.35 2.4 0.05 0.4 0.8 0.05 0.8 2.4 Low MIPI25 GPIO Mid (default) 0.6 1.25 2.35 0.05 0.2 0.3 0.2 Low 0.05 0.8 0.05 0.2 0.3

- 1. VICM is the input common mode.
- 2. V_{ID} is the input differential voltage.
- 3. VICM rules are as follows:
 - a. VICM must be less than $V_{DDI} 0.4 V$;
 - b. $V_{ICM} + V_{ID}/2$ must be $\langle V_{DDI} + 0.4 V$;
 - c. $V_{ICM} V_{ID}/2$ must be >VSS 0.3 V;
 - d. Any differential input with V_{ICM} ≤0.6 V requires the low common mode setting in Libero (VICM_RANGE=LOW).
- 4. VDDI = 1.8 V, VDDAUX = 2.5 V.
- 5. HSIO receiver only.
- 6. GPIO receiver only.

Table 15 • Differential DC Output Levels

I/O Standard	Bank Type	V _{осм} 1 Min (V)	Vосм Тур (V)	V _{осм} Max (V)	Vod² Min (V)	Vop² Typ (V)	Vod² Max (V)
LVDS33	GPIO		1.2		0.25	0.35	0.45
LVDS25	GPIO		1.2		0.25	0.35	0.45
LCMDS33	GPIO		0.6		0.25	0.35	0.45
LCMDS25	GPIO		0.6		0.25	0.35	0.45
RSDS33	GPIO		1.2		0.17	0.2	0.23
RSDS25	GPIO		1.2		0.17	0.2	0.23
MINILVDS33	GPIO		1.2		0.3	0.4	0.6
MINILVDS25	GPIO		1.2		0.3	0.4	0.6
SUBLVDS33	GPIO		0.9		0.1	0.15	0.3
SUBLVDS25	GPIO		0.9		0.1	0.15	0.3
PPDS33	GPIO		0.8		0.17	0.2	0.23
PPDS25	GPIO		0.8		0.17	0.2	0.23
SLVSE15 ³	GPIO, HSIO		0.2		0.12	0.135	0.15
BUSLVDSE25 ³	GPIO		1.25		0.24	0.262	0.272

I/O Standard	Bank Type	Vосм ¹ Min (V)	Vосм Тур (V)	V _{осм} Max (V)	Voo² Min (V)	Vo⊳² Typ (V)	Vod² Max (V)
MLVDSE25 ³	GPIO		1.25		0.396	0.442	0.453
LVPECLE33 ³	GPIO		1.65		0.664	0.722	0.755
MIPIE25 ³	GPIO		0.25		0.1	0.22	0.3

1. VOCM is the output common mode voltage.

2. Vod is the output differential voltage.

3. Emulated output only.

6.3.3 Complementary Differential DC Input and Output Levels

The following tables list the complementary differential DC I/O levels.

Table 16 • Complementary Differential DC Input Levels

I/O Standard	Vooi Min (V)	V _{DDI} Typ (V)	Vodi Max (V)	V _{ісм^{1,3} Min (V)}	V _{ICM^{1,3} Тур (V)}	V _{ICM^{1,3} Max (V)}	Vı⊳² Min (V)	Vı⊳ Max (V)
SSTL25I	2.375	2.5	2.625	1.164	1.250	1.339	0.1	
SSTL25II	2.375	2.5	2.625	1.164	1.250	1.339	0.1	
SSTL18I	1.71	1.8	1.89	0.838	0.900	0.964	0.1	
SSTL18II	1.71	1.8	1.89	0.838	0.900	0.964	0.1	
SSTL15I	1.425	1.5	1.575	0.698	0.750	0.803	0.1	
SSTL15II	1.425	1.5	1.575	0.698	0.750	0.803	0.1	
SSTL135I	1.283	1.35	1.418	0.629	0.675	0.723	0.1	
SSTL135II	1.283	1.35	1.418	0.629	0.675	0.723	0.1	
HSTL15I	1.425	1.5	1.575	0.698	0.750	0.803	0.1	
HSTL15II	1.425	1.5	1.575	0.698	0.750	0.803	0.1	
HSTL135I	1.283	1.35	1.418	0.629	0.675	0.723	0.1	
HSTL135II	1.283	1.35	1.418	0.629	0.675	0.723	0.1	
HSTL12I	1.14	1.2	1.26	0.559	0.600	0.643	0.1	
HSUL18I	1.71	1.8	1.89	0.838	0.900	0.964	0.1	
HSUL18II	1.71	1.8	1.89	0.838	0.900	0.964	0.1	
HSUL12I	1.14	1.2	1.26	0.559	0.600	0.643	0.1	
POD12I	1.14	1.2	1.26	0.787	0.840	0.895	0.1	
POD12II	1.14	1.2	1.26	0.787	0.840	0.895	0.1	

1. $V_{\mbox{\scriptsize ICM}}$ is the input common mode voltage.

2. V_{ID} is the input differential voltage.

3. VICM rules are as follows:

- a. VICM must be less than VDDI -0.4V;
- b. $V_{ICM} + V_{ID}/2$ must be $\langle V_{DDI} + 0.4 V$;
- c. $V_{ICM} V_{ID}/2$ must be >VSS 0.3 V.

I/O Standard	Vooi Min (V)	VDDI Typ (V)	VDDI Max (V)	Vol Min (V)	VoL Max (V)	V _{он^{1,3} Min (V)}	lo⊦² Min (mA)	Іон² Min (mA)
SSTL25I	2.375	2.5	2.625		Vtt – 0.608	Vπ + 0.608	8.1	8.1
SSTL25II	2.375	2.5	2.625		VTT – 0.810	Vπ + 0.810	16.2	16.2
SSTL18I	1.71	1.8	1.89		VTT – 0.603	Vπ + 0.603	6.7	6.7
SSTL18II	1.71	1.8	1.89		Vπ – 0.603	Vπ + 0.603	13.4	13.4
SSTL15I ⁴	1.425	1.5	1.575		$0.2 \times V_{\text{DDI}}$	$0.8 \times V_{\text{DDI}}$	Vol/40	(V _{DDI} – V _{OH})/40
SSTL15II ⁴	1.425	1.5	1.575		$0.2 \times V_{\text{DDI}}$	$0.8 \times V_{\text{DDI}}$	Vol/34	(V _{DDI} – V _{OH})/34
SSTL135I ⁴	1.283	1.35	1.418		$0.2 \times V_{\text{DDI}}$	$0.8 \times V_{\text{DDI}}$	Vol/40	(V _{DDI} – V _{OH})/40
SSTL135II ⁴	1.283	1.35	1.418		$0.2 \times V_{\text{DDI}}$	$0.8 \times V_{\text{DDI}}$	Vol/34	(Vddi – Vон)/34
HSTL15I	1.425	1.5	1.575		0.4	V _{DDI} - 0.4	8	8
HSTL15II	1.425	1.5	1.575		0.4	V _{DDI} - 0.4	16	16
HSTL135I ⁴	1.283	1.35	1.418		$0.2 \times V_{\text{DDI}}$	$0.8 \times V_{\text{DDI}}$	Vol/50	(Vddi – Vон)/50
HSTL135II ⁴	1.283	1.35	1.418		$0.2 \times V_{\text{DDI}}$	$0.8 \times V_{\text{DDI}}$	Vol/25	(Vррі – Vон)/25
HSTL12I ⁴	1.14	1.2	1.26		$0.1 \times V_{\text{DDI}}$	$0.9 \times V_{\text{DDI}}$	Vol/50	(Vddi – Vон)/50
HSUL18I ⁴	1.71	1.8	1.89		$0.1 \times V_{\text{DDI}}$	$0.9 \times V_{\text{DDI}}$	Vol/55	(Vddi – Vон)/55
HSUL18II ⁴	1.71	1.8	1.89		$0.1 \times V_{\text{DDI}}$	$0.9 \times V_{\text{DDI}}$	Vol/25	(Vррі – Vон)/25
HSUL12I ⁴	1.14	1.2	1.26		$0.1 \times V_{\text{DDI}}$	$0.9 \times V_{\text{DDI}}$	Vol/40	(V _{DDI} – V _{OH})/40
POD12I ^{3,4}	1.14	1.2	1.26		$0.5 \times V_{\text{DDI}}$		Vol/48	(V _{DDI} – V _{OH})/48
POD12II ^{3,4}	1.14	1.2	1.26		$0.5 \times V_{\text{DDI}}$		Vol/34	(V _{DDI} – V _{OH})/34

Table 17 • Complementary Differential DC Output Levels

1. V_{OH} is the single-ended high-output voltage.

- 2. The total DC sink/source current of all IOs within a lane is limited as follows:
 - a. HSIO lane: 120 mA per 12 IO buffers.
 - b. GPIO lane: 160 mA per 12 IO buffers
- 3. VOH_MAX based on external pull-up termination (pseudo-open drain).
- 4. IoL/IOH units for impedance standards in amps (not mA).

6.3.4 HSIO On-Die Termination

The following tables lists the on-die termination calibration accuracy specifications for HSIO bank.

Table 18 • Single-Ended Thevenin Termination (Internal Parallel Thevenin Termination)

Min (%)	Тур	Max (%)	Unit	Condition
-40	50	20	Ω	V _{DDI} = 1.8 V/1.5 V/1.35 V/1.2 V
-40	75	20	Ω	V _{DDI} = 1.8 V
-40	150	20	Ω	V _{DDI} = 1.8 V
-20	20	20	Ω	V _{DDI} = 1.5 V/1.35 V
-20	30	20	Ω	V _{DDI} = 1.5 V/1.35 V
-20	40	20	Ω	V _{DDI} = 1.5 V/1.35 V
-20	60	20	Ω	V _{DDI} = 1.5 V/1.35 V
-20	120	20	Ω	V _{DDI} = 1.5 V/1.35 V

PolarFire

а 🐼 Міскоснір company

Standard	Description	٧L1	VH1	VID ²	VICM ²	Vmeas ^{3, 4}	VREF ^{1, 5}	Un
HSUL18I	HSUL 1.8 V Class I	V _{REF} – 0.54	V _{REF} + 0.54			VREF	0.90	V
HSUL18II	HSUL 1.8 V Class II	V _{REF} –	V _{REF} +			Vref	0.90	V
HSUL12	HSUL 1.2 V	V _{REF} –	V _{REF} +			Vref	0.60	V
		.22	.22					
POD12I	Pseudo open drain (POD) logic 1.2 V Class I	Vref – .15	V _{REF} + .15			Vref	0.84	V
POD12II	POD 1.2 V Class II	V _{REF} – .15	V _{REF} + .15			Vref	0.84	V
LVDS33	Low-voltage differential signaling (LVDS) 3.3 V	V _{ICM} – .125	V _{ICM} + .125	0.250	1.250	0		V
LVDS25	LVDS 2.5 V	Vісм – .125	V _{ICM} + .125	0.250	1.250	0		V
LVDS18	LVDS 1.8 V	V _{ICM} – .125	V _{ICM} + .125	0.250	0.900	0		V
RSDS33	RSDS 3.3 V	V _{ICM} – .125	V _{ICM} + .125	0.250	1.250	0		V
RSDS25	RSDS 2.5 V	V _{ICM} – .125	V _{ICM} + .125	0.250	1.250	0		V
RSDS18	RSDS 1.8 V	Vісм – .125	V _{ICM} + .125	0.250	1.250	0		V
MINILVDS33	Mini-LVDS 3.3 V	V _{ICM} – .125	V _{ICM} + .125	0.250	1.250	0		V
MINILVDS25	Mini-LVDS 2.5 V	V _{ICM} – .125	V _{ICM} + .125	0.250	1.250	0		V
MINILVDS18	Mini-LVDS 1.8 V	V _{ICM} – .125	V _{ICM} + .125	0.250	1.250	0		V
SUBLVDS33	Sub-LVDS 3.3 V	V _{ICM} – .125	V _{ICM} + .125	0.250	0.900	0		V
SUBLVDS25	Sub-LVDS 2.5 V	V _{ICM} – .125	V _{ICM} + .125	0.250	0.900	0		V
SUBLVDS18	Sub-LVDS 1.8 V	Vісм – .125	V _{ICM} + .125	0.250	0.900	0		V
PPDS33	Point-to-point differential signaling 3.3 V	V _{ICM} – .125	V _{ICM} + .125	0.250	0.800	0		V
PPDS25	PPDS 2.5 V	Vісм – .125	V _{ICM} + .125	0.250	0.800	0		V
PPDS18	PPDS 1.8 V	Vісм – .125	V _{ICM} + .125	0.250	0.800	0		V
SLVS33	Scalable low- voltage signaling	V _{ICM} – .125	V _{ICM} + .125	0.250	0.200	0		V

PolarFire

_

Standard	Description	VL1	VH1	Vid2	VICM ²	Vmeas ^{3, 4}	Vref ^{1, 5}	Unit
SLVS25	SLVS 2.5 V	V _{ICM} – .125	V _{ICM} + .125	0.250	0.200	0		V
SLVS18	SLVS 1.8 V	V _{ICM} – .125	V _{ICM} + .125	0.250	0.200	0		V
HCSL33	High-speed current steering logic (HCSL) 3.3 V	Vісм – .125	V _{ICM} + .125	0.250	0.350	0		V
HCSL25	HCSL 2.5 V	V _{ICM} — .125	V _{ICM} + .125	0.250	0.350	0		V
HCSL18	HCSL 1.8 V	V _{ICM} – .125	V _{ICM} + .125	0.250	0.350	0		V
BLVDSE25 ⁶	Bus LVDS 2.5 V	V _{ICM} — .125	V _{ICM} + .125	0.250	1.250	0		V
MLVDSE256	Multipoint LVDS 2.5 V	Vісм – .125	Vісм + .125	0.250	1.250	0		V
LVPECL33	Low-voltage positive emitter coupled logic	V _{ICM} — .125	V _{ICM} + .125	0.250	1.650	0		V
LVPECLE336	Low-voltage positive emitter coupled logic	V _{ICM} — .125	V _{ICM} + .125	0.250	1.650	0		V
SSTL25I	Differential SSTL 2.5 V Class I	V _{ICM} — .125	V _{ICM} + .125	0.250	1.250	0		V
SSTL25II	Differential SSTL 2.5 V Class II	Vісм — .125	Vісм + .125	0.250	1.250	0		V
SSTL18I	Differential SSTL 1.8 V Class I	V _{ICM} — .125	V _{ICM} + .125	0.250	0.900	0		V
SSTL18II	Differential SSTL 1.8 V Class II	V _{ICM} — .125	V _{ICM} + .125	0.250	0.900	0		V
SSTL15	Differential SSTL 1.5 V Class I	V _{ICM} — .125	V _{ICM} + .125	0.250	0.750	0		V
SSTL135	Differential SSTL 1.5 V Class II	V _{ICM} — .125	VICM + .125	0.250	0.750	0		V
HSTL15I	Differential HSTL 1.5 V Class I	V _{ICM} — .125	V _{ICM} + .125	0.250	0.750	0		V
HSTL15II	Differential HSTL 1.5 V Class II	V _{ICM} – .125	V _{ICM} + .125	0.250	0.750	0		V
HSTL135I	Differential HSTL 1.35 V Class I	V _{ICM} – .125	V _{ICM} + .125	0.250	0.675	0		V

PolarFire

Standard	Description	Rref (Ω)	Cref (pF)	Vmeas (V)	Vref (V)
SSTL18I	SSTL 1.8 V Class I	50	0	VREF	0.9
SSTL18II	SSTL 1.8 V Class II	50	0	VREF	0.9
SSTL15I	SSTL 1.5 V Class I	50	0	VREF	0.75
SSTL15II	SSTL 1.5 V Class II	50	0	VREF	0.75
SSTL135I	SSTL 1.35 V Class I	50	0	Vref	0.675
SSTL135II	SSTL 1.35 V Class II	50	0	VREF	0.675
HSTL15I	High-speed transceiver logic (HSTL) 1.5 V Class I	50	0	Vref	0.75
HSTL15II	HSTL 1.5 V Class II	50	0	VREF	0.75
HSTL135I	HSTL 1.35 V Class I	50	0	VREF	0.675
HSTL135II	HSTL 1.35 V Class II	50	0	VREF	0.675
HSTL12	HSTL 1.2 V	50	0	VREF	0.6
HSUL18I	High-speed unterminated logic 1.8 V Class I	50	0	Vref	0.9
HSUL18II	HSUL 1.8 V Class II	50	0	VREF	0.9
HSUL12	HSUL 1.2 V	50	0	VREF	0.6
POD12I	Pseudo open drain (POD) logic 1.2 V Class I	50	0	Vref	0.84
POD12II	POD 1.2 V Class II	50	0	VREF	0.84
LVDS33	LVDS 3.3 V	100	0	01	0
LVDS25	LVDS 2.5 V	100	0	01	0
LVDS18	LVDS 1.8 V	100	0	01	0
RSDS33	Reduced swing differential signaling 3.3 V	100	0	01	0
RSDS25	RSDS 2.5 V	100	0	01	0
RSDS18	RSDS 1.8 V	100	0	01	0
MINILVDS33	Mini-LVDS 3.3 V	100	0	01	0
MINILVDS25	Mini-LVDS 2.5 V	100	0	01	0
SUBLVDS33	Sub-LVDS 3.3 V	100	0	01	0
SUBLVDS25	Sub-LVDS 2.5 V	100	0	01	0
PPDS33	Point-to-point differential signaling 3.3 V	100	0	01	0
PPDS25	PPDS 2.5 V	100	0	01	0
BUSLVDSE25	Bus LVDS	100	0	01	0
MLVDSE25	Multipoint LVDS 2.5 V	100	0	01	0
LVPECLE33	Low-voltage positive emitter-coupled logic	100	0	01	0
MIPIE25	Mobile industry processor interface 2.5 V	100	0	01	0

1. The value given is the differential output voltage.

Parameter	Symbol	Min	Тур	Max	Unit
Maximum input period clock jitter (reference and feedback clocks) ²	Fmaxinj		120	1000	ps
PLL VCO frequency	Fvco	800		5000	MHz
Loop bandwidth (Int) ³	Fвw	Fphdet/55	FPHDET/44	Fphdet/30	MHz
Loop bandwidth (FRAC) ³	Fвw	Б рндет /91	FPHDET/77	Fphdet/56	MHz
Static phase offset of the PLL outputs⁴	Тѕро			Max (±60 ps, ±0.5 degrees)	ps
	TOUTJITTER				ps
PLL output duty cycle precision	Τουτρυτγ	48		54	%
PLL lock time ⁵	Тьоск			Max (6.0 μs, 625 PFD cycles)	μs
PLL unlock time ⁶	Tunlock	2		8	PFD cycles
PLL output frequency	Fout	0.050		1250	MHz
Minimum reset pulse width	TMRPW				μs
Maximum delay in the feedback path ⁷	Fmaxdfb			1.5	PFD cycles
Spread spectrum modulation spread ⁸	Mod_Spread	0.1		3.1	%
Spread spectrum modulation frequency ⁹	Mod_Freq	Fphdetf/(128x63)	32	Fphdetf/(128)	KHz

1. Minimum time for high or low pulse width.

- 2. Maximum jitter the PLL can tolerate without losing lock.
- 3. Default bandwidth setting of BW_PROP_CTRL = "01" for Integer and Fraction modes leads to the typical estimated bandwidth. This bandwidth can be lowered by setting BW_PROP_CTRL = "00" and can be increased if BW_PROP_CTRL = "10" and will be at the highest value if BW_PROP_CTRL = "11".
- 4. Maximum (±3-Sigma) phase error between any two outputs with nominally aligned phases.
- Input clock cycle is REFDIV/FREF. For example, FREF = 25 MHz, REFDIV = 1, lock time = 10.0 (assumes LOCKCOUNTSEL setting = 4'd8 (256 cycles)).
- 6. Unlock occurs if two cycle slip within LOCKCOUNT/4 PFD cycles.
- 7. Maximum propagation delay of external feedback path in deskew mode.
- 8. Programmable capability for depth of down spread or center spread modulation.
- 9. Programmable modulation rate based on the modulation divider setting (1 to 63).

Note: In order to meet all data sheet specifications, the PLL must be programmed such that the PLL Loop Bandwidth < (0.0017 * VCO Frequency) - 0.4863 MHz. The Libero PLL configuration tool will enforce this rule when creating PLL configurations.

7.2.3 DLL

The following table provides information about DLL.

Table 38 • DLL Electrical Characteristics

Parameter ¹	Symbol	Min	Тур	Max	Unit
Input reference clock frequency	FINF	133		800	MHz
Input feedback clock frequency	Finfdbf	133		800	MHz
Primary output clock frequency	FOUTPF	133		800	MHz

Parameter ¹	Symbol	Min	Тур	Max	Unit
Secondary output clock frequency ²	Foutsf	33.3		800	MHz
Input clock cycle-to-cycle jitter	Finj			200	ps
Output clock period cycle-to-cycle jitter (w/clean input)	Toutjitterp			300	ps
Output clock-to-clock skew between two outputs with the same phase settings	Тѕкеw			±200	ps
DLL lock time	Тьоск	16		16K	Reference clock cycles
Minimum reset pulse width	Tmrpw	3			ns
Minimum input pulse width ³	TMIPW	20			ns
Minimum input clock pulse width high	Тмрwн	400			ps
Minimum input clock pulse width low	TMPWL	400			ps
Delay step size	Tdel	12.7	30	35	ps
Maximum delay block delay ⁴	TDELMAX	1.8		4.8	ns
Output clock duty cycle (with 50% duty cycle input) ⁵	TDUTY	40		60	%
Output clock duty cycle (in phase reference mode) ⁵	TDUTY50	45		55	%

- 1. For all DLL modes.
- 2. Secondary output clock divided by four option.
- 3. On load, direction, move, hold, and update input signals.
- 4. 128 delay taps in one delay block.
- 5. Without duty cycle correction enabled.

7.2.4 RC Oscillators

_

The following tables provide internal RC clock resources for user designs and additional information about designing systems with RF front end information about emitters generated on-chip to support programming operations.

Table 39 • 2 MHz RC Oscillator Electrical Characteristics

Parameter	Symbol	Min	Тур	Max	Unit
Operating frequency	RC _{2FREQ}		2		MHz
Accuracy	RC2FACC	-4		4	%
Duty cycle	RC _{2DC}	46		54	%
Peak-to-peak output period jitter	RC _{2PJIT}		5	10	ns
Peak-to-peak output cycle-to-cycle jitter	RC _{2CJIT}		5	10	ns
Operating current (VDD25)	RC2IVPPA			60	μA
Operating current (VDD)	RC _{2IVDD}			2.6	μA

Table 40 • 160 MHz RC Oscillator Electrical Characteristics

Parameter	Symbol	Min	Тур	Max	Unit
Operating frequency	RCSCFREQ		160		MHz
Accuracy	RCSCFACC	-4		4	%
Duty cycle	RCscdc	47		52	%
Peak-to-peak output period jitter	RCscpjit			600	ps
Peak-to-peak output cycle-to-cycle jitter	RCsccjit			172	ps
Operating current (V _{DD25})	RCscvppa			599	μA

Parameter	Symbol	Min	Тур	Max	Unit
Operating current (VDD18)	RCscvpp			0.1	μΑ
Operating current (VDD)	RCscvdd			60.7	μΑ

- 5. Improved jitter characteristics for a specific industry standard are possible in many cases due to improved reference clock or higher V_{co} rate used.
- 6. Tx jitter is specified with all transmitters on the device enabled, a 10–12-bit error rate (BER) and Tx data pattern of PRBS7.
- 7. From the PMA mode, the TX_ELEC_IDLE port to the XVCR TXP/N pins.
 FTxRefClk = 75 MHz with typical settings.
 For data rates greater than 10.3125 Gbps, VDDA must be set to 1.05 V mode. See supply tolerance in the section Recommended Operating Conditions (see page 6). (see page 6)

7.4.6 Receiver Performance

The following table describes performance of the receiver.

Table 53 • PolarFire Transceiver Receiver Characteristics

Parameter	Symbol	Min	Тур	Max	Unit	Condition
Input voltage range	VIN	0		V _{DDA} + 0.3	V	
Differential peak-to-peak amplitude	VIDPP	140		1250	mV	
Differential termination	VITERM		85		Ω	
	VITERM		100		Ω	
	VITERM		150		Ω	
Common mode voltage	VICMDC 1	$0.7 \times V_{\text{DDA}}$		$0.9 \times V_{\text{DDA}}$	V	DC coupled
Exit electrical idle detection time	Teidet		50	100	ns	
Run length of consecutive identical digits (CID)	CID			200	UI	
CDR PPM tolerance ²	CDRPPM			1.15	% UI	
CDR lock-to-data time	TLTD				CDR _{REFCLK}	
CDR lock-to-ref time	Tltf				CDR _{REFCLK}	
Loss-of-signal detect (Peak	VDETLHIGH				mV	Setting = 1
Detect Range setting = high) ⁹	VDETLHIGH				mV	Setting = 2
	VDETLHIGH				mV	Setting = 3
	VDETLHIGH				mV	Setting = 4
	VDETLHIGH				mV	Setting = 5
	Vdetlhigh				mV	Setting = 6
	VDETLHIGH				mV	Setting = 7
Loss-of-signal detect (Peak	VDETLOW	65		175	mV	Setting = PCle ^{3,7}
Detect Range setting = low) ⁹	VDETLOW	95		190	mV	Setting = SATA ^{4,8}
	VDETLOW	75		170	mV	Setting = 1
	VDETLOW	95		185	mV	Setting = 2
	VDETLOW	100		190	mV	Setting = 3
	VDETLOW	140		210	mV	Setting = 4
	VDETLOW	155		240	mV	Setting = 5
	VDETLOW	165		245	mV	Setting = 6
	VDETLOW	170		250	mV	Setting = 7
Sinusoidal jitter tolerance	Tsjtol				UI	>8.5 Gbps – 12.7 Gbps ^{5, 10}

7.6.1 FPGA Programming Cycle and Retention

The following table describes FPGA programming cycle and retention.

Programming T	Programming Cycles, Max	Retention Years	Retention Years at T
0 °C to 85 °C	1000	20	85 °C
0 °C to 100 °C	500	20	100 °C
–20 °C to 100 °C	500	20	100 °C
–40 °C to 100 °C	500	20	100 °C
–40 °C to 85 °C	1000	16	100 °C
–40 °C to 55 °C	2000	12	100 °C

Table 68 • FPGA Programming Cycles vs Retention Characteristics

Note: Power supplied to the device must be valid during programming operations such as programming and verify . Programming recovery mode is available only for in-application programming mode and requires an external SPI flash.

7.6.2 FPGA Programming Time

The following tables describe FPGA programming time.

Table 69 • Master SPI Programming Time (IAP)

Parameter	Symbol	Devices	Тур	Max	Unit
Programming time	TPROG	MPF100T, TL, TS, TLS			S
	_	MPF200T, TL, TS, TLS	17	25	S
	—	MPF300T, TL, TS, TLS	26	32	S
	_	MPF500T, TL, TS, TLS			S

Table 70 • Slave SPI Programming Time

Parameter	Symbol	Devices	Тур	Max	Unit
Programming time	Tprog	MPF100T, TL, TS, TLS			S
	_	MPF200T, TL, TS, TLS	411		S
	-	MPF300T, TL, TS, TLS	50 ¹	60	S
	-	MPF500T, TL, TS, TLS			S

1. SmartFusion2 with MSS running at 100 MHz, MSS_SPI_0 port running at 6.67 MHz. Bitstream stored in DDR. DirectC version 4.1.

Table 71 • JTAG Programming Time

Parameter	Symbol	Devices	Тур	Max	Unit
Programming time	TPROG	MPF100T, TL, TS, TLS			S
		MPF200T, TL, TS, TLS		56	S
		MPF300T, TL, TS, TLS ¹		95	S
		MPF500T, TL, TS, TLS			S

1. Programmer: FlashPro5 with TCK 10 MHz. PC Configuration: Intel i7 at 3.6 GHz, 32 GB RAM, Windows 10.

7.6.3 FPGA Bitstream Sizes

The following table describes FPGA bitstream sizes.

Table 72 • Initialization Client Sizes

Device	Plaintext	Ciphertext
MPF100T, TL, TS, TLS		
MPF200T, TL, TS, TLS	2916 KB	3006 KB
MPF300T, TL, TS, TLS	4265 KB	4403 KB
MPF500T, TL, TS, TLS		

Note: Worst case initializing all fabric LSRAM, USRAM, and UPROM.

Table 73 • Bitstream Sizes

File	Devices	FPGA	Security	SNVM (all pages)	FPGA+ SNVM	FPGA+ Sec	SNVM+ Sec	FPGA+ SNVM+ Sec
SPI	MPF100T, TL, TS, TLS							
DAT	MPF100T, TL, TS, TLS							
SPI	MPF200T, TL, TS, TLS	5.9 MB	3.4 KB	59.7 KB	5.9 MB	5.9 MB	62.2 KB	6.0 MB
DAT	MPF200T, TL, TS, TLS	5.9 MB	7.3 KB	61.2 KB	6.0 MB	5.9 MB	66.3 KB	6.0 MB
SPI	MPF300T, TL, TS, TLS	9.3 MB	3.5 KB	59.7 KB	9.6 MB	9.5 MB	62.2 KB	9.6 MB
DAT	MPF300T, TL, TS, TLS	9.3 MB	7.6 KB	61.2 KB	9.6 MB	9.5 MB	66.3 KB	9.6 MB
SPI	MPF500T, TL, TS, TLS							
DAT	MPF500T, TL, TS, TLS							

7.6.4 Digest Cycles

Digests verify the integrity of the programmed non-volatile data. Digests are a cryptographic hash of various data areas. Any digest that reports back an error raises the digest tamper flag.

Retention Since Programmed (N = Number Digests During that Time) ¹										
Digest Ti	Storage and Operating T	N ≤300	N = 500	N = 1000	N = 1500	N = 2000	N = 4000	N = 6000	Unit	Retention
–40 to 100	-40 to 100	20× LF	17× LF	12 × LF	10× LF	8× LF	4× LF	2 × LF	°C	Years
–40 to 100	0 to 100	20× LF	17× LF	12 × LF	10× LF	8× LF	4× LF	2 × LF	°C	Years
–40 to 85	–40 to 85	20× LF	20 × LF	20× LF	20× LF	16× LF	8× LF	4 × LF	°C	Years
–40 to 55	–40 to 55	20× LF	20× LF	20× LF	20× LF	20× LF	20× LF	20× LF	°C	Years

Table 74 • Maximum Number of Digest Cycles

1. LF = Lifetime factor as defined by the number of programming cycles the device has seen under the conditions listed in the following table.

Parameter	Тур	Max	Unit	Conditions
Time to destroy data in non-volatile memory (non-recoverable) ^{1, 4}			ms	One iteration of scrubbing
Time to scrub the fabric data ¹			S	Full scrubbing
Time to scrub the pNVM data (like new) ^{1, 2}			S	Full scrubbing
Time to scrub the pNVM data (recoverable) ^{1,3}			S	Full scrubbing
Time to scrub the fabric data pNVM data (non-recoverable) $^{\scriptscriptstyle 1}$			S	Full scrubbing
Time to verify ⁵			S	

1. Total completion time after entering zeroization.

- 2. Like new mode—zeroizes user design security setting and sNVM content.
- 3. Recoverable mode—zeroizes user design security setting, sNVM and factory keys.
- 4. Non-recoverable mode—zeroizes user design security setting, sNVM and factory keys, and factory data required for programming.
- 5. Time to verify after scrubbing completes.

7.6.7 Verify Time

The following tables describe verify time.

Table 81 • Standalone Fabric Verify Times

Parameter	Devices	Max	Unit
Standalone verification over JTAG	MPF100T, TL, TS, TLS		S
	MPF200T, TL, TS, TLS	53 ¹	S
	MPF300T, TL, TS, TLS	90 ¹	S
	MPF500T, TL, TS, TLS		S
Standalone verification over SPI	MPF100T, TL, TS, TLS		S
	MPF200T, TL, TS, TLS	37 ²	S
	MPF300T, TL, TS, TLS	55²	S
	MPF500T, TL, TS, TLS		S

- 1. Programmer: FlashPro5, TCK 10 MHz; PC configuration: Intel i7 at 3.6 GHz, 32 GB RAM, Windows 10.
- 2. SmartFusion2 with MSS running at 100 MHz, MSS SPI 0 port running at 6.67 MHz. DirectC version
 - 4.1.

Notes:

- Standalone verify is limited to 2,000 total device hours ove r the industrial –40 °C to 100 °C temperature.
- Use the digest system service, for verify device time more than 2,000 hours.
- Standalone verify checks the programming margin on both the P and N gates of the push-pull cell.
 Digest checks only the P side of the push-pull gate. However, the push-pull gates work in tandem. Digest check is recommended if users believe they will exceed the 2,000-hour verify time specification.

Table 82 • Verify Time by Programming Hardware

Devices	IAP	FlashPro4	FlashPro5	BP	Silicon Sculptor	Units
MPF100T, TL, TS, TLS						
MPF200T, TL, TS, TLS	9	67	53			S
MPF300T, TL, TS, TLS	14	95	90			S

Parameter	Symbol	Тур	Max	Unit
Time from negation of RESPONSE to all I/Os re-enabled	$T_{CLR_IO_DISABLE}$	28	38	μs
Time from triggering the response to security locked	TLOCKDOWN			ns
Time from negation of RESPONSE to earlier security unlock condition	Tclr_lockdown			ns
Time from triggering the response to device enters RESET	Ttr_RESET	11.7	14	μs
Time from triggering the response to start of zeroization	Ttr_ZEROLISE	7.4	8.2	ms

7.8.5 System Controller Suspend Switching Characteristics

The following table describes the characteristics of system controller suspend switching.

Table 95 • System Controller Suspend Entry and Exit Characteristics

Parameter	Symbol	Definition	Тур	Max	Unit
Time from TRSTb falling edge to SUSPEND_EN signal assertion	Tsuspend_Tr ^{1, 2}	Suspend entry time from TRST_N assertion	42	44	ns
Time from TRSTb rising edge to ACTIVE signal assertion	Tsuspend_exit	Suspend exit time from TRST_N negation	361	372	ns

1. ACTIVE indicates that the system controller is inactive or active regardless of the state of SUSPEND_EN.

2. ACTIVE signal must never be asserted with SUSPEND_EN is asserted.

7.8.6 Dynamic Reconfiguration Interface

The following table provides interface timing information for the DRI, which is an embedded APB slave interface within the FPGA fabric that does not use FPGA resources.

Table 96 • Dynamic Reconfiguration Interface Timing Characteristics

Parameter	Symbol	Max	Unit
PCLK frequency	FPD_PCLK	200	MHz

7.9 Power-Up to Functional Timing

Microsemi non-volatile FPGA technology offers the fastest boot-time of any mid-range FPGA in the market. The following tables describes both cold-boot (from power-on) and warm-boot (assertion of DEVRST_N pin or assertion of reset from the tamper macro) timing. The power-up diagrams assume all power supplies to the device are stable.

7.9.1 Power-On (Cold) Reset Initialization Sequence

The following cold reset timing diagram shows the initialization sequencing of the device.

Figure 5 • Cold Reset Timing

Notes:

- The previous diagram showsthe case where VDDI/VDDAUX of I/O banks are powered either before
 or sufficiently soon after VDD/VDD18/VDD25 that the I/O bank enable time is measured from the
 assertion time of VDD/VDD18/VDD25 (that is, the PUFT specification). If VDDI/VDDAUX of I/O banks
 are powered sufficiently after VDD/VDD18/VDD25, then the I/O bank enable time is measured from
 the assertion of VDDI/VDDAUX and is not specified by the PUFT specification. In this case, I/O
 operation is indicated by the assertion of BANK_i_VDDI_STATUS, rather than being measured
 relative to FABRIC_POR_N negation.
- AUTOCALIB_DONE assertion indicates the completion of calibration for any I/O banks specified by the user for auto-calibration. AUTOCALIB_DONE asserts independently of DEVICE_INIT_DONE. It may assert before or after DEVICE_INIT_DONE and is determined by the following:
 - How long after VDD/VDD18/VDD25 that VDDI/VDDAUX are powered on. Note that if any of the user-specified I/O banks are not powered on within the auto-calibration timeout window, then AUTOCALIB DONE doesn't assert until after this timeout.
 - The specified ramp times of VDDI of each I/O bank designated for auto-calibration.
 - How much auto-initialization is to be performed for the PCIe, SERDES transceivers, and fabric LSRAMs.
- If any of the I/O banks specified for auto-calibration do not have their VDDI/VDDAUX powered on within the auto-calibration timeout window, then it will be approximately auto-calibrated whenever VDDI/VDDAUX is subsequently powered on. To obtain an accurate calibration however, on such IO banks, it is necessary to initiate a re-calibration (using CALIB_START from fabric).
- AVM_ACTIVE only asserts if avionics mode is being used. It is asserted when the later of DEVICE_INIT_DONE or AUTOCALIB_DONE assert.

7.9.2 Warm Reset Initialization Sequence

The following warm reset timing diagram shows the initialization sequencing of the device when either DEVRST_N or TAMPER_RESET_DEVICE signals are asserted.

7.9.4 Design Dependence of T PUFT and T WRFT

Some phases of the device initialization are user design-dependent, as the device automatically initializes certain resources to user-specified configurations if those resources are used in the design. It is necessary to compute the overall power-up to functional time by referencing the following tables and adding the relevant phases, according to the design configuration. The following equation refers to timing parameters specified in the above timing diagrams. Please note T_{PCIE}, T_{XCVR}, T_{LSRAM}, and T_{USRAM} can be found in the PolarFire FPGA device power-up and resets user guide UG0725.

TPUFT = TFAB_READY(cold) + max((TPCIE + TXCVR + TLSRAM + TUSRAM), TCALIB)

TWRFT = TFAB_READY(warm) + max((TPCIE + TXCVR + TLSRAM + TUSRAM), TCALIB)

Note: TPCIE, TXCVR, TLSRAM, TUSRAM, and TCALIB are common to both cold and warm reset scenarios.

Auto-initialization of FPGA (if required) occurs in parallel with I/O calibration. The device may be considered fully functional only when the later of these two activities has finished, which may be either one, depending on the configuration, as may be calculated from the following tables. Note that I/O calibration may extend beyond T_{PUFT} (as I/O calibration process is independent of main device power-on and is instead dependent on I/O bank supply relative power-on time and ramp times). The previous timing diagram for power-on initialization shows the earliest that I/Os could be enabled, if the I/O power supplies are powered on before or at the same time as the main supplies.

7.9.5 Cold Reset to Fabric and I/Os (Low Speed) Functional

The following table specifies the minimum, typical, and maximum times from the power supplies reaching the above trip point levels until the FPGA fabric is operational and the FPGA IOs are functional for low-speed (sub 400 MHz) operation.

Table 99 • Cold Boot

Power-On (Cold) Reset to Fabric and I/O Operational	Min	Тур	Max	Unit
Time when input pins start working – $T_{\text{IN}_\text{ACTIVE(cold)}}$	1.17	4.51	7.84	ms
Time when weak pull-ups are enabled – TPU_PD_ACTIVE(cold)	1.17	4.51	7.84	ms
Time when fabric is operational – TFAB_READY(cold)	1.20	4.54	7.87	ms
Time when output pins start driving – Tout_ACTIVE(cold)	1.22	4.56	7.89	ms

7.9.6 Warm Reset to Fabric and I/Os (Low Speed) Functional

The following table specifies the minimum, typical, and maximum times from the negation of the warm reset event until the FPGA fabric is operational and the FPGA IOs are functional for low-speed (sub 400 MHz) operation.

Table 100 • Warm Boot

Warm Reset to Fabric and I/O Operational	Min	Тур	Max	Unit
Time when input pins start working – TIN_ACTIVE(warm)	0.91	1.76	2.62	ms
Time when weak pull-ups/pull-downs are enabled – $T_{PU_PD_ACTIVE(warm)}$	0.91	1.76	2.62	ms
Time when fabric is operational – TFAB_READY(warm)	0.94	1.79	2.65	ms
Time when output pins start driving – Tout_ACTIVE(warm)	0.96	1.81	2.67	ms

7.9.7 Miscellaneous Initialization Parameters

In the following table, T_{FAB_READY} refers to either T_{FAB_READY(cold)} or T_{FAB_READY(warm)} as specified in the previous tables, depending on whether the initialization is occurring as a result of a cold or warm reset, respectively.

Table 104 • Flash*Freeze

Parameter	Symbol	Min	Тур	Max	Unit	Condition
The time from Flash*Freeze entry command to the Flash*Freeze state	Tff_entry		59		μs	
The time from Flash*Freeze exit pin assertion to fabric operational state	Tff_fabric_up		133		μs	
The time from Flash*Freeze exit pin assertion to I/Os operational	TFF_IO_ACTIVE		143		μs	

7.10 Dedicated Pins

_

The following section describes the dedicated pins.

7.10.1 JTAG Switching Characteristics

The following table describes characteristics of JTAG switching.

Table 105 • JTAG Electrical Characteristics

Symbol	Description	Min	Тур	Max	Unit	Condition
Tdisu	TDI input setup time	0.0			ns	
TDIHD	TDI input hold time	2.0			ns	
TTMSSU	TMS input setup time	1.5			ns	
Ттмянd	TMS input hold time	1.5			ns	
Fтск	TCK frequency			25	MHz	
Ттскос	TCK duty cycle	40		60	%	
Ττροςα	TDO clock to Q out			8.4	ns	C _{LOAD} = 40 pf
TRSTBCQ	TRSTB clock to Q out			23.5	ns	C _{LOAD} = 40 pf
TRSTBPW	TRSTB min pulse width	50			ns	
TRSTBREM	TRSTB removal time	0.0			ns	
TRSTBREC	TRSTB recovery time	12.0			ns	
CINTDI	TDI input pin capacitance			5.3	pf	
CINTMS	TMS input pin capacitance			5.3	pf	
СІМтск	TCK input pin capacitance			5.3	pf	
CINTRSTB	TRSTB input pin capacitance			5.3	pf	

7.10.2 SPI Switching Characteristics

The following tables describe characteristics of SPI switching.

Table 106 • SPI Master Mode (PolarFire Master) During Programming

Parameter	Symbol	Min	Тур	Max	Unit	Condition
SCK frequency	Fмsck			20	MHz	

7.11 User Crypto

The following section describes user crypto.

7.11.1 TeraFire 5200B Switching Characteristics

The following table describes TeraFire 5200B switching characteristics.

Table 112 • TeraFire F5200B Switching Characteristics

Parameter	Symbol	VDD = 1.0 V STD	VDD = 1.0 V - 1	VDD = 1.05 V STD	VDD = 1.05 V - 1	Unit	Condition
Operating frequency	Fмах	189		189		MHz	–40 °C to 100 °C

7.11.2 TeraFire 5200B Throughput Characteristics

The following tables for each algorithm describe the TeraFire 5200B throughput characteristics.

Note: Throughput cycle count collected with Athena TeraFire Core and RISCV running at 100 MHz.

Modes	Message Size (bits)	Athena TeraFire Crypto Core Clock-Cycles	CAL Delay In CPU Clock-Cycles
AES-ECB-128 encrypt ¹	128	515	1095
	64K	50157	933
AES-ECB-128 decrypt ¹	128	557	1760
	64K	48385	1524
AES-ECB-256 encrypt ¹	128	531	1203
	64K	58349	1203
AES-ECB-256 decrypt ¹	128	589	1676
	64K	56673	1671
AES-CBC-256 encrypt ¹	128	576	1169
	64K	52547	1169
AES-CBC-256 decrypt ¹	128	585	1744
	64K	48565	1652
AES-GCM-128 encrypt ¹ ,	128	1925	2740
128-bit tag, (full message encrypted/authenticated)	64К	60070	2158
AES-GCM-256 encrypt ¹ ,	128	1973	2268
128-bit tag, (full message encrypted/authenticated)	64K	60102	2151

Table 113 • AES

1. With DPA counter measures.

Table 114 • GMAC

Modes	Message Size (bits)	Athena TeraFire Crypto Core Clock- Cycles	CAL Delay In CPU Clock- Cycles
AES-GCM-256 ¹ , 128-bit tag,	128	1863	2211
(message is only authenticated)	64К	49707	2128