

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Active
Number of LABs/CLBs	-
Number of Logic Elements/Cells	192000
Total RAM Bits	13619200
Number of I/O	284
Number of Gates	-
Voltage - Supply	0.97V ~ 1.08V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	484-BFBGA
Supplier Device Package	484-FPBGA (19x19)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/mpf200tl-fcvg484i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

6.2.1 DC Characteristics over Recommended Operating Conditions

The following table lists the DC characteristics over recommended operating conditions.

Parameter	Symbol	Min	Max	Unit	Condition
Input pin capacitance ¹	C _{IN} (dedicated GPIO)		5.6	pf	
	CIN (GPIO)		5.6	pf	
	CIN (HSIO)		2.8	pf	
Input or output leakage current per pin	I∟ (GPIO)		10	μΑ	I/O disabled, high – Z
	I∟ (HSIO)		10	μΑ	I/O disabled, high – Z
Input rise time (10%–90% of V_{DDix}) ^{2, 3, 4}	Trise	0.66	2.64	ns	V _{DDIx} = 3.3 V
Input rise time (10%–90% of V_{DDix}) ^{2, 3, 4}	_	0.50	2.00	ns	$V_{DDIx} = 2.5 V$
Input rise time (10%–90% of V_{DDix}) ^{2, 3, 4}	_	0.36	1.44	ns	V _{DDix} = 1.8 V
Input rise time (10%–90% of V_{DDix}) ^{2, 3, 4}		0.30	1.20	ns	V _{DDIx} = 1.5 V
Input rise time (10%–90% of V_{DDix}) ^{2, 3, 4}	_	0.24	0.96	ns	V _{DDIx} = 1.2 V
Input fall time (90%–10% of V_{DDIx}) ^{2, 3, 4}	TFALL	0.66	2.64	ns	V _{DDix} = 3.3 V
Input fall time (90%–10% of V_{DDIx}) ^{2, 3, 4}		0.50	2.00	ns	$V_{DDIx} = 2.5 V$
Input fall time (90%–10% of V_{DDIx}) ^{2, 3, 4}	_	0.36	1.44	ns	V _{DDIx} = 1.8 V
Input fall time (90%–10% of V_{DDIx}) ^{2, 3, 4}	_	0.30	1.20	ns	V _{DDix} = 1.5 V
Input fall time (90%–10% of V_{DDIx}) ^{2, 3, 4}		0.24	0.96	ns	V _{DDIx} = 1.2 V
Pad pull-up when $V_{IN} = 0^5$	Ipu	137	220	μΑ	V _{DDIx} = 3.3 V
Pad pull-up when $V_{IN} = 0^5$	_	102	166	μΑ	V _{DDIx} = 2.5 V
Pad pull-up when $V_{IN} = 0$	_	68	115	μΑ	V _{DDIx} = 1.8 V
Pad pull-up when $V_{IN} = 0$		51	88	μΑ	V _{DDIx} = 1.5 V
Pad pull-up when $V_{IN} = 0^6$	_	29	73	μΑ	V _{DDix} = 1.35 V
Pad pull-up when $V_{IN} = 0$	_	16	46	μΑ	V _{DDix} = 1.2 V
Pad pull-down when V_{IN} = 3.3 V ⁵	IPD	65	187	μΑ	V _{DDix} = 3.3 V
Pad pull-down when V_{IN} = 2.5 V ⁵	_	63	160	μΑ	V _{DDix} = 2.5 V
Pad pull-down when V_{IN} = 1.8 V	_	60	117	μΑ	V _{DDix} = 1.8 V
Pad pull-down when V_{IN} = 1.5 V	_	57	95	μΑ	V _{DDix} = 1.5 V
Pad pull-down when V_{IN} = 1.35 V	_	52	86	μΑ	V _{DDix} = 1.35 V
Pad pull-down when $V_{IN} = 1.2 V$	_	47	79	μA	V _{DDIx} = 1.2 V

Table 5 • DC Characteristics over Recommended Operating Conditions

1. Represents the die input capacitance at the pad not the package.

- 2. Voltage ramp must be monotonic.
- 3. Numbers based on rail-to-rail input signal swing and minimum 1 V/ns and maximum 4 V/ns. These are to be used for input delay measurement consistency.
- 4. I/O signal standards with smaller than rail-to-rail input swings can use a nominal value of 200 ps 20%–80% of swing and maximum value of 500 ps 20%–80% of swing.
- 5. GPIO only.

6.2.2 Maximum Allowed Overshoot and Undershoot

During transitions, input signals may overshoot and undershoot the voltage shown in the following table. Input currents must be limited to less than 100 mA per latch-up specifications.

The maximum overshoot duration is specified as a high-time percentage over the lifetime of the device. A DC signal is equivalent to 100% of the duty-cycle.

The following table shows the maximum AC input voltage (V_{IN}) overshoot duration for HSIO.

AC (VIN) Overshoot Duration as % at TJ = 100 °C	Condition (V)
100	1.8
100	1.85
100	1.9
100	1.95
100	2
100	2.05
100	2.1
100	2.15
100	2.2
90	2.25
30	2.3
7.5	2.35
1.9	2.4

Table 6 • Maximum Overshoot During Transitions for HSIO

Note: Overshoot level is for VDDI at 1.8 V.

The following table shows the maximum AC input voltage (V_{IN}) undershoot duration for HSIO.

AC (V _I N) Undershoot Duration as % at T₁ = 100 °C	Condition (V)
100	-0.05
100	-0.1
100	-0.15
100	-0.2
100	-0.25
100	-0.3
100	-0.35
100	-0.4
44	-0.45
14	-0.5
4.8	-0.55
1.6	-0.6

Table 7 • Maximum Undershoot During Transitions for HSIO

The following table shows the maximum AC input voltage (V_{IN}) overshoot duration for GPIO.

6.2.2.1 Power-Supply Ramp Times

The following table shows the allowable power-up ramp times. Times shown correspond to the ramp of the supply from 0 V to the minimum recommended voltage as specified in the section Recommended Operating Conditions (see page 6). All supplies must rise and fall monotonically.

Table 10	Power-S	upply R	amp Times
----------	---------	---------	-----------

Parameter	Symbol	Min	Max	Unit
FPGA core supply	Vdd	0.2	50	ms
Transceiver core supply	Vdda	0.2	50	ms
Must connect to 1.8 V supply	Vdd18	0.2	50	ms
Must connect to 2.5 V supply	VDD25	0.2	50	ms
Must connect to 2.5 V supply	VDDA25	0.2	50	ms
HSIO bank I/O power supplies	VDDI[0,1,6,7]	0.2	50	ms
GPIO bank I/O power supplies	VDDI[2,4,5]	0.2	50	ms
Bank 3 dedicated I/O buffers (GPIO)	Vddi3	0.2	50	ms
GPIO bank auxiliary power supplies	VDDAUX[2,4,5]	0.2	50	ms
Transceiver reference clock supply	Vdd_xcvr_clk	0.2	50	ms
Global V_{REF} for transceiver reference clocks	XCVRvref	0.2	50	ms

Note: For proper operation of programming recovery mode, if a VDD supply brownout occurs during programming, a minimum supply ramp down time for only the VDD supply is recommended to be 10 ms or longer by using a programmable regulator or on-board capacitors.

6.2.2.2 Hot Socketing

The following table lists the hot-socketing DC characteristics over recommended operating conditions.

Table 11 • Hot Socketing DC Characteristics over Recommended Operating Conditions

Parameter	Symbol	Min	Тур	Max	Unit	Condition
Current per transceiver Rx input pin (P or N single-ended) ^{1, 2}	XCVRRX_HS			±4	mA	V _{DDA} = 0 V
Current per transceiver Tx output pin (P or N single-ended) ³	XCVRTX_HS			±10	mA	V _{DDA} = 0 V
Current per transceiver reference clock input pin (P or N single-ended) ⁴	XCVRREF_HS			±1	mA	Vdd_xcvr_clk = 0 V
Current per GPIO pin (P or N single-ended)⁵	Igpio_hs			±1	mA	V _{DDix} = 0 V
Current per HSIO pin (P or N single-ended)						Hot socketing is not supported in HSIO.

1. Assumes that the device is powered-down, all supplies are grounded, AC-coupled interface, and input pin pairs are driven by a CML driver at the maximum amplitude (1 V pk-pk) that is toggling at any rate with PRBS7 data.

- 2. Each P and N transceiver input has less than the specified maximum input current.
- 3. Each P and N transceiver output is connected to a 40 Ω resistor (50 Ω CML termination 20% tolerance) to the maximum allowed output voltage (V_{DDAmax} + 0.3 V = 1.4 V) through an AC-coupling capacitor with all PolarFire device supplies grounded. This shows the current for a worst-case DC coupled interface. As an AC-coupled interface, the output signal will settle at ground and no hot socket current will be seen.
- 4. Vdd_xcvr_clk is powered down and the device is driven to -0.3 V < VIN < Vdd_xcvr_clk.
- 5. V_{DDIx} is powered down and the device is driven to $-0.3 V < V_{IN} < GPIO V_{DDImax}$.

Table 13 • DC Output Levels

I/O Standard	Vooi Min (V)	V _{DDI} Typ (V)	V _{DDI} Max (V)	VoL Min (V)	Vol Max (V)	Vон Min (V)	Voн Max (V)	lol ^{2,6} mA	Іон ^{2,6} mA
PCI ¹	3.15	3.3	3.45		0.1	0.9		1.5	0.5
					×	×			
					Vddi	Vddi			
LVTTL	3.15	3.3	3.45		0.4	2.4			
LVCMOS33	3.15	3.3	3.45		0.4	VDDI			
						_ 0.4			
LVCMOS25	2.375	2.5	2.625		0.4	Vddi			
						0.4			
LVCMOS18	1.71	1.8	1.89		0.45	VDDI			
						0.45			
LVCMOS15	1.425	1.5	1.575		0.25	0.75			
					×	×			
			1.00		VDDI	VDDI			
LVCMOS12	1.14	1.2	1.26		0.25 ×	0.75 ×			
					VDDI	VDDI			
SSTL25I ³	2.375	2.5	2.625		Vπ	Vπ		8.1	8.1
					_ 0.608	+ 0.608			
SSTL25II ³	2.375	2.5	2.625		VTT	VTT		16.2	16.2
					-	+			
					0.810	0.810			
SSTL18I ³	1.71	1.8	1.89		VTT	VTT		6.7	6.7
					_ 0.603	+ 0.603			
SSTL18II ³	1.71	1.8	1.89		Vπ	Vπ		13.4	13.4
					-	+			
					0.603	0.603			
SSTL15I ^₄	1.425	1.5	1.575		0.2 ×	0.8 ×		Vol/40	(Vddi — Vон) /40
					VDDI	VDDI			740
SSTL15II ⁴	1.425	1.5	1.575		0.2	0.8		Vol/34	(V _{DDI} — V _{OH})
					×	×			/34
					VDDI	Vddi			
SSTL135I⁴	1.283	1.35	1.418		0.2 ×	0.8 ×		Vol/40	(V _{DDI} — Vон) /40
					VDDI	VDDI			710
SSTL135II ^₄	1.283	1.35	1.418		0.2	0.8		Vol/34	(Vddi — Voн)
					×	×			/34
					Vddi	Vddi			
HSTL15I	1.425	1.5	1.575		0.4	VDDI		8	8
						_ 0.4			
HSTL15II	1.425	1.5	1.575		0.4	Vddi		16	16
						_ 0.4			

MICROCHIP Compar	поснір сотра	n١
------------------	---------------------	----

1/0	Bank	VICM_RANGE	VICM ^{1,3}	VICM ^{1,3}	VICM ^{1,3}	VID ²	Vid	Vid
Standard	Туре	Libero Setting	Min (V)	Typ (V)	Max (V)	Min (V)	Typ (V)	Max (V)
		Low	0.05	0.4	0.8	0.1	0.35	0.6
LVDS18	HSIO	Mid (default)	0.6	1.25	1.65	0.1	0.35	0.6
		Low	0.05	0.4	0.8	0.1	0.35	0.6
LCMDS33	GPIO	Mid (default)	0.6	1.25	2.35	0.1	0.35	0.6
		Low	0.05	0.4	0.8	0.1	0.35	0.6
LCMDS18	HSIO	Mid (default)	0.6	1.25	1.65	0.1	0.35	0.6
		Low	0.05	0.4	0.8	0.1	0.35	0.6
LCMDS25	GPIO	Mid (default)	0.6	1.25	2.35	0.1	0.35	0.6
		Low	0.05	0.4	0.8	0.1	0.35	0.6
RSDS33	GPIO	Mid (default)	0.6	1.25	2.35	0.1	0.2	0.6
		Low	0.05	0.4	0.8	0.1	0.2	0.6
RSDS25	GPIO	Mid (default)	0.6	1.25	2.35	0.1	0.2	0.6
		Low	0.05	0.4	0.8	0.1	0.2	0.6
RSDS18⁵	HSIO	Mid (default)	0.6	1.25	1.65	0.1	0.2	0.6
		Low	0.05	0.4	0.8	0.1	0.2	0.6
MINILVDS33	GPIO	Mid (default)	0.6	1.25	2.35	0.1	0.3	0.6
		Low	0.05	0.4	0.8	0.1	0.3	0.6
MINILVDS25	GPIO	Mid (default)	0.6	1.25	2.35	0.1	0.3	0.6
		Low	0.05	0.4	0.8	0.1	0.3	0.6
MINILVDS18 ⁵	HSIO	Mid (default)	0.6	1.25	1.65	0.1	0.3	0.6
		Low	0.05	0.4	0.8	0.1	0.3	0.6
SUBLVDS33	GPIO	Mid (default)	0.6	0.9	2.35	0.1	0.15	0.3
		Low	0.05	0.4	0.8	0.1	0.15	0.3
SUBLVDS25	GPIO	Mid (default)	0.6	0.9	2.35	0.1	0.15	0.3
		Low	0.05	0.4	0.8	0.1	0.15	0.3
SUBLVDS18 ⁵	HSIO	Mid (default)	0.6	0.9	1.65	0.1	0.15	0.3
		Low	0.05	0.4	0.8	0.1	0.15	0.3
PPDS33	GPIO	Mid (default)	0.6	0.8	2.35	0.1	0.2	0.6
		Low	0.05	0.4	0.8	0.1	0.2	0.6
PPDS25	GPIO	Mid (default)	0.6	0.8	2.35	0.1	0.2	0.6
		Low	0.05	0.4	0.8	0.1	0.2	0.6
PPDS18 ⁵	HSIO	Mid (default)	0.6	0.8	1.65	0.1	0.2	0.6
		Low	0.05	0.4	0.8	0.1	0.2	0.6
SLVS33 ⁶	GPIO	Mid (default)	0.6	1.25	2.35	0.1	0.2	0.3
		Low	0.05	0.2	0.8	0.1	0.2	0.3
SLVS25 ⁶	GPIO	Mid (default)	0.6	1.25	2.35	0.1	0.2	0.3
		Low	0.05	0.2	0.8	0.1	0.2	0.3
SLVS18 ⁵	HSIO	Mid (default)	0.6	1.00	1.65	0.1	0.2	0.3
		Low	0.05	0.4	0.8	0.1	0.2	0.3
HCSL33 ⁶	GPIO	Mid (default)	0.6	1.25	2.35	0.1	0.55	1.1
		Low	0.05	0.35	0.8	0.1	0.55	1.1

Min (%)	Тур	Max (%)	Unit	Condition
-20	60	20	Ω	V _{DDI} = 1.2 V
-20	120	20	Ω	V _{DDI} = 1.2 V

Note: Thevenin impedance is calculated based on independent P and N as measured at 50% of V_{DDI}. For 50 $\Omega/75 \Omega/150 \Omega$ cases, nearest supported values of 40 $\Omega/60 \Omega/120 \Omega$ are used.

Table 19 • Single-Ended Termination to VDDI (Internal Parallel Termination to VDDI)

Min (%)	Тур	Max (%)	Unit	Condition
-20	34	20	Ω	V _{DDI} = 1.2 V
-20	40	20	Ω	V _{DDI} = 1.2 V
-20	48	20	Ω	V _{DDI} = 1.2 V
-20	60	20	Ω	V _{DDI} = 1.2 V
-20	80	20	Ω	V _{DDI} = 1.2 V
-20	120	20	Ω	V _{DDI} = 1.2 V
-20	240	20	Ω	V _{DDI} = 1.2 V

Note: Measured at 80% of VDDI.

Table 20 • Single-Ended Termination to VSS (Internal Parallel Termination to VSS)

Min (%)	Тур	Max (%)	Unit	Condition
-20	120	20	Ω	V _{DDI} = 1.8 V/1.5 V
-20	240	20	Ω	V _{DDI} = 1.8 V/1.5 V
-20	120	20	Ω	V _{DDI} = 1.2 V
-20	240	20	Ω	V _{DDI} = 1.2 V

Note: Measured at 50% of V_{DDI}.

6.3.5 GPIO On-Die Termination

The following table lists the on-die termination calibration accuracy specifications for GPIO bank.

Table 21 • On-Die Termination Calibration Accuracy Specifications for GPIO Bank

Parameter	Description	Min (%)	Тур	Max (%)	Unit	Condition
Differential	Internal	-20	100	20	Ω	VICM < 0.8 V
termination ¹	differential	-20	100	40	Ω	0.6 V < V _{ICM} < 1.65 V
	termination	-20	100	80	Ω	1.4 V < VICM
Single-ended	Internal	-40	50	20	Ω	V _{DDI} = 1.8 V/1.5 V
thevenin termination ^{2, 3}	parallel	-40	75	20	Ω	V _{DDI} = 1.8 V
	termination	-40	150	20	Ω	V _{DDI} = 1.8 V
		-20	20	20	Ω	V _{DDI} = 1.5 V
		-20	30	20	Ω	V _{DDI} = 1.5 V
		-20	40	20	Ω	V _{DDI} = 1.5 V
		-20	60	20	Ω	V _{DDI} = 1.5 V
		-20	120	20	Ω	V _{DDI} = 1.5 V

Standard	Description	VL1	VH1	VID ²	VICM ²	Vmeas ^{3, 4}	Vref ^{1, 5}	Unit
HSTL135II	Differential	VICM -	VICM +	0.250	0.675	0		V
	HSTL 1.35 V	.125	.125					
	Class II							
HSTL12	Differential	VICM -	VICM +	0.250	0.600	0		V
	HSTL 1.2 V	.125	.125					
HSUL18I	Differential	VICM -	VICM +	0.250	0.900	0		V
	HSUL 1.8 V	.125	.125					
	Class I							
HSUL18II	Differential	VICM -	VICM +	0.250	0.900	0		V
	HSUL 1.8 V	.125	.125					
	Class II							
HSUL12	Differential	VICM -	VICM +	0.250	0.600	0		V
	HSUL 1.2 V	.125	.125					
POD12I	Differential	VICM -	VICM +	0.250	0.600	0		V
	POD 1.2 V	.125	.125					
	Class I							
POD12II	Differential	VICM -	VICM +	0.250	0.600	0		V
	POD 1.2 V	.125	.125					
	Class II							
MIPI25	Mobile	VICM -	VICM +	0.250	0.200	0		V
	Industry	.125	.125					
	Processor							
	Interface							

- 1. Measurements are made at typical, minimum, and maximum V_{REF} values. Reported delays reflect worst-case of these measurements. V_{REF} values listed are typical. Input waveform switches between V_L and V_H . All rise and fall times must be 1 V/ns.
- 2. Differential receiver standards all use 250 mV V_{ID} for timing. V_{CM} is different between different standards.
- 3. Input voltage level from which measurement starts.
- 4. The value given is the differential input voltage.
- 5. This is an input voltage reference that bears no relation to the V_{REF}/V_{MEAS} parameters found in IBIS models or shown in Output Delay Measurement—Single-Ended Test Setup (see page 27).
- 6. Emulated bi-directional interface.

7.1.2 Output Delay Measurement Methodology

The following section provides information about the methodology for output delay measurement.

Table 23 • Output Delay Measurement Methodology

Standard	Description	Rref (Ω)	Cref (pF)	Vmeas (V)	Vref (V)
PCI	PCIE 3.3 V	25	10	1.65	
LVTTL33	LVTTL 3.3 V	1M	0	1.65	
LVCMOS33	LVCMOS 3.3 V	1M	0	1.65	
LVCMOS25	LVCMOS 2.5 V	1M	0	1.25	
LVCMOS18	LVCMOS 1.8 V	1M	0	0.90	
LVCMOS15	LVCMOS 1.5 V	1M	0	0.75	
LVCMOS12	LVCMOS 1.2 V	1M	0	0.60	
SSTL25I	Stub-series terminated logic 2.5 V Class I	50	0	Vref	1.25
SSTL25II	SSTL 2.5 V Class II	50	0	Vref	1.25

Figure 2 • Output Delay Measurement—Differential Test Setup

7.1.3 Input Buffer Speed

The following tables provide information about input buffer speed.

Table 24 • HSIO Maximum Input Buffer Speed

Standard	STD	-1	Unit
LVDS18	1250	1250	Mbps
RSDS18	800	800	Mbps
MINILVDS18	800	800	Mbps
SUBLVDS18	800	800	Mbps
PPDS18	800	800	Mbps
SLVS18	800	800	Mbps
SSTL18I	800	1066	Mbps
SSTL18II	800	1066	Mbps
SSTL15I	1066	1333	Mbps
SSTL15II	1066	1333	Mbps
SSTL135I	1066	1333	Mbps
SSTL135II	1066	1333	Mbps

7.1.6 User I/O Switching Characteristics

The following section describes characteristics for user I/O switching.

For more information about user I/O timing, see the *PolarFire I/O Timing Spreadsheet* (to be released).

7.1.6.1 I/O Digital

The following tables provide information about I/O digital.

Table 30 • I/O Digital Receive Single-Data Rate Switching Characteristics

Parameter	Interface Name	Topology	STD Min	STD Typ	STD Max	-1 Min	—1 Тур	-1 Max	Unit	Clock-to-Data Condition
Fмах	RX_SDR_G_A	Rx SDR							MHz	From a global clock source, aligned
Fмах	RX_SDR_L_A	Rx SDR							MHz	From a lane clock source, aligned
Fмах	RX_SDR_G_C	Rx SDR							MHz	From a global clock source, centered
Fмах	RX_SDR_L_C	Rx SDR							MHz	From a lane clock source, centered

Table 31 • I/O Digital Receive Double-Data Rate Switching Characteristics

Parameter	Interface Name	Topology	STD Min	STD Typ	STD Max	–1 Min	—1 Тур	-1 Max	Unit	Clock-to- Data Condition
Fмах	RX_DDR_G_A	Rx DDR		335			335	MHz	MHz	From a global clock source, aligned
Fмах	RX_DDR_L_A	Rx DDR		250			250		MHz	From a lane clock source, aligned
Fмах	RX_DDR_G_C	Rx DDR		335			335		MHz	From a global clock source, centered
Fмах	RX_DDR_L_C	Rx DDR		250			250		MHz	From a lane clock source, centered
Fmax 2:1	RX_DDRX_B_A	Rx DDR digital mode							MHz	From a HS_IO_CLK clock source, aligned

Parameter	Interface Name	Topology	STD Min	STD Typ	STD Max	-1 Min	—1 Тур	-1 Max	Unit	Clock-to- Data Condition
Fmax 8:1	RX_DDRX_BL_C	Rx DDR digital mode							MHz	From a HS_IO_CLK clock source, centered

Table 32 • I/O Digital Transmit Single-Data Rate Switching Characteristics

Parameter	Interface Name	Topology	STD Min	STD Typ	STD Max	–1 Min	—1 Тур	-1 Max	Unit	Forwarded Clock-to-Data Skew
Output Fmax	TX_SDR_G_A	Tx SDR							MHz	From a global clock source, aligned ¹
	TX_SDR_G_C	Tx SDR							MHz	From a global clock source, centered ¹

1. A centered clock-to-data interface can be created with a negedge launch of the data.

Parameter	Interface Name	Topology	STD Min	STD Typ	STD Max	–1 Min	—1 Тур	-1 Max	Unit	Forwarded Clock-to- Data Skew
Output Fmax	TX_DDR_G_A	Tx DDR			335			335	MHz	From a global clock source, aligned
	TX_DDR_G_C	Tx DDR			335			335	MHz	From a global clock source, centered
	TX_DDR_L_A	Tx DDR			250			250	MHz	From a lane clock source, aligned
	TX_DDR_L_C	Tx DDR			250			250	MHz	From a lane clock source, centered
Output Fmax 2:1	TX_DDRX_B_A	Tx DDR digital mode							MHz	From a HS_IO_CLK clock source, aligned
Output Fmax 4:1	TX_DDRX_B_A	Tx DDR digital mode							MHz	From a HS_IO_CLK clock source, aligned
Output FMAX 8:1	TX_DDRX_B_A	Tx DDR digital mode							MHz	From a HS_IO_CLK clock source, aligned

Table 33 • I/O Digital Transmit Double-Data Rate Switching Characteristics

Parameter	Symbol	Min	Тур	Max	Unit
Operating current (VDD18)	RCscvpp			0.1	μΑ
Operating current (VDD)	RCscvdd			60.7	μΑ

Table 44 • µSRAM Performance

Parameter	Symbol	V _{DD} = 1.0 V – STD	V _{DD} = 1.0 V - 1	V _{DD} = 1.05 V – STD	V _{DD} = 1.05 V - 1	Unit	Condition
Operating frequency	Fмах	400	415	450	480	MHz	Write-port
Read access time	Тас		2		2	ns	Read-port

Table 45 • µPROM Performance

Parameter	Symbol	V _{DD} = 1.0 V – STD	V _{DD} = 1.0 V - 1	VDD = 1.05 V – STD	V _{DD} = 1.05 V – 1	Unit
Read access time	Тас	10	10	10	10	ns

7.4 Transceiver Switching Characteristics

This section describes transceiver switching characteristics.

7.4.1 Transceiver Performance

The following table describes transceiver performance.

Table 46 • PolarFire Transceiver and TXPLL Performance

Parameter	Symbol	STD Min	STD Typ	STD Max	–1 Min	—1 Тур	-1 Max	Unit
Tx data rate ^{1,2}	FTXRate	0.25		10.3125	0.25		12.7	Gbps
Tx OOB (serializer bypass) data rate	FTXRateOOB	DC		1.5	DC		1.5	Gbps
Rx data rate when AC coupled ²	FRxRateAC	0.25		10.3125	0.25		12.7	Gbps
Rx data rate when DC coupled	FRxRateDC	0.25		3.2	0.25		3.2	Gbps
Rx OOB (deserializer bypass) data rate	FTXRateOOB	DC		1.25	DC		1.25	Gbps
TXPLL output frequency ³	Ftxpll	1.6		6.35	1.6		6.35	GHz
Rx CDR mode	Frxcdr	0.25		10.3125	0.25		10.3125	Gbps
Rx DFE mode ²	Frxdfe	3.0		10.3125	3.0		12.7	Gbps
Rx Eye Monitor mode ²	FRXEyeMon	3.0		10.3125	3.0		12.7	Gbps

1. The reference clock is required to be a minimum of 75 MHz for data rates of 10 Gbps and above.

- 2. For data rates greater than 10.3125 Gbps, VDDA must be set to 1.05 V mode. See supply tolerance in the section Recommended Operating Conditions (see page 6).
- 3. The Tx PLL rate is between 0.5x to 5.5x the Tx data rate. The Tx data rate depends on per XCVR lane Tx post-divider settings.

7.4.2 Transceiver Reference Clock Performance

The following table describes performance of the transceiver reference clock.

Table 47 • PolarFire Transceiver Reference Clock AC Requirements

Parameter	Symbol	STD Min	STD Typ	STD Max	–1 Min	—1 Тур	-1 Max	Unit
Reference clock input rate ^{1, 2}	Ftxrefclk	20		800	20		800	MHz

	N		
- K N	MICROCHIP	com	Dan

Parameter	Modes ¹	STD Min	STD Max	-1 Min	–1 Max	Unit
Transceiver RX_CLK	10-bit, max data rate = 1.6 Gbps		160		160	MHz
range (non-	16-bit, max data rate = 4.8 Gbps		300		300	MHz
with global or regional	20-bit, max data rate = 6.0 Gbps		300		300	MHz
fabric clocks)	32-bit, max data rate = 10.3125 Gbps		325		325	MHz
	40-bit, max data rate = 10.3125 Gbps (–STD) / 12.7 Gbps (–1)1		260		320	MHz
	64-bit, max data rate = 10.3125 Gbps (–STD) / 12.7 Gbps (–1)1		165		200	MHz
80-bit, max data rate = 10.3125 Gbps (–STD) / 12.7 Gbps (–1) ¹			130		160	MHz
	Fabric pipe mode 32-bit, max data rate = 6.0 Gbps		150		150	MHz
Transceiver TX_CLK	8-bit, max data rate = 1.6 Gbps		200		200	MHz
range (deterministic	10-bit, max data rate = 1.6 Gbps		160		160	MHz
fabric clocks)	16-bit, max data rate = 3.6 Gbps (–STD) / 4.25 Gbps (–1)		225		266	MHz
	20-bit, max data rate = 4.5 Gbps (–STD) / 5.32 Gbps (–1)		225		266	MHz
	32-bit, max data rate = 7.2 Gbps (–STD) / 8.5 Gbps (–1)		225		266	MHz
	40-bit, max data rate = 9.0 Gbps (–STD) / 10.6 Gbps (–1)1		225		266	Mhz
	64-bit, max data rate = 10.3125 Gbps (–STD) / 12.7 Gbps (–1)1		165		200	MHz
	80-bit, max data rate = 10.3125 Gbps (–STD) / 12.7 Gbps (–1)1		130		160	MHz
Transceiver RX_CLK	8-bit, max data rate = 1.6 Gbps		200		200	MHz
range (deterministic	10-bit, max data rate = 1.6 Gbps		160		160	MHz
fabric clocks)	16-bit, max data rate = 3.6 Gbps (–STD) / 4.25 Gbps (–1)		225		266	MHz
	20-bit, max data rate = 4.5 Gbps (–STD) / 5.32 Gbps (–1)		225		266	MHz
	32-bit, max data rate = 7.2 Gbps (–STD) / 8.5 Gbps (–1)		225		266	MHz
	40-bit, max data rate = 9.0 Gbps (–STD) / 10.6 Gbps (–1) ¹		225		266	MHz
	64-bit, max data rate = 10.3125 Gbps (–STD) / 12.7 Gbps (–1)1		165		200	MHz
	80-bit, max data rate = 10.3125 Gbps (–STD) / 12.7 Gbps (–1)1		130		160	MHz

1. For data rates greater than 10.3125 Gbps, VDDA must be set to 1.05 V mode. See supply tolerance in the section Recommended Operating Conditions (see page 6).

Note: Until specified, all modes are non-deterministic. For more information, see UG0677: PolarFire FPGA Transceiver User Guide.

Table 60 • 10GbE (RXAUI)

	Data Rate	Min	Max	Unit
Total transmit jitter	6.25 Gbps			UI
Receiver jitter tolerance	6.25 Gbps			UI

7.5.4 1GbE (1000BASE-T)

The following table describes 1GbE (1000BASE-T).

Table 61 • 1GbE (1000BASE-T)

	Data Rate	Min	Max	Unit
Total transmit jitter	1.25 Gbps			UI
Receiver jitter tolerance	1.25 Gbps			UI

The following table describes 1GbE (1000BASE-X).

Table 62 • 1GbE (1000BASE-X)

	Data Rate	Min	Max	Unit
Total transmit jitter	1.25 Gbps			UI
Receiver jitter tolerance	1.25 Gbps			UI

7.5.5 SGMII and QSGMII

The following table describes SGMII.

Table 63 • SGMII

Parameter	Data Rate	Min	Max	Unit
Total transmit jitter	1.25 Gbps		0.24	UI
Receiver jitter tolerance	1.25 Gbps	0.749		UI

The following table describes QSGMII.

Table 64 • QSGMII

Parameter	Data Rate	Min	Max	Unit
Total transmit jitter	5.0 Gbps		0.3	UI
Receiver jitter tolerance	5.0 Gbps	0.65		UI

7.5.6 SDI

The following table describes SDI.

Table 65 • SDI

Parameter	Data Rate	Min	Max	Unit
Total transmit jitter				UI
Receiver jitter tolerance				UI

7.5.7 CPRI

The following table describes CPRI.

Table 66 • CPRI

	Data Rate	Min	Max	Unit
Total transmit jitter	0.6144 Gbps			UI
	1.2288 Gbps			UI
	2.4576 Gbps			UI
	3.0720 Gbps			UI
	4.9152 Gbps			UI
	6.1440 Gbps			UI
	9.8304 Gbps			UI
	10.1376 Gbps			UI
	12.16512 Gbps ¹			UI
Receive jitter tolerance	0.6144 Gbps			UI
	1.2288 Gbps			UI
	2.4576 Gbps			UI
	3.0720 Gbps			UI
	4.9152 Gbps			UI
	6.1440 Gbps			UI
	9.8304 Gbps			UI
	10.1376 Gbps			UI
	12.16512 Gbps ¹			UI

1. For data rates greater than 10.3125 Gbps, VDDA must be set to 1.05 V mode. See supply tolerance in the section Recommended Operating Conditions (see page 6).

7.5.8 JESD204B

The following table describes JESD204B.

Table 67 • JESD204B

Parameter	Data Rate	Min	Max	Unit
Total transmit jitter	3.125 Gbps		0.35	UI
-	6.25 Gbps		0.3	UI
-	12.5 Gbps ¹			UI
Receive jitter tolerance	3.125 Gbps	0.56		UI
	6.25 Gbps	0.6		UI
-	12.5 Gbps ¹			UI

1. For data rates greater than 10.3125 Gbps, VDDA must be set to 1.05V mode. See supply tolerance in the section Recommended Operating Conditions (see page 6).

7.6 Non-Volatile Characteristics

The following section describes non-volatile characteristics.

Parameter	Symbol	Тур	Max	Unit
Time from negation of RESPONSE to all I/Os re-enabled	$T_{CLR_IO_DISABLE}$	28	38	μs
Time from triggering the response to security locked	TLOCKDOWN			ns
Time from negation of RESPONSE to earlier security unlock condition	Tclr_lockdown			ns
Time from triggering the response to device enters RESET	Ttr_RESET	11.7	14	μs
Time from triggering the response to start of zeroization	Ttr_ZEROLISE	7.4	8.2	ms

7.8.5 System Controller Suspend Switching Characteristics

The following table describes the characteristics of system controller suspend switching.

Table 95 • System Controller Suspend Entry and Exit Characteristics

Parameter	Symbol	Definition	Тур	Max	Unit
Time from TRSTb falling edge to SUSPEND_EN signal assertion	Tsuspend_Tr ^{1, 2}	Suspend entry time from TRST_N assertion	42	44	ns
Time from TRSTb rising edge to ACTIVE signal assertion	Tsuspend_exit	Suspend exit time from TRST_N negation	361	372	ns

1. ACTIVE indicates that the system controller is inactive or active regardless of the state of SUSPEND_EN.

2. ACTIVE signal must never be asserted with SUSPEND_EN is asserted.

7.8.6 Dynamic Reconfiguration Interface

The following table provides interface timing information for the DRI, which is an embedded APB slave interface within the FPGA fabric that does not use FPGA resources.

Table 96 • Dynamic Reconfiguration Interface Timing Characteristics

Parameter	Symbol	Max	Unit
PCLK frequency	FPD_PCLK	200	MHz

7.9 Power-Up to Functional Timing

Microsemi non-volatile FPGA technology offers the fastest boot-time of any mid-range FPGA in the market. The following tables describes both cold-boot (from power-on) and warm-boot (assertion of DEVRST_N pin or assertion of reset from the tamper macro) timing. The power-up diagrams assume all power supplies to the device are stable.

7.9.1 Power-On (Cold) Reset Initialization Sequence

The following cold reset timing diagram shows the initialization sequencing of the device.

Table 104 • Flash*Freeze

Parameter	Symbol	Min	Тур	Max	Unit	Condition
The time from Flash*Freeze entry command to the Flash*Freeze state	Tff_entry		59		μs	
The time from Flash*Freeze exit pin assertion to fabric operational state	Tff_fabric_up		133		μs	
The time from Flash*Freeze exit pin assertion to I/Os operational	TFF_IO_ACTIVE		143		μs	

7.10 Dedicated Pins

_

The following section describes the dedicated pins.

7.10.1 JTAG Switching Characteristics

The following table describes characteristics of JTAG switching.

Table 105 • JTAG Electrical Characteristics

Symbol	Description	Min	Тур	Max	Unit	Condition
Tdisu	TDI input setup time	0.0			ns	
TDIHD	TDI input hold time	2.0			ns	
TTMSSU	TMS input setup time	1.5			ns	
Ттмянd	TMS input hold time	1.5			ns	
Fтск	TCK frequency			25	MHz	
Ттскос	TCK duty cycle	40		60	%	
Ττροςα	TDO clock to Q out			8.4	ns	C _{LOAD} = 40 pf
TRSTBCQ	TRSTB clock to Q out			23.5	ns	C _{LOAD} = 40 pf
TRSTBPW	TRSTB min pulse width	50			ns	
TRSTBREM	TRSTB removal time	0.0			ns	
TRSTBREC	TRSTB recovery time	12.0			ns	
CINTDI	TDI input pin capacitance			5.3	pf	
CINTMS	TMS input pin capacitance			5.3	pf	
СІМтск	TCK input pin capacitance			5.3	pf	
CINTRSTB	TRSTB input pin capacitance			5.3	pf	

7.10.2 SPI Switching Characteristics

The following tables describe characteristics of SPI switching.

Table 106 • SPI Master Mode (PolarFire Master) During Programming

Parameter	Symbol	Min	Тур	Max	Unit	Condition
SCK frequency	Fмsck			20	MHz	

1. With DPA counter measures.

Table 115 • HMAC

Modes	Message Size (bits)	Athena TeraFire Crypto Core Clock-Cycles	CAL Delay In CPU Clock-Cycles
HMAC-SHA-256 ¹ ,	512	7477	2361
256-bit key	64K	88367	2099
HMAC-SHA-384 ¹ ,	1024	13049	2257
384-bit key	64K	106103	2153

1. With DPA counter measures.

Table 116 • CMAC

Modes	Message Size (bits)	Athena TeraFire Crypto Core Clock- Cycles	CAL Delay In CPU Clock- Cycles
AES-CMAC-2561	128	446	9058
(message is only authenticated)	64К	45494	111053

1. With DPA counter measures.

Table 117 • KEY TREE

Modes	Message Size (bits)	Athena TeraFire Crypto Core Clock-Cycles	CAL Delay In CPU Clock-Cycles
128-bit nonce +		102457	2751
8-bit optype			
256-bit nonce +		103218	2089
8-bit optype			

Table 118 • SHA

Modes	Message Size (bits)	Athena TeraFire Crypto Core Clock-Cycles	CAL Delay In CPU Clock-Cycles
SHA-1 ¹	512	2386	1579
	64K	77576	990
SHA-2561	512	2516	884
	64K	84752	938
SHA-384 ¹	1024	4154	884
	64K	100222	938
SHA-512 ¹	1024	4154	881
	64K	100222	935

1. With DPA counter measures.

Table 119 • ECC

Modes	Message Size (bits)	Athena TeraFire Crypto Core Clock- Cycles	CAL Delay In CPU Clock- Cycles
ECDSA SigGen,	1024	12528912	6944
P-384/SHA-384 ¹	8К	12540448	5643
ECDSA SigGen, P-384/SHA-384	1024	5502928	6155

🔨 Міскоснір	company
-------------	---------

SigVer, DSA-2048/SHA-256	1024	9810527	10884
	8К	9597000	10719
Key Agreement (KAS), DH-3072 (p=3072, security=256)		4920705	9338
Key Agreement (KAS), DH-3072 (p=3072, security=256) ¹		78914533	9083

1. With DPA counter measures.

Table 122 • NRBG

Modes	Message Size (bits)	Athena TeraFire Crypto Core Clock-Cycles	CAL Delay In CPU Clock-Cycles
Instantiate: strength, s=256, 384-bit nonce, 384-bit personalization string		18221	2841
Reseed: no additional input, s=256		13585	1180
Reseed: 384-bit additional input, s=256		15922	1342
Generate: (no additional input), prediction resistance enabled, s= 256	128	15262	1755
	8K	27169	8223
Generate: (no additional input), prediction resistance disabled, s= 256	128	2138	1167
	8K	14045	8223
Generate: (384-bit additional input), prediction resistance enabled, s= 256	128	21299	1944
	8K	33206	8949
Generate: (384-bit additional input), prediction resistance disabled, s= 256	128	11657	1894
	8K	23564	8950
Un-instantiate		761	666

1. With DPA counter measures.

Microsemi Headquarters

One Enterprise, Aliso Viejo, CA 92656 USA Within the USA: +1 (800) 713-4113 Outside the USA: +1 (949) 380-6100 Sales: +1 (949) 380-6136 Fax: +1 (949) 215-4996 Email: sales.support@microsemi.com www.microsemi.com

© 2018 Microsemi. All rights reserved. Microsemi and the Microsemi logo are trademarks of Microsemi Corporation. All other trademarks and service marks are the property of their respective owners. Microsemi makes no warranty, representation, or guarantee regarding the information contained herein or the suitability of its products and services for any particular purpose, nor does Microsemi assume any liability whatsoever arising out of the application or use of any product or circuit. The products sold by Microsemi have been subject to limited testing and should not be used in conjunction with mision-critical equipment or applications. Any performance specifications are believed to be reliable but are not verified, and Buyer must conduct and complete all performance and other testing of the products, alone and together with, or installed in, any end-products. Buyer shall not rely on any data and performance specifications or parameters provided by Microsemi. It is the Buyer's responsibility to indpendently determine suitability of any products and to test and verify the same. The information provided by Microsemi des not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other IP rights, whether with regard to such information itself or anything described by such information. Information provided in this document is provider by such information. Information provided in this document is providently to molecular any trow without notice.

Microsemi, a wholly owned subsidiary of Microchip Technology Inc. (Nasdaq: MCHP), offers a comprehensive portfolio of semiconductor and system solutions for aerospace & defense, communications, data center and industrial markets. Products include high-performance and radiation-hardened analog mixed-signal integrated circuits, FPGAS, SoCs and ASICs; power management products; timing and synchronization devices and precise time solutions; security technologies and scalable anti-tamper products; thermet solutions; discrete components; enterprise storage and communication solutions; security technologies and scalable anti-tamper products; thermet solutions; Power-over-Ethernet ICs and midspans; as well as custom design capabilities and services. Microsemi is headquartered in Aliso Viejo, California, and has approximately 4,800 employees globally. Learn more at www microsemi.com.

51700141