

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Active
Number of LABs/CLBs	-
Number of Logic Elements/Cells	192000
Total RAM Bits	13619200
Number of I/O	244
Number of Gates	-
Voltage - Supply	0.97V ~ 1.08V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	484-BFBGA
Supplier Device Package	484-FPBGA (19x19)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/mpf200tls-fcg484i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

6 DC Characteristics

This section lists the DC characteristics of the PolarFire FPGA device.

6.1 Absolute Maximum Rating

The following table lists the absolute maximum ratings for PolarFire devices.

Table 3 • Absolute Maximum Rating

Parameter	Symbol	Min	Max	Unit
FPGA core power supply	Vdd	-0.5	1.13	V
Transceiver Tx and Rx lanes supply	Vdda	-0.5	1.13	V
Programming and HSIO receiver supply	VDD18	-0.5	2.0	V
FPGA core and FPGA PLL high-voltage supply	VDD25	-0.5	2.7	V
Transceiver PLL high-voltage supply	VDDA25	-0.5	2.7	V
Transceiver reference clock supply	Vdd_xcvr_clk	-0.5	3.6	V
Global VREF for transceiver reference clocks	XCVRvref	-0.5	3.6	V
HSIO DC I/O supply ²	VDDIx	-0.5	2.0	V
GPIO DC I/O supply ²	VDDIx	-0.5	3.6	V
Dedicated I/O DC supply for JTAG and SPI	Vddi3	-0.5	3.6	V
GPIO auxiliary power supply for I/O bank x ²	Vddauxx	-0.5	3.6	V
Maximum DC input voltage on GPIO	Vin	-0.5	3.8	V
Maximum DC input voltage on HSIO	Vin	-0.5	2.2	V
Transceiver Receiver absolute input voltage	Transceiver VIN	-0.5	1.26	V
Transceiver Reference clock absolute input voltage	Transceiver REFCLK VIN	-0.5	3.6	V
Storage temperature (ambient) ¹	Tstg	-65	150	°C
Junction temperature ¹	T	-55	135	°C
Maximum soldering temperature RoHS	Tsolrohs		260	°C
Maximum soldering temperature leaded	TSOLPB		220	°C

- 1. See FPGA Programming Cycles vs Retention Characteristics for retention time vs. temperature. The total time used in calculating the device retention includes storage time and the device stored temperature.
- 2. The power supplies for a given I/O bank x are shown as VDDIx and VDDAUXx.

6.2 Recommended Operating Conditions

The following table lists the recommended operating conditions.

Table 4 • Recommended Operating Conditions

Parameter	Symbol	Min	Тур	Max	Unit
FPGA core supply at 1.0 V mode ¹	Vdd	0.97	1.00	1.03	V
FPGA core supply at 1.05 V mode ¹	Vdd	1.02	1.05	1.08	V
Transceiver TX and RX lanes supply at 1.0 V mode (when all lane rates are 10.3125 Gbps or less) ¹	Vdda	0.97	1.00	1.03	V

7 AC Switching Characteristics

This section contains the AC switching characteristics of the PolarFire FPGA device.

7.1 I/O Standards Specifications

This section describes I/O delay measurement methodology, buffer speed, switching characteristics, digital latency, gearing training calibration, and maximum physical interface (PHY) rate for memory interface IP.

7.1.1 Input Delay Measurement Methodology Maximum PHY Rate for Memory Interface IP

The following table provides information about the methodology for input delay measurement.

Standard	Description	VL1	VH ¹	Vid2	VICM ²	Vmeas ^{3, 4}	VREF ^{1, 5}	Unit
PCI	PCIE 3.3 V	0	VDDI			VDDI/2		V
LVTTL33	LVTTL 3.3 V	0	VDDI			VDDI/2		V
LVCMOS33	LVCMOS 3.3 V	0	VDDI			VDDI/2		V
LVCMOS25	LVCMOS 2.5 V	0	VDDI			VDDI/2		V
LVCMOS18	LVCMOS 1.8 V	0	VDDI			VDDI/2		V
LVCMOS15	LVCMOS 1.5 V	0	VDDI			VDDI/2		V
LVCMOS12	LVCMOS 1.2 V	0	VDDI			VDDI/2		V
SSTL25I	SSTL 2.5 V	Vref -	V _{REF} +			VREF	1.25	V
	Class I	0.5	0.5					
SSTL25II	SSTL 2.5 V	Vref -	VREF +			VREF	1.25	V
	Class II	0.5	0.5					
SSTL18I	SSTL 1.8 V	Vref -	VREF +			VREF	0.90	V
	Class I	0.5	0.5					
SSTL18II	SSTL 1.8 V	Vref -	VREF +			VREF	0.90	V
	Class II	0.5	0.5					
SSTL15I	SSTL 1.5 V	Vref -	VREF +			VREF	0.75	V
	Class I	.175	.175					
SSTL15II	SSTL 1.5 V	Vref -	VREF +			VREF	0.75	V
	Class II	.175	.175					
SSTL135I	SSTL 1.35 V	Vref -	VREF +			VREF	0.675	V
	Class I	.16	.16					
SSTL135II	SSTL 1.35 V	Vref -	VREF +			VREF	0.675	V
	Class II	.16	.16					
HSTL15I	HSTL 1.5 V	Vref -	VREF +			VREF	0.75	V
	Class I	.5	.5					
HSTL15II	HSTL 1.5 V	Vref -	VREF +			VREF	0.75	V
	Class II	.5	.5					
HSTL135I	HSTL 1.35 V	Vref -	VREF + .			VREF	0.675	V
	Class I	0.45	45					
HSTL135II	HSTL 1.35 V	Vref -	VREF +			VREF	0.675	V
	Class II	.45	.45					
HSTL12	HSTL 1.2 V	Vref -	VREF +			VREF	0.60	V
		.4	.4					

Table 22 • Input Delay Measurement Methodology

PolarFire

а 🐼 Міскоснір company

Standard	Description	٧L1	VH1	VID ²	VICM ²	Vmeas ^{3, 4}	VREF ^{1, 5}	Un
HSUL18I	HSUL 1.8 V Class I	V _{REF} – 0.54	V _{REF} + 0.54			VREF	0.90	V
HSUL18II	HSUL 1.8 V Class II	V _{REF} –	V _{REF} + 0 54			Vref	0.90	V
HSUL12	HSUL 1.2 V	V _{REF} –	V _{REF} +			Vref	0.60	V
		.22	.22					
POD12I	Pseudo open drain (POD) logic 1.2 V Class I	Vref – .15	V _{REF} + .15			Vref	0.84	V
POD12II	POD 1.2 V Class II	V _{REF} – .15	V _{REF} + .15			Vref	0.84	V
LVDS33	Low-voltage differential signaling (LVDS) 3.3 V	V _{ICM} – .125	V _{ICM} + .125	0.250	1.250	0		V
LVDS25	LVDS 2.5 V	Vісм – .125	V _{ICM} + .125	0.250	1.250	0		V
LVDS18	LVDS 1.8 V	V _{ICM} – .125	V _{ICM} + .125	0.250	0.900	0		V
RSDS33	RSDS 3.3 V	V _{ICM} – .125	V _{ICM} + .125	0.250	1.250	0		V
RSDS25	RSDS 2.5 V	V _{ICM} – .125	V _{ICM} + .125	0.250	1.250	0		V
RSDS18	RSDS 1.8 V	Vісм – .125	V _{ICM} + .125	0.250	1.250	0		V
MINILVDS33	Mini-LVDS 3.3 V	V _{ICM} – .125	V _{ICM} + .125	0.250	1.250	0		V
MINILVDS25	Mini-LVDS 2.5 V	V _{ICM} – .125	V _{ICM} + .125	0.250	1.250	0		V
MINILVDS18	Mini-LVDS 1.8 V	V _{ICM} – .125	V _{ICM} + .125	0.250	1.250	0		V
SUBLVDS33	Sub-LVDS 3.3 V	V _{ICM} – .125	V _{ICM} + .125	0.250	0.900	0		V
SUBLVDS25	Sub-LVDS 2.5 V	V _{ICM} – .125	V _{ICM} + .125	0.250	0.900	0		V
SUBLVDS18	Sub-LVDS 1.8 V	Vісм – .125	V _{ICM} + .125	0.250	0.900	0		V
PPDS33	Point-to-point differential signaling 3.3 V	V _{ICM} – .125	V _{ICM} + .125	0.250	0.800	0		V
PPDS25	PPDS 2.5 V	Vісм – .125	V _{ICM} + .125	0.250	0.800	0		V
PPDS18	PPDS 1.8 V	Vісм – .125	V _{ICM} + .125	0.250	0.800	0		V
SLVS33	Scalable low- voltage signaling	V _{ICM} – .125	V _{ICM} + .125	0.250	0.200	0		V

PolarFire

Standard	Description	Rref (Ω)	Cref (pF)	Vmeas (V)	Vref (V)
SSTL18I	SSTL 1.8 V Class I	50	0	VREF	0.9
SSTL18II	SSTL 1.8 V Class II	50	0	VREF	0.9
SSTL15I	SSTL 1.5 V Class I	50	0	VREF	0.75
SSTL15II	SSTL 1.5 V Class II	50	0	VREF	0.75
SSTL135I	SSTL 1.35 V Class I	50	0	VREF	0.675
SSTL135II	SSTL 1.35 V Class II	50	0	VREF	0.675
HSTL15I	High-speed transceiver logic (HSTL) 1.5 V Class I	50	0	Vref	0.75
HSTL15II	HSTL 1.5 V Class II	50	0	VREF	0.75
HSTL135I	HSTL 1.35 V Class I	50	0	VREF	0.675
HSTL135II	HSTL 1.35 V Class II	50	0	VREF	0.675
HSTL12	HSTL 1.2 V	50	0	VREF	0.6
HSUL18I	High-speed unterminated logic 1.8 V Class I	50	0	Vref	0.9
HSUL18II	HSUL 1.8 V Class II	50	0	VREF	0.9
HSUL12	HSUL 1.2 V	50	0	VREF	0.6
POD12I	Pseudo open drain (POD) logic 1.2 V Class I	50	0	Vref	0.84
POD12II	POD 1.2 V Class II	50	0	VREF	0.84
LVDS33	LVDS 3.3 V	100	0	01	0
LVDS25	LVDS 2.5 V	100	0	01	0
LVDS18	LVDS 1.8 V	100	0	01	0
RSDS33	Reduced swing differential signaling 3.3 V	100	0	01	0
RSDS25	RSDS 2.5 V	100	0	01	0
RSDS18	RSDS 1.8 V	100	0	01	0
MINILVDS33	Mini-LVDS 3.3 V	100	0	01	0
MINILVDS25	Mini-LVDS 2.5 V	100	0	01	0
SUBLVDS33	Sub-LVDS 3.3 V	100	0	01	0
SUBLVDS25	Sub-LVDS 2.5 V	100	0	01	0
PPDS33	Point-to-point differential signaling 3.3 V	100	0	01	0
PPDS25	PPDS 2.5 V	100	0	01	0
BUSLVDSE25	Bus LVDS	100	0	01	0
MLVDSE25	Multipoint LVDS 2.5 V	100	0	01	0
LVPECLE33	Low-voltage positive emitter-coupled logic	100	0	01	0
MIPIE25	Mobile industry processor interface 2.5 V	100	0	01	0

1. The value given is the differential output voltage.

Standard	STD	-1	Unit
LVCMOS12 (8 mA)	250	300	Mbps

Table 27 • GPIO Maximum Output Buffer Speed

Standard	STD	-1	Unit
LVDS25/LCMDS25	1250	1250	Mbps
LVDS33/LCMDS33	1250	1600	Mbps
RSDS25	800	800	Mbps
MINILVDS25	800	800	Mbps
SUBLVDS25	800	800	Mbps
PPDS25	800	800	Mbps
SLVSE15	500	500	Mbps
BUSLVDSE25	500	500	Mbps
MLVDSE25	500	500	Mbps
LVPECLE33	500	500	Mbps
SSTL25I	800	800	Mbps
SSTL25II	800	800	Mbps
SSTL25I (differential)	800	800	Mbps
SSTL25II (differential)	800	800	Mbps
SSTL18I	800	800	Mbps
SSTL18II	800	800	Mbps
SSTL18I (differential)	800	800	Mbps
SSTL18II (differential)	800	800	Mbps
SSTL15I	800	1066	Mbps
SSTL15II	800	1066	Mbps
SSTL15I (differential)	800	1066	Mbps
SSTL15II (differential)	800	1066	Mbps
HSTL15I	900	900	Mbps
HSTL15II	900	900	Mbps
HSTL15I (differential)	900	900	Mbps
HSTL15II (differential)	900	900	Mbps
HSUL18I	400	400	Mbps
HSUL18II	400	400	Mbps
HSUL18I (differential)	400	400	Mbps
HSUL18II (differential)	400	400	Mbps
PCI	500	500	Mbps
LVTTL33 (20 mA)	500	500	Mbps
LVCMOS33 (20 mA)	500	500	Mbps
LVCMOS25 (16 mA)	500	500	Mbps
LVCMOS18 (12 mA)	500	500	Mbps
LVCMOS15 (10 mA)	500	500	Mbps
LVCMOS12 (8 mA)	250	300	Mbps
MIPIE25	500	500	Mbps

Parameter	Interface Name	Topology	STD Min	STD Typ	STD Max	–1 Min	—1 Тур	-1 Max	Unit	Forwarded Clock-to- Data Skew
Output F _{MAX} 2:1	TX_DDRX_B_C	Tx DDR digital mode							MHz	From a HS_IO_CLK clock source, centered with PLL
Output F _{MAX} 4:1	TX_DDRX_B_C	Tx DDR digital mode							MHz	From a HS_IO_CLK clock source, centered with PLL
Output F _{MAX} 8:1	TX_DDRX_B_C	Tx DDR digital mode							MHz	From a HS_IO_CLK clock source, centered with PLL
In delay, out delay, DLL delay step sizes			12.7	30	35	12.7	25	29.5	ps	

Table 34 • I/O CDR Switching Characteristics

Parameter	Min	Max	Unit
Data rate	266	1250	Mbps
Receiver Sinusoidal jitter tolerance ¹	0.2		UI

1. Jitter values based on bit error ratio (BER) of 10–12, 80 MHz sinusoidal jitter injected to Rx data. **Note:** See the LVDS output buffer specifications for transmit characteristics.

7.2 Clocking Specifications

This section describes the PLL and DLL clocking and oscillator specifications.

7.2.1 Clocking

The following table provides clocking specifications.

Table 35 • Global and Regional Clock Characteristics (-40 °C to 100 °C)

Parameter	Symbol	V _{DD} = 1.0 V STD	V _{DD} = 1.0 V -1	V _{DD} = 1.05 V STD	V _{DD} = 1.05 V –1	Unit	Condition
Global clock F _{MAX}	Fmaxg	500	500	500	500	MHz	
Regional clock Fmax	Fmaxr	375	375	375	375	MHz	Transceiver interfaces only
-	Fmaxr	250	250	250	250	MHz	All other interfaces
Global clock duty cycle distortion	Tdcdg	190	190	190	190	ps	At 500 MHz

Parameter	Symbol	V _{DD} = 1.0 V STD	V _{DD} = 1.0 V –1	V _{DD} = 1.05 V STD	V _{DD} = 1.05 V –1	Unit	Condition
Regional clock duty cycle distortion	Tdcdr	120	120	120	120	ps	At 250 MHz

The following table provides clocking specifications from -40 °C to 100 °C.

Table 36 • High-Speed I/O Clock Characteristics (-40 °C to 100 °C)

Parameter	Symbol	VDD = 1.0 V STD	V _{DD} = 1.0 V –1	V _{DD} = 1.05 V STD	V _{DD} = 1.05 V –1	Unit	Condition
High-speed I/O clock Fmax	Fмахв	1000	1250	1000	1250	MHz	HSIO and GPIO
High-speed I/O clock skew ¹	F SKEWB	30	20	30	20	ps	HSIO without bridging
	F SKEWB	600	500	600	500	ps	HSIO with bridging
	F SKEWB	45	35	45	35	ps	GPIO without bridging
	F SKEWB	75	60	75	60	ps	GPIO with bridging
High-speed	Tdcb	90	90	90	90	ps	HSIO without bridging
I/O clock duty cycle	Тосв	115	115	115	115	ps	HSIO with bridging
distortion ²	Тосв	90	90	90	90	ps	GPIO without bridging
	Тосв	115	115	115	115	ps	GPIO with bridging

- 1. F_{SKEWB} is the worst-case clock-tree skew observable between sequential I/O elements. Clock-tree skew is significantly smaller at I/O registers close to each other and fed by the same or adjacent clock-tree branches. Use the Microsemi Timing Analyzer tool to evaluate clock skew specific to the design.
- 2. Parameters listed in this table correspond to the worst-case duty cycle distortion observable at the I/O flip flops. IBIS should be used to calculate any additional duty cycle distortion that might be caused by asymmetrical rise/fall times for any I/O standard.

7.2.2 PLL

The following table provides information about PLL.

Table 37 • PLL Electrical Characteristics

Parameter	Symbol	Min	Тур	Max	Unit
Input clock frequency (integer mode)	Fini	1		1250	MHz
Input clock frequency (fractional mode)	Finf	10		1250	MHz
Minimum reference or feedback pulse width ¹	Finpulse	200			ps
Frequency at the Frequency Phase Detector (PFD) (integer mode)	Fphdeti	1		312	MHz
Frequency at the PFD (fractional mode)	Fphdetf	10	50	125	MHz
Allowable input duty cycle	FINDUTY	25		75	%

Parameter	Symbol	Min	Тур	Max	Unit
Maximum input period clock jitter (reference and feedback clocks) ²	Fmaxinj		120	1000	ps
PLL VCO frequency	Fvco	800		5000	MHz
Loop bandwidth (Int) ³	Fвw	Fphdet/55	FPHDET/44	Fphdet/30	MHz
Loop bandwidth (FRAC) ³	Fвw	Б рндет /91	FPHDET/77	Fphdet/56	MHz
Static phase offset of the PLL outputs⁴	Тѕро			Max (±60 ps, ±0.5 degrees)	ps
	TOUTJITTER				ps
PLL output duty cycle precision	Τουτρυτγ	48		54	%
PLL lock time ⁵	Тьоск			Max (6.0 μs, 625 PFD cycles)	μs
PLL unlock time ⁶	Tunlock	2		8	PFD cycles
PLL output frequency	Fout	0.050		1250	MHz
Minimum reset pulse width	TMRPW				μs
Maximum delay in the feedback path ⁷	Fmaxdfb			1.5	PFD cycles
Spread spectrum modulation spread ⁸	Mod_Spread	0.1		3.1	%
Spread spectrum modulation frequency ⁹	Mod_Freq	Fphdetf/(128x63)	32	Fphdetf/(128)	KHz

1. Minimum time for high or low pulse width.

- 2. Maximum jitter the PLL can tolerate without losing lock.
- 3. Default bandwidth setting of BW_PROP_CTRL = "01" for Integer and Fraction modes leads to the typical estimated bandwidth. This bandwidth can be lowered by setting BW_PROP_CTRL = "00" and can be increased if BW_PROP_CTRL = "10" and will be at the highest value if BW_PROP_CTRL = "11".
- 4. Maximum (±3-Sigma) phase error between any two outputs with nominally aligned phases.
- Input clock cycle is REFDIV/FREF. For example, FREF = 25 MHz, REFDIV = 1, lock time = 10.0 (assumes LOCKCOUNTSEL setting = 4'd8 (256 cycles)).
- 6. Unlock occurs if two cycle slip within LOCKCOUNT/4 PFD cycles.
- 7. Maximum propagation delay of external feedback path in deskew mode.
- 8. Programmable capability for depth of down spread or center spread modulation.
- 9. Programmable modulation rate based on the modulation divider setting (1 to 63).

Note: In order to meet all data sheet specifications, the PLL must be programmed such that the PLL Loop Bandwidth < (0.0017 * VCO Frequency) - 0.4863 MHz. The Libero PLL configuration tool will enforce this rule when creating PLL configurations.

7.2.3 DLL

The following table provides information about DLL.

Table 38 • DLL Electrical Characteristics

Parameter ¹	Symbol	Min	Тур	Max	Unit
Input reference clock frequency	FINF	133		800	MHz
Input feedback clock frequency	Finfdbf	133		800	MHz
Primary output clock frequency	FOUTPF	133		800	MHz

Parameter	Symbol	Min	Тур	Max	Unit
Operating current (VDD18)	RCscvpp			0.1	μΑ
Operating current (VDD)	RCscvdd			60.7	μΑ

7.3 Fabric Specifications

The following section describes specifications for the fabric.

7.3.1 Math Blocks

The following tables describe math block performance.

Table 41 • Math Block Performance Extended Commercial Range (0 °C to 100 °C)

Parameter	Symbol	Modes	V _{DD} = 1.0 V – STD	V _{DD} = 1.0 V - 1	V _{DD} = 1.05 V – STD	V _{DD} = 1.05 V - 1	Unit
Maximum F _{MAX} operating frequency	Fмах	18 × 18 multiplication	370	470	440	500	MHz
	18 × 18 multiplication summed with 48-bit input	370	470	440	500	MHz	
	18 × 19 multiplier pre-adder ROM mode	365	465	435	500	MHz	
		Two 9 × 9 multiplication	370	470	440	500	MHz
	9 × 9 dot product (DOTP)	370	470	440	500	MHz	
		Complex 18 × 19 multiplication	360	455	430	500	MHz

Table 42 • Math Block Performance Industrial Range (-40 °C to 100 °C)

Parameter	Symbol	Modes	VDD = 1.0 V - STD	V _{DD} = 1.0 V – 1	V _{DD} = 1.05 V – STD	V _{DD} = 1.05 V – 1	Unit
Maximum operating	Fmax	18 × 18 multiplication	365	465	435	500	MHz
frequency	18 × 18 multiplication summed with 48-bit input	365	465	435	500	MHz	
		18 × 19 multiplier pre-adder ROM mode	355	460	430	500	MHz
		Two 9 × 9 multiplication	365	465	435	500	MHz
		9 × 9 DOTP	365	465	435	500	MHz
		Complex 18 × 19 multiplication	350	450	425	500	MHz

7.3.2 SRAM Blocks

The following tables describe the LSRAM blocks' performance.

Parameter	V _{DD} = 1.0 V – STD	V _{DD} = 1.0 V - 1	V _{DD} = 1.05 V – STD	V _{DD} = 1.05 V - 1	Unit	Condition
Operating frequency	343	428	343	428	MHz	Two-port, all supported widths, pipelined, simple-write, and write- feed-through
-	309	428	309	428	MHz	Two-port, all supported widths, non-pipelined, simple-write, and write-feed-through
-	343	428	343	428	MHz	Dual-port, all supported widths, pipelined, simple-write, and write- feed-through
-	309	428	309	428	MHz	Dual-port, all supported widths, non-pipelined, simple-write, and write-feed-through
-	343	428	343	428	MHz	Two-port pipelined ECC mode, pipelined, simple-write, and write- feed-through
-	279	295	279	295	MHz	Two-port non-pipelined ECC mode, pipelined, simple-write, and write-feed-through
-	343	428	343	428	MHz	Two-port pipelined ECC mode, non-pipelined, simple-write, and write-feed-through
-	196	285	196	285	MHz	Two-port non-pipelined ECC mode, non-pipelined, simple- write, and write-feed-through
-	274	285	274	285	MHz	Two-port, all supported widths, pipelined, and read-before-write
-	274	285	274	285	MHz	Two-port, all supported widths, non-pipelined, and read-before- write
-	274	285	274	285	MHz	Dual-port, all supported widths, pipelined, and read-before-write
-	274	285	274	285	MHz	Dual-port, all supported widths, non-pipelined, and read-before- write
-	274	285	274	285	MHz	Two-port pipelined ECC mode, pipelined, and read-before-write
-	274	285	274	285	MHz	Two-port non-pipelined ECC mode, pipelined, and read-before- write
-	274	285	274	285	MHz	Two-port pipelined ECC mode, non-pipelined, and read-before- write
	193	285	193	285	MHz	Two-port non-pipelined ECC mode, non-pipelined, and read- before-write

- 5. Improved jitter characteristics for a specific industry standard are possible in many cases due to improved reference clock or higher V_{co} rate used.
- 6. Tx jitter is specified with all transmitters on the device enabled, a 10–12-bit error rate (BER) and Tx data pattern of PRBS7.
- 7. From the PMA mode, the TX_ELEC_IDLE port to the XVCR TXP/N pins.
 FTxRefClk = 75 MHz with typical settings.
 For data rates greater than 10.3125 Gbps, VDDA must be set to 1.05 V mode. See supply tolerance in the section Recommended Operating Conditions (see page 6). (see page 6)

7.4.6 Receiver Performance

The following table describes performance of the receiver.

Table 53 • PolarFire Transceiver Receiver Characteristics

Parameter	Symbol	Min	Тур	Max	Unit	Condition
Input voltage range	VIN	0		V _{DDA} + 0.3	V	
Differential peak-to-peak amplitude	VIDPP	140		1250	mV	
Differential termination	VITERM		85		Ω	
	VITERM		100		Ω	
	VITERM		150		Ω	
Common mode voltage	VICMDC 1	$0.7 \times V_{\text{DDA}}$		$0.9 \times V_{\text{DDA}}$	V	DC coupled
Exit electrical idle detection time	Teidet		50	100	ns	
Run length of consecutive identical digits (CID)	CID			200	UI	
CDR PPM tolerance ²	CDRPPM			1.15	% UI	
CDR lock-to-data time	TLTD				CDR _{REFCLK}	
CDR lock-to-ref time	Tltf				CDR _{REFCLK}	
Loss-of-signal detect (Peak	Vdetlhigh				mV	Setting = 1
Detect Range setting = high) ⁹	VDETLHIGH				mV	Setting = 2
	VDETLHIGH				mV	Setting = 3
	VDETLHIGH				mV	Setting = 4
	VDETLHIGH				mV	Setting = 5
	Vdetlhigh				mV	Setting = 6
	VDETLHIGH				mV	Setting = 7
Loss-of-signal detect (Peak	VDETLOW	65		175	mV	Setting = PCle ^{3,7}
Detect Range setting = low) ⁹	VDETLOW	95		190	mV	Setting = SATA ^{4,8}
	VDETLOW	75		170	mV	Setting = 1
	VDETLOW	95		185	mV	Setting = 2
	VDETLOW	100		190	mV	Setting = 3
	VDETLOW	140		210	mV	Setting = 4
	VDETLOW	155		240	mV	Setting = 5
	VDETLOW	165		245	mV	Setting = 6
	VDETLOW	170		250	mV	Setting = 7
Sinusoidal jitter tolerance	Tsjtol				UI	>8.5 Gbps – 12.7 Gbps ^{5, 10}

Table 55 • PCI Express Gen2

Parameter	Data Rate	Min	Max	Unit
Total transmit jitter	5.0 Gbps		0.35	UI
Receiver jitter tolerance	5.0 Gbps	0.4		UI

Note: With add-in card as specified in PCI Express CEM Rev 2.0.

7.5.2 Interlaken

The following table describes Interlaken.

Table 56 • Interlaken

Parameter	Data Rate	Min	Max	Unit
Total transmit jitter	6.375 Gbps		0.3	UI
	10.3125 Gbps		0.3	UI
	12.7 Gbps ¹			UI
Receiver jitter tolerance	6.375 Gbps	0.6		UI
	10.3125 Gbps	0.65		UI
	12.7 Gbps ¹			UI

1. For data rates greater than 10.3125 Gbps, VDDA must be set to 1.05 V mode. See supply tolerance in the section Recommended Operating Conditions (see page 6).

7.5.3 10GbE (10GBASE-R, and 10GBASE-KR)

The following table describes 10GbE (10GBASE-R).

Table 57 • 10GbE (10GBASE-R)

Parameter	Data Rate	Min	Max	Unit
Total transmit jitter	10.3125 Gbps		0.28	UI
Receiver jitter tolerance	10.3125 Gbps	0.7		UI

The following table describes 10GbE (10GBASE-KR).

Table 58 • 10GbE (10GBASE-KR)

Parameter	Data Rate	Min	Max	Unit
Total transmit jitter	10.3125 Gbps			UI
Receiver jitter tolerance	10.3125 Gbps			UI

The following table describes 10GbE (XAUI).

Table 59 • 10GbE (XAUI)

Parameter	Data Rate	Min	Max	Unit
Total transmit jitter (near end)	3.125 Gbps		0.35	UI
Total transmit jitter (far end)			0.55	UI
Receiver jitter tolerance	3.125 Gbps	0.65		UI

The following table describes 10GbE (RXAUI).

Parameter	Devices	Тур	Max	Unit
UFS UPERM digest run time	MPF100T, TL, TS, TLS			μs
	MPF200T, TL, TS, TLS	33.2	34.9	μs
	MPF300T, TL, TS, TLS	33.2	34.9	μs
	MPF500T, TL, TS, TLS			μs
Factory digest run time	MPF100T, TL, TS, TLS			μs
	MPF200T, TL, TS, TLS	493.6	510.1	μs
	MPF300T, TL, TS, TLS	493.6	510.1	μs
	MPF500T, TL, TS, TLS			μs

1. The entire sNVM is used as ROM.

2. Valid for user key 0 through 6.

Note: These times do not include the power-up to functional timing overhead when using digest checks on power-up.

7.6.6 Zeroization Time

The following tables describe zeroization time. A zeroization operation is counted as one programming cycle.

Table 77 • Zeroization Times for MPF100T, TL, TS, and TLS Devices

Parameter	Тур	Max	Unit	Conditions
Time to enter zeroization			ms	Zip flag set
Time to destroy the fabric data ¹			ms	Data erased
Time to destroy data in non-volatile memory (like new) ^{1, 2}			ms	One iteration of scrubbing
Time to destroy data in non-volatile memory (recoverable) $^{\rm 1,3}$			ms	One iteration of scrubbing
Time to destroy data in non-volatile memory (non-recoverable) ^{1, 4}			ms	One iteration of scrubbing
Time to scrub the fabric data ¹			S	Full scrubbing
Time to scrub the pNVM data (like new) ^{1, 2}			S	Full scrubbing
Time to scrub the pNVM data (recoverable) ^{1,3}			S	Full scrubbing
Time to scrub the fabric data pNVM data (non-recoverable) ^{1,4}			S	Full scrubbing
Time to verify ⁵			S	

- 1. Total completion time after entering zeroization.
- 2. Like new mode—zeroizes user design security setting and sNVM content.
- 3. Recoverable mode—zeroizes user design security setting, sNVM and factory keys.
- 4. Non-recoverable mode—zeroizes user design security setting, sNVM and factory keys, and factory data required for programming.
- 5. Time to verify after scrubbing completes.

Table 78 • Zeroization Times for MPF200T, TL, TS, and TLS Devices

Parameter	Тур	Max	Unit	Conditions
Time to enter zeroization			ms	Zip flag set
Time to destroy the fabric data ¹			ms	Data erased
Time to destroy data in non-volatile memory (like new) 1,2			ms	One iteration of scrubbing

Parameter	Тур	Max	Unit	Conditions
Time to destroy data in non-volatile memory (recoverable) ^{1, 3}			ms	One iteration of scrubbing
Time to destroy data in non-volatile memory (non-recoverable) ^{1, 4}			ms	One iteration of scrubbing
Time to scrub the fabric data ¹			S	Full scrubbing
Time to scrub the pNVM data (like new) ^{1, 2}			S	Full scrubbing
Time to scrub the pNVM data (recoverable) ^{1, 3}			S	Full scrubbing
Time to scrub the fabric data PNVM data (non-recoverable) 1,4			S	Full scrubbing
Time to verify⁵			S	

1. Total completion time after interning zeroization.

- 2. Like new mode—zeroizes user design security setting and sNVM content.
- 3. Recoverable mode—zeroizes user design security setting, sNVM and factory keys.
- 4. Non-recoverable mode—zeroizes user design security setting, sNVM and factory keys, and factory data required for programming.
- 5. Time to verify after scrubbing completes.

Table 79 • Zeroization Times for MPF300T, TL, TS, and TLS Devices

Parameter	Тур	Max	Unit	Conditions
Time to enter zeroization			ms	Zip flag set
Time to destroy the fabric data ¹			ms	Data erased
Time to destroy data in non-volatile memory (like new) ^{1, 2}			ms	One iteration of scrubbing
Time to destroy data in non-volatile memory (recoverable) ^{1, 3}			ms	One iteration of scrubbing
Time to destroy data in non-volatile memory (non- recoverable) ^{1, 4}			ms	One iteration of scrubbing
Time to scrub the fabric data ¹			S	Full scrubbing
Time to scrub the pNVM data (like new) ^{1, 2}			S	Full scrubbing
Time to scrub the pNVM data (recoverable) ^{1, 3}			S	Full scrubbing
Time to scrub the fabric data pNVM data (non-recoverable) 1,4			S	Full scrubbing
Time to verify⁵			S	

- 1. Total completion time after interning zeroization.
- 2. Like new mode—zeroizes user design security setting and sNVM content.
- 3. Recoverable mode—zeroizes user design security setting, sNVM and factory keys.
- 4. Non-recoverable mode—zeroizes user design security setting, sNVM and factory keys, and factory data required for programming.
- 5. Time to verify after scrubbing completes.

_

Table 80 • Zeroization Times for MPF500T, TL, TS, and TLS Devices

Parameter	Тур	Max	Unit	Conditions
Time to enter zeroization			ms	Zip flag set
Time to destroy the fabric data ¹			ms	Data erased
Time to destroy data in non-volatile memory (like new) ^{1, 2}			ms	One iteration of scrubbing
Time to destroy data in non-volatile memory (recoverable) $^{\rm 1,3}$			ms	One iteration of scrubbing

Parameter	Тур	Max	Unit	Conditions
Time to destroy data in non-volatile memory (non-recoverable) ^{1, 4}			ms	One iteration of scrubbing
Time to scrub the fabric data ¹			S	Full scrubbing
Time to scrub the pNVM data (like new) ^{1, 2}			S	Full scrubbing
Time to scrub the pNVM data (recoverable) ^{1,3}			S	Full scrubbing
Time to scrub the fabric data pNVM data (non-recoverable) $^{\scriptscriptstyle 1}$			S	Full scrubbing
Time to verify ⁵			S	

1. Total completion time after entering zeroization.

- 2. Like new mode—zeroizes user design security setting and sNVM content.
- 3. Recoverable mode—zeroizes user design security setting, sNVM and factory keys.
- 4. Non-recoverable mode—zeroizes user design security setting, sNVM and factory keys, and factory data required for programming.
- 5. Time to verify after scrubbing completes.

7.6.7 Verify Time

The following tables describe verify time.

Table 81 • Standalone Fabric Verify Times

Parameter	Devices	Max	Unit
Standalone verification over JTAG	MPF100T, TL, TS, TLS		S
	MPF200T, TL, TS, TLS	53 ¹	S
	MPF300T, TL, TS, TLS	90 ¹	S
	MPF500T, TL, TS, TLS		S
Standalone verification over SPI	MPF100T, TL, TS, TLS		S
	MPF200T, TL, TS, TLS	37 ²	S
	MPF300T, TL, TS, TLS	55²	S
	MPF500T, TL, TS, TLS		S

- 1. Programmer: FlashPro5, TCK 10 MHz; PC configuration: Intel i7 at 3.6 GHz, 32 GB RAM, Windows 10.
- 2. SmartFusion2 with MSS running at 100 MHz, MSS SPI 0 port running at 6.67 MHz. DirectC version
 - 4.1.

Notes:

- Standalone verify is limited to 2,000 total device hours ove r the industrial –40 °C to 100 °C temperature.
- Use the digest system service, for verify device time more than 2,000 hours.
- Standalone verify checks the programming margin on both the P and N gates of the push-pull cell.
 Digest checks only the P side of the push-pull gate. However, the push-pull gates work in tandem. Digest check is recommended if users believe they will exceed the 2,000-hour verify time specification.

Table 82 • Verify Time by Programming Hardware

Devices	IAP	FlashPro4	FlashPro5	BP	Silicon Sculptor	Units
MPF100T, TL, TS, TLS						
MPF200T, TL, TS, TLS	9	67	53			S
MPF300T, TL, TS, TLS	14	95	90			S

Figure 4 • USPI Switching Characteristics

7.8.4 Tamper Detectors

The following section describes tamper detectors.

Table 91 • ADC Conversion Rate

Parameter	Description	Min	Тур¹	Max
Τςοννί	Time from enable changing from zero to non-zero value to first conversion completes. Minimum value applies when POWEROFF = 0.	420 µs		470 μs
Τςοννν	Time between subsequent channel conversions.		480 µs	
TSETUP	Data channel and output to valid asserted. Data is held until next conversion completes, that is >480 μ s.	0 ns		
Tvalid ²	Width of the valid pulse.	1.625 µs		2 µs
Trate	Time from start of first set of conversions to the start of the next set. Can be considered as the conversion rate. Is set by the conversion rate parameter.	480 µs	Rate × 32 μs	8128 µs

1. Min, typ, and max refer to variation due to functional configuration and the raw TVS value. The actual internal correction time will vary based on the raw TVS value.

2. The pulse width varies depending on the time taken to complete the internal calibration multiplication, this can be up to 375 ns.

Note: Once the TVS block is active, the enable signal is sampled 25 ns before the falling edge of valid. The next enabled channel in the sequence 0-1-2-3 is started; that is, if channel 0 has just completed and only channels 0 and 3 are enabled, the next channel will be 3. When all the enabled channels in the sequence 0-1-2-3 are completed, the TVS waits for the conversion rate timer to expire. The enable signal may be changed at any time if it changes to 4'b0000 while valid is asserted (and 25 ns before valid is deasserted), then no further conversions will be started.

Table 92 • Temperature and Voltage Sensor Electrical Characteristics

Parameter	Min	Тур	Max	Unit	Condition
Temperature sensing range	-40		125	°C	
Temperature sensing accuracy	-10		10	°C	

Figure 5 • Cold Reset Timing

Notes:

- The previous diagram showsthe case where VDDI/VDDAUX of I/O banks are powered either before
 or sufficiently soon after VDD/VDD18/VDD25 that the I/O bank enable time is measured from the
 assertion time of VDD/VDD18/VDD25 (that is, the PUFT specification). If VDDI/VDDAUX of I/O banks
 are powered sufficiently after VDD/VDD18/VDD25, then the I/O bank enable time is measured from
 the assertion of VDDI/VDDAUX and is not specified by the PUFT specification. In this case, I/O
 operation is indicated by the assertion of BANK_i_VDDI_STATUS, rather than being measured
 relative to FABRIC_POR_N negation.
- AUTOCALIB_DONE assertion indicates the completion of calibration for any I/O banks specified by the user for auto-calibration. AUTOCALIB_DONE asserts independently of DEVICE_INIT_DONE. It may assert before or after DEVICE_INIT_DONE and is determined by the following:
 - How long after VDD/VDD18/VDD25 that VDDI/VDDAUX are powered on. Note that if any of the user-specified I/O banks are not powered on within the auto-calibration timeout window, then AUTOCALIB DONE doesn't assert until after this timeout.
 - The specified ramp times of VDDI of each I/O bank designated for auto-calibration.
 - How much auto-initialization is to be performed for the PCIe, SERDES transceivers, and fabric LSRAMs.
- If any of the I/O banks specified for auto-calibration do not have their VDDI/VDDAUX powered on within the auto-calibration timeout window, then it will be approximately auto-calibrated whenever VDDI/VDDAUX is subsequently powered on. To obtain an accurate calibration however, on such IO banks, it is necessary to initiate a re-calibration (using CALIB_START from fabric).
- AVM_ACTIVE only asserts if avionics mode is being used. It is asserted when the later of DEVICE_INIT_DONE or AUTOCALIB_DONE assert.

7.9.2 Warm Reset Initialization Sequence

The following warm reset timing diagram shows the initialization sequencing of the device when either DEVRST_N or TAMPER_RESET_DEVICE signals are asserted.

Figure 6 • Warm Reset Timing

7.9.3 Power-On Reset Voltages

7.9.3.1 Main Supplies

The start of power-up to functional time (T_{PUFT}) is defined as the point at which the latest of the main supplies (VDD, VDD18, VDD25) reach the reference voltage levels specified in the following table. This starts the process of releasing the reset of the device and powering on the FPGA fabric and IOs.

Table 97 • POR Ref Voltages

Supply	Power-On Reset Start Point (V)	Note
VDD	0.95	Applies to both 1.0 V and 1.05 V operation.
VDD18	1.71	
VDD25	2.25	

7.9.3.2 I/O-Related Supplies

For the I/Os to become functional (for low speed, sub 400 MHz operation), the (per-bank) I/O supplies (VDDI, VDDAUX) must reach the trip point voltage levels specified in the following table and the main supplies above must also be powered on.

Table 98 • I/O-Related Supplies

Supply	I/O Power-Up Start Point (V)
VDDI	0.85
VDDAUX	1.6

There are no sequencing requirements for the power supplies. However, VDDI3 and must be valid at same time as the main supplies. The other IO supplies (VDDI, VDDAUX) have no effect on power-up of FPGA fabric (that is, the fabric still powers up even if the IO supplies of some IO banks remain powered off).

🔨 Міскоснір	company
-------------	---------

SigVer, DSA-2048/SHA-256	1024	9810527	10884
	8К	9597000	10719
Key Agreement (KAS), DH-3072 (p=3072, security=256)		4920705	9338
Key Agreement (KAS), DH-3072 (p=3072, security=256) ¹		78914533	9083

1. With DPA counter measures.

Table 122 • NRBG

Modes	Message Size (bits)	Athena TeraFire Crypto Core Clock-Cycles	CAL Delay In CPU Clock-Cycles
Instantiate: strength, s=256, 384-bit nonce, 384-bit personalization string		18221	2841
Reseed: no additional input, s=256		13585	1180
Reseed: 384-bit additional input, s=256		15922	1342
Generate: (no additional input), prediction	128	15262	1755
resistance enabled, s= 256	8K	27169	8223
Generate: (no additional input), prediction	128	2138	1167
resistance disabled, s= 256	8K	14045	8223
Generate: (384-bit additional input), prediction	128	21299	1944
resistance enabled, s= 256	8K	33206	8949
Generate: (384-bit additional input), prediction	128	11657	1894
resistance disabled, s= 256	8K	23564	8950
Un-instantiate		761	666

1. With DPA counter measures.