

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Active
Number of LABs/CLBs	-
Number of Logic Elements/Cells	192000
Total RAM Bits	13619200
Number of I/O	300
Number of Gates	-
Voltage - Supply	0.97V ~ 1.08V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	536-LFBGA, CSPBGA
Supplier Device Package	536-CSPBGA (16x16)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/mpf200tls-fcsg536i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

6.2.1 DC Characteristics over Recommended Operating Conditions

The following table lists the DC characteristics over recommended operating conditions.

Parameter	Symbol	Min	Max	Unit	Condition
Input pin capacitance ¹	C _{IN} (dedicated GPIO)		5.6	pf	
	CIN (GPIO)		5.6	pf	
	CIN (HSIO)		2.8	pf	
Input or output leakage current per pin	I∟ (GPIO)		10	μΑ	I/O disabled, high – Z
	I∟ (HSIO)		10	μΑ	I/O disabled, high – Z
Input rise time (10%–90% of V_{DDix}) ^{2, 3, 4}	Trise	0.66	2.64	ns	V _{DDIx} = 3.3 V
Input rise time (10%–90% of V_{DDix}) ^{2, 3, 4}	_	0.50	2.00	ns	$V_{DDIx} = 2.5 V$
Input rise time (10%–90% of V_{DDix}) ^{2, 3, 4}	_	0.36	1.44	ns	V _{DDix} = 1.8 V
Input rise time (10%–90% of V_{DDix}) ^{2, 3, 4}		0.30	1.20	ns	V _{DDIx} = 1.5 V
Input rise time (10%–90% of V_{DDix}) ^{2, 3, 4}	_	0.24	0.96	ns	V _{DDIx} = 1.2 V
Input fall time (90%–10% of V_{DDIx}) ^{2, 3, 4}	TFALL	0.66	2.64	ns	V _{DDix} = 3.3 V
Input fall time (90%–10% of V_{DDIx}) ^{2, 3, 4}		0.50	2.00	ns	V _{DDIx} = 2.5 V
Input fall time (90%–10% of V_{DDIx}) ^{2, 3, 4}	_	0.36	1.44	ns	V _{DDIx} = 1.8 V
Input fall time (90%–10% of V_{DDIx}) ^{2, 3, 4}	_	0.30	1.20	ns	V _{DDix} = 1.5 V
Input fall time (90%–10% of V_{DDIx}) ^{2, 3, 4}		0.24	0.96	ns	V _{DDIx} = 1.2 V
Pad pull-up when $V_{IN} = 0^5$	Ipu	137	220	μΑ	V _{DDIx} = 3.3 V
Pad pull-up when $V_{IN} = 0^5$	_	102	166	μΑ	V _{DDIx} = 2.5 V
Pad pull-up when $V_{IN} = 0$	_	68	115	μΑ	V _{DDIx} = 1.8 V
Pad pull-up when $V_{IN} = 0$		51	88	μΑ	V _{DDIx} = 1.5 V
Pad pull-up when $V_{IN} = 0^6$	_	29	73	μΑ	V _{DDix} = 1.35 V
Pad pull-up when $V_{IN} = 0$	_	16	46	μΑ	V _{DDix} = 1.2 V
Pad pull-down when V_{IN} = 3.3 V ⁵	IPD	65	187	μΑ	V _{DDix} = 3.3 V
Pad pull-down when V_{IN} = 2.5 V ⁵	_	63	160	μΑ	V _{DDix} = 2.5 V
Pad pull-down when V_{IN} = 1.8 V	_	60	117	μΑ	V _{DDix} = 1.8 V
Pad pull-down when V_{IN} = 1.5 V	_	57	95	μΑ	V _{DDix} = 1.5 V
Pad pull-down when V_{IN} = 1.35 V	_	52	86	μΑ	V _{DDix} = 1.35 V
Pad pull-down when $V_{IN} = 1.2 V$	_	47	79	μA	V _{DDIx} = 1.2 V

Table 5 • DC Characteristics over Recommended Operating Conditions

1. Represents the die input capacitance at the pad not the package.

- 2. Voltage ramp must be monotonic.
- 3. Numbers based on rail-to-rail input signal swing and minimum 1 V/ns and maximum 4 V/ns. These are to be used for input delay measurement consistency.
- 4. I/O signal standards with smaller than rail-to-rail input swings can use a nominal value of 200 ps 20%–80% of swing and maximum value of 500 ps 20%–80% of swing.
- 5. GPIO only.

6.2.2 Maximum Allowed Overshoot and Undershoot

During transitions, input signals may overshoot and undershoot the voltage shown in the following table. Input currents must be limited to less than 100 mA per latch-up specifications.

Min (%)	Тур	Max (%)	Unit	Condition
-20	60	20	Ω	V _{DDI} = 1.2 V
-20	120	20	Ω	V _{DDI} = 1.2 V

Note: Thevenin impedance is calculated based on independent P and N as measured at 50% of V_{DDI}. For 50 $\Omega/75 \Omega/150 \Omega$ cases, nearest supported values of 40 $\Omega/60 \Omega/120 \Omega$ are used.

Table 19 • Single-Ended Termination to VDDI (Internal Parallel Termination to VDDI)

Min (%)	Тур	Max (%)	Unit	Condition
-20	34	20	Ω	V _{DDI} = 1.2 V
-20	40	20	Ω	V _{DDI} = 1.2 V
-20	48	20	Ω	V _{DDI} = 1.2 V
-20	60	20	Ω	V _{DDI} = 1.2 V
-20	80	20	Ω	V _{DDI} = 1.2 V
-20	120	20	Ω	V _{DDI} = 1.2 V
-20	240	20	Ω	V _{DDI} = 1.2 V

Note: Measured at 80% of VDDI.

Table 20 • Single-Ended Termination to VSS (Internal Parallel Termination to VSS)

Min (%)	Тур	Max (%)	Unit	Condition
-20	120	20	Ω	V _{DDI} = 1.8 V/1.5 V
-20	240	20	Ω	V _{DDI} = 1.8 V/1.5 V
-20	120	20	Ω	V _{DDI} = 1.2 V
-20	240	20	Ω	V _{DDI} = 1.2 V

Note: Measured at 50% of V_{DDI}.

6.3.5 GPIO On-Die Termination

The following table lists the on-die termination calibration accuracy specifications for GPIO bank.

Table 21 • On-Die Termination Calibration Accuracy Specifications for GPIO Bank

Parameter	Description	Min (%)	Тур	Max (%)	Unit	Condition
Differential	Internal	-20	100	20	Ω	VICM < 0.8 V
termination ¹	differential	-20	100	40	Ω	0.6 V < V _{ICM} < 1.65 V
	termination	-20	100	80	Ω	1.4 V < VICM
Single-ended	Internal	-40	50	20	Ω	V _{DDI} = 1.8 V/1.5 V
thevenin termination ^{2, 3}	parallel	-40	75	20	Ω	V _{DDI} = 1.8 V
	termination	-40	150	20	Ω	V _{DDI} = 1.8 V
		-20	20	20	Ω	V _{DDI} = 1.5 V
		-20	30	20	Ω	V _{DDI} = 1.5 V
		-20	40	20	Ω	V _{DDI} = 1.5 V
		-20	60	20	Ω	V _{DDI} = 1.5 V
		-20	120	20	Ω	V _{DDI} = 1.5 V

Standard	Description	VL1	VH1	VID ²	VICM ²	Vmeas ^{3, 4}	Vref ^{1, 5}	Unit
HSTL135II	Differential	VICM -	VICM +	0.250	0.675	0		V
	HSTL 1.35 V	.125	.125					
	Class II							
HSTL12	Differential	VICM -	VICM +	0.250	0.600	0		V
	HSTL 1.2 V	.125	.125					
HSUL18I	Differential	VICM -	VICM +	0.250	0.900	0		V
	HSUL 1.8 V	.125	.125					
	Class I							
HSUL18II	Differential	VICM -	VICM +	0.250	0.900	0		V
	HSUL 1.8 V	.125	.125					
	Class II							
HSUL12	Differential	VICM -	VICM +	0.250	0.600	0		V
	HSUL 1.2 V	.125	.125					
POD12I	Differential	VICM -	VICM +	0.250	0.600	0		V
	POD 1.2 V	.125	.125					
	Class I							
POD12II	Differential	VICM -	VICM +	0.250	0.600	0		V
	POD 1.2 V	.125	.125					
	Class II							
MIPI25	Mobile	VICM -	VICM +	0.250	0.200	0		V
	Industry	.125	.125					
	Processor							
	Interface							

- 1. Measurements are made at typical, minimum, and maximum V_{REF} values. Reported delays reflect worst-case of these measurements. V_{REF} values listed are typical. Input waveform switches between V_L and V_H . All rise and fall times must be 1 V/ns.
- 2. Differential receiver standards all use 250 mV V_{ID} for timing. V_{CM} is different between different standards.
- 3. Input voltage level from which measurement starts.
- 4. The value given is the differential input voltage.
- 5. This is an input voltage reference that bears no relation to the V_{REF}/V_{MEAS} parameters found in IBIS models or shown in Output Delay Measurement—Single-Ended Test Setup (see page 27).
- 6. Emulated bi-directional interface.

7.1.2 Output Delay Measurement Methodology

The following section provides information about the methodology for output delay measurement.

Table 23 • Output Delay Measurement Methodology

Standard	Description	Rref (Ω)	Cref (pF)	Vmeas (V)	Vref (V)
PCI	PCIE 3.3 V	25	10	1.65	
LVTTL33	LVTTL 3.3 V	1M	0	1.65	
LVCMOS33	LVCMOS 3.3 V	1M	0	1.65	
LVCMOS25	LVCMOS 2.5 V	1M	0	1.25	
LVCMOS18	LVCMOS 1.8 V	1M	0	0.90	
LVCMOS15	LVCMOS 1.5 V	1M	0	0.75	
LVCMOS12	LVCMOS 1.2 V	1M	0	0.60	
SSTL25I	Stub-series terminated logic 2.5 V Class I	50	0	Vref	1.25
SSTL25II	SSTL 2.5 V Class II	50	0	Vref	1.25

PolarFire

Standard	STD	-1	Unit
HSTL15I	900	1100	Mbps
HSTL15II	900	1100	Mbps
HSTL135I	1066	1066	Mbps
HSTL135II	1066	1066	Mbps
HSUL18I	400	400	Mbps
HSUL18II	400	400	Mbps
HSUL12	1066	1333	Mbps
HSTL12	1066	1266	Mbps
POD12I	1333	1600	Mbps
POD12II	1333	1600	Mbps
LVCMOS18 (12 mA)	500	500	Mbps
LVCMOS15 (10 mA)	500	500	Mbps
LVCMOS12 (8 mA)	300	300	Mbps

1. Performance is achieved with $V_{\text{ID}} \ge 200 \text{ mV}$.

Table 25 • GPIO Maximum Input Buffer Speed

Standard	STD	-1	Unit
LVDS25/LVDS33/LCMDS25/LCMDS33	1250	1600	Mbps
RSDS25/RSDS33	800	800	Mbps
MINILVDS25/MINILVDS33	800	800	Mbps
SUBLVDS25/SUBLVDS33	800	800	Mbps
PPDS25/PPDS33	800	800	Mbps
SLVS25/SLVS33	800	800	Mbps
SLVSE15	800	800	Mbps
HCSL25/HCSL33	800	800	Mbps
BUSLVDSE25	800	800	Mbps
MLVDSE25	800	800	Mbps
LVPECL33	800	800	Mbps
SSTL25I	800	800	Mbps
SSTL25II	800	800	Mbps
SSTL18I	800	800	Mbps
SSTL18II	800	800	Mbps
SSTL15I	800	1066	Mbps
SSTL15II	800	1066	Mbps
HSTL15I	800	900	Mbps
HSTL15II	800	900	Mbps
HSUL18I	400	400	Mbps
HSUL18II	400	400	Mbps
PCI	500	500	Mbps
LVTTL33 (20 mA)	500	500	Mbps
LVCMOS33 (20 mA)	500	500	Mbps
LVCMOS25 (16 mA)	500	500	Mbps

Standard	STD	-1	Unit
LVCMOS18 (12 mA)	500	500	Mbps
LVCMOS15 (10 mA)	500	500	Mbps
LVCMOS12 (8 mA)	300	300	Mbps
MIPI25/MIPI33	800	800	Mbps

1. All SSTLD/HSTLD/HSULD/LVSTLD/POD type receivers use the LVDS differential receiver. 2. Performance is achieved with $V_{\rm ID} \ge 200$ mV.

7.1.4 **Output Buffer Speed**

Table 26 • HSIO Maximum Output Buffer Speed

Standard	STD	-1	Unit
SSTL18I	800	1066	Mbps
SSTL18II	800	1066	Mbps
SSTL18I (differential)	800	1066	Mbps
SSTL18II (differential)	800	1066	Mbps
SSTL15I	1066	1333	Mbps
SSTL15II	1066	1333	Mbps
SSTL15I (differential)	1066	1333	Mbps
SSTL15II (differential)	1066	1333	Mbps
SSTL135I	1066	1333	Mbps
SSTL135II	1066	1333	Mbps
SSTL135I (differential)	1066	1333	Mbps
SSTL135II (differential)	1066	1333	Mbps
HSTL15I	900	1100	Mbps
HSTL15II	900	1100	Mbps
HSTL15I (differential)	900	1100	Mbps
HSTL15II (differential)	900	1100	Mbps
HSTL135I	1066	1066	Mbps
HSTL135II	1066	1066	Mbps
HSTL135I (differential)	1066	1066	Mbps
HSTL135II (differential)	1066	1066	Mbps
HSUL18I	400	400	Mbps
HSUL18II	400	400	Mbps
HSUL18II (differential)	400	400	Mbps
HSUL12	1066	1333	Mbps
HSUL12I (differential)	1066	1333	Mbps
HSTL12	1066	1266	Mbps
HSTL12I (differential)	1066	1266	Mbps
POD12I	1333	1600	Mbps
POD12II	1333	1600	Mbps
LVCMOS18 (12 mA)	500	500	Mbps
LVCMOS15 (10 mA)	500	500	Mbps

Parameter	Interface Name	Topology	STD Min	STD Typ	STD Max	–1 Min	—1 Тур	-1 Max	Unit	Clock-to- Data Condition
Fмах 4:1	RX_DDRX_B_A	Rx DDR digital mode							MHz	From a HS_IO_CLK clock source, aligned
Fmax 8:1	RX_DDRX_B_A	Rx DDR digital mode							MHz	From a HS_IO_CLK clock source, aligned
Fmax 2:1	RX_DDRX_B_C	Rx DDR digital mode							MHz	From a HS_IO_CLK clock source, centered
Fmax 4:1	RX_DDRX_B_C	Rx DDR digital mode							MHz	From a HS_IO_CLK clock source, centered
Fmax 8:1	RX_DDRX_B_C	Rx DDR digital mode							MHz	From a HS_IO_CLK clock source, centered
Fmax 2:1	RX_DDRX_BL_A	Rx DDR digital mode							MHz	From a HS_IO_CLK clock source, aligned
Fmax 4:1	RX_DDRX_BL_A	Rx DDR digital mode							MHz	From a HS_IO_CLK clock source, aligned
Fmax 8:1	RX_DDRX_BL_A	Rx DDR digital mode							MHz	From a HS_IO_CLK clock source, aligned
Fмах 2:1	RX_DDRX_BL_C	Rx DDR digital mode							MHz	From a HS_IO_CLK clock source, centered
Fmax 4:1	RX_DDRX_BL_C	Rx DDR digital mode							MHz	From a HS_IO_CLK clock source, centered

Parameter	Symbol	V _{DD} = 1.0 V STD	V _{DD} = 1.0 V –1	V _{DD} = 1.05 V STD	V _{DD} = 1.05 V –1	Unit	Condition
Regional clock duty cycle distortion	Tdcdr	120	120	120	120	ps	At 250 MHz

The following table provides clocking specifications from -40 °C to 100 °C.

Table 36 • High-Speed I/O Clock Characteristics (-40 °C to 100 °C)

Parameter	Symbol	VDD = 1.0 V STD	V _{DD} = 1.0 V –1	V _{DD} = 1.05 V STD	V _{DD} = 1.05 V –1	Unit	Condition
High-speed I/O clock Fmax	Fмахв	1000	1250	1000	1250	MHz	HSIO and GPIO
High-speed	F SKEWB	30	20	30	20	ps	HSIO without bridging
I/O clock	F SKEWB	600	500	600	500	ps	HSIO with bridging
SKEW	F SKEWB	45	35	45	35	ps	GPIO without bridging
	F SKEWB	75	60	75	60	ps	GPIO with bridging
High-speed	Tdcb	90	90	90	90	ps	HSIO without bridging
I/O clock duty cycle	Тосв	115	115	115	115	ps	HSIO with bridging
distortion ²	Тосв	90	90	90	90	ps	GPIO without bridging
	Тосв	115	115	115	115	ps	GPIO with bridging

- 1. F_{SKEWB} is the worst-case clock-tree skew observable between sequential I/O elements. Clock-tree skew is significantly smaller at I/O registers close to each other and fed by the same or adjacent clock-tree branches. Use the Microsemi Timing Analyzer tool to evaluate clock skew specific to the design.
- 2. Parameters listed in this table correspond to the worst-case duty cycle distortion observable at the I/O flip flops. IBIS should be used to calculate any additional duty cycle distortion that might be caused by asymmetrical rise/fall times for any I/O standard.

7.2.2 PLL

The following table provides information about PLL.

Table 37 • PLL Electrical Characteristics

Parameter	Symbol	Min	Тур	Max	Unit
Input clock frequency (integer mode)	Fini	1		1250	MHz
Input clock frequency (fractional mode)	Finf	10		1250	MHz
Minimum reference or feedback pulse width ¹	Finpulse	200			ps
Frequency at the Frequency Phase Detector (PFD) (integer mode)	Fphdeti	1		312	MHz
Frequency at the PFD (fractional mode)	Fphdetf	10	50	125	MHz
Allowable input duty cycle	FINDUTY	25		75	%

Parameter	Symbol	Min	Тур	Max	Unit
Maximum input period clock jitter (reference and feedback clocks) ²	Fmaxinj		120	1000	ps
PLL VCO frequency	Fvco	800		5000	MHz
Loop bandwidth (Int) ³	Fвw	Fphdet/55	FPHDET/44	Fphdet/30	MHz
Loop bandwidth (FRAC) ³	Fвw	Б рндет /91	FPHDET/77	Fphdet/56	MHz
Static phase offset of the PLL outputs⁴	Тѕро			Max (±60 ps, ±0.5 degrees)	ps
	TOUTJITTER				ps
PLL output duty cycle precision	Τουτρυτγ	48		54	%
PLL lock time ⁵	Тьоск			Max (6.0 μs, 625 PFD cycles)	μs
PLL unlock time ⁶	Tunlock	2		8	PFD cycles
PLL output frequency	Fout	0.050		1250	MHz
Minimum reset pulse width	TMRPW				μs
Maximum delay in the feedback path ⁷	Fmaxdfb			1.5	PFD cycles
Spread spectrum modulation spread ⁸	Mod_Spread	0.1		3.1	%
Spread spectrum modulation frequency ⁹	Mod_Freq	Fphdetf/(128x63)	32	Fphdetf/(128)	KHz

1. Minimum time for high or low pulse width.

- 2. Maximum jitter the PLL can tolerate without losing lock.
- 3. Default bandwidth setting of BW_PROP_CTRL = "01" for Integer and Fraction modes leads to the typical estimated bandwidth. This bandwidth can be lowered by setting BW_PROP_CTRL = "00" and can be increased if BW_PROP_CTRL = "10" and will be at the highest value if BW_PROP_CTRL = "11".
- 4. Maximum (±3-Sigma) phase error between any two outputs with nominally aligned phases.
- Input clock cycle is REFDIV/FREF. For example, FREF = 25 MHz, REFDIV = 1, lock time = 10.0 (assumes LOCKCOUNTSEL setting = 4'd8 (256 cycles)).
- 6. Unlock occurs if two cycle slip within LOCKCOUNT/4 PFD cycles.
- 7. Maximum propagation delay of external feedback path in deskew mode.
- 8. Programmable capability for depth of down spread or center spread modulation.
- 9. Programmable modulation rate based on the modulation divider setting (1 to 63).

Note: In order to meet all data sheet specifications, the PLL must be programmed such that the PLL Loop Bandwidth < (0.0017 * VCO Frequency) - 0.4863 MHz. The Libero PLL configuration tool will enforce this rule when creating PLL configurations.

7.2.3 DLL

The following table provides information about DLL.

Table 38 • DLL Electrical Characteristics

Parameter ¹	Symbol	Min	Тур	Max	Unit
Input reference clock frequency	FINF	133		800	MHz
Input feedback clock frequency	Finfdbf	133		800	MHz
Primary output clock frequency	FOUTPF	133		800	MHz

Parameter ¹	Symbol	Min	Тур	Max	Unit
Secondary output clock frequency ²	Foutsf	33.3		800	MHz
Input clock cycle-to-cycle jitter	Finj			200	ps
Output clock period cycle-to-cycle jitter (w/clean input)	Toutjitterp			300	ps
Output clock-to-clock skew between two outputs with the same phase settings	Тѕкеw			±200	ps
DLL lock time	Тьоск	16		16K	Reference clock cycles
Minimum reset pulse width	Tmrpw	3			ns
Minimum input pulse width ³	TMIPW	20			ns
Minimum input clock pulse width high	Тмрwн	400			ps
Minimum input clock pulse width low	TMPWL	400			ps
Delay step size	Tdel	12.7	30	35	ps
Maximum delay block delay ⁴	TDELMAX	1.8		4.8	ns
Output clock duty cycle (with 50% duty cycle input) 5	TDUTY	40		60	%
Output clock duty cycle (in phase reference mode) ⁵	TDUTY50	45		55	%

- 1. For all DLL modes.
- 2. Secondary output clock divided by four option.
- 3. On load, direction, move, hold, and update input signals.
- 4. 128 delay taps in one delay block.
- 5. Without duty cycle correction enabled.

7.2.4 RC Oscillators

_

The following tables provide internal RC clock resources for user designs and additional information about designing systems with RF front end information about emitters generated on-chip to support programming operations.

Table 39 • 2 MHz RC Oscillator Electrical Characteristics

Parameter	Symbol	Min	Тур	Max	Unit
Operating frequency	RC _{2FREQ}		2		MHz
Accuracy	RC2FACC	-4		4	%
Duty cycle	RC _{2DC}	46		54	%
Peak-to-peak output period jitter	RC _{2PJIT}		5	10	ns
Peak-to-peak output cycle-to-cycle jitter	RC _{2CJIT}		5	10	ns
Operating current (VDD25)	RC2IVPPA			60	μA
Operating current (VDD)	RC _{2IVDD}			2.6	μA

Table 40 • 160 MHz RC Oscillator Electrical Characteristics

Parameter	Symbol	Min	Тур	Max	Unit
Operating frequency	RCSCFREQ		160		MHz
Accuracy	RCSCFACC	-4		4	%
Duty cycle	RCscdc	47		52	%
Peak-to-peak output period jitter	RCscpjit			600	ps
Peak-to-peak output cycle-to-cycle jitter	RCsccjit			172	ps
Operating current (VDD25)	RCscvppa			599	μA

Parameter	Symbol	Min	Тур	Max	Unit
Operating current (VDD18)	RCscvpp			0.1	μΑ
Operating current (VDD)	RCscvdd			60.7	μΑ

Table 48 • Transceiver Differential Reference Clock I/O Standards

I/O Standard	Comment
LVDS25	For DC input levels, se e table Differential DC Input and Output Levels.
HCSL25 (for PCIe)	

Note: The transceiver reference clock differential receiver supports V_{CM} common mode.

7.4.4 Transceiver Interface Performance

The following table describes the single-ended I/O standards supported as transceiver reference clocks.

Table 49 • Transceiver Single-Ended Reference Clock I/O Standards

I/O Standard	Comment
LVCMOS25	For DC input levels, see table DC Input and Output Levels.

7.4.5 Transmitter Performance

The following tables describe performance of the transmitter.

Table 50 • Transceiver Reference Clock Input Termination

Parameter	Symbol	Min	Тур	Max	Unit
Single-ended termination	RefTerm		50		Ω
Single-ended termination	RefTerm		75		Ω
Single-ended termination	RefTerm		150		Ω
Differential termination	RefDiffTerm		115 ¹		Ω
Power-up termination			>50K		Ω

1. Measured at VCM= 1.2 V and VID= 350 mV.

Note: All pull-ups are disabled at power-up to allow hot plug capability.

Table 51 • PolarFire Transceiver User Interface Clocks

Parameter	Modes ¹	STD Min	STD Max	–1 Min	-1 Max	Unit
Transceiver TX_CLK	8-bit, max data rate = 1.6 Gbps		200		200	MHz
range (non-	10-bit, max data rate = 1.6 Gbps		160		160	MHz
with global or regional	16-bit, max data rate = 4.8 Gbps		300		300	MHz
fabric clocks)	20-bit, max data rate = 6.0 Gbps		300		300	MHz
	32-bit, max data rate =		325		325	MHz
	10.3125 Gbps (–STD) / 12.7 Gbps (–1)1					
	40-bit, max data rate =		260		320	MHz
	10.3125 Gbps (–STD) / 12.7 Gbps (–1)1					
	64-bit, max data rate =		165		160	MHz
	10.3125 Gbps (–STD) / 12.7 Gbps (–1)1					
	80-bit, max data rate =		130		130	MHz
	10.3125 Gbps(–STD) / 12.7 Gbps (–1)1					
	Fabric pipe mode 32-bit, max data rate = 6.0 Gbps		150		150	MHz
	8-bit, max data rate = 1.6 Gbps		200		200	MHz

Parameter	Symbol	Min	Тур	Max	Unit	Condition
		0.41			UI	>3.2–8.5 Gbps⁵
		0.41			UI	>1.6 to 3.2 Gbps ⁵
		0.41			UI	>0.8 to 1.6 Gbps ⁵
		0.41			UI	250 to 800 Mpbs ⁵
Total jitter tolerance with	TIJTOLSE	0.65			UI	3.125 Gbps⁵
stressed eye		0.65			UI	6.25 Gbps ⁶
		0.7			UI	10.3125 Gbps ⁶
					UI	12.7 Gbps ^{6, 10}
Sinusoidal jitter tolerance with	TSJTOLSE	0.1			UI	3.125 Gbps⁵
stressed eye		0.05			UI	6.25 Gbps ⁶
		0.05			UI	10.3125 Gbps ⁶
					UI	12.7 Gbps ^{6, 10}
CTLE DC gain (all stages, max settings)				10	dB	
CTLE AC gain (all stages, max settings)				16	dB	
DFE AC gain (per 5 stages, max settings)				7.5	dB	

1. Valid at 3.2 Gbps and below.

- 2. Data vs. Rx reference clock frequency.
- 3. Achieves compliance with PCIe electrical idle detection.
- 4. Achieves compliance with SATA OOB specification.
- 5. Rx jitter values based on bit error ratio (BER) of 10−12, AC coupled input with 400 mV V_{ID}, all stages of Rx CTLE enabled, DFE disabled, 80 MHz sinusoidal jitter injected to Rx data.
- 6. Rx jitter values based on bit error ratio (BER) of 10−12, AC coupled input with 400 mV V_{ID}, all stages of Rx CTLE enabled, DFE enabled, 80 MHz sinusoidal jitter injected to Rx data.
- 7. For PCIe: Low Threshold Setting = 1, High Threshold Setting = 2.
- 8. For SATA: Low Threshold Setting = 2, High Threshold Setting = 3.
- 9. Loss of signal detection is valid for input signals that transition at a density ≥1 Gbps for PRBS7 data or 6 Gbps for PRBS31 data.
- 10. For data rates greater than 10.3125 Gbps, VDDA must be set to 1.05 V mode. See supply tolerance in the section Recommended Operating Conditions (see page 6).

7.5 Transceiver Protocol Characteristics

The following section describes transceiver protocol characteristics.

7.5.1 PCI Express

The following tables describe the PCI express.

Table 54 • PCI Express Gen1

Parameter	Data Rate Min		Max	Unit
Total transmit jitter	2.5 Gbps		0.25	UI
Receiver jitter tolerance	2.5 Gbps	0.4		UI

Note: With add-in card, as specified in PCI Express CEM Rev 2.0.

Table 60 • 10GbE (RXAUI)

	Data Rate	Min	Max	Unit
Total transmit jitter	6.25 Gbps			UI
Receiver jitter tolerance	6.25 Gbps			UI

7.5.4 1GbE (1000BASE-T)

The following table describes 1GbE (1000BASE-T).

Table 61 • 1GbE (1000BASE-T)

	Data Rate	Min	Max	Unit
Total transmit jitter	1.25 Gbps			UI
Receiver jitter tolerance	1.25 Gbps			UI

The following table describes 1GbE (1000BASE-X).

Table 62 • 1GbE (1000BASE-X)

	Data Rate	Min	Max	Unit
Total transmit jitter	1.25 Gbps			UI
Receiver jitter tolerance	1.25 Gbps			UI

7.5.5 SGMII and QSGMII

The following table describes SGMII.

Table 63 • SGMII

Parameter	Data Rate	Min	Max	Unit
Total transmit jitter	1.25 Gbps		0.24	UI
Receiver jitter tolerance	1.25 Gbps	0.749		UI

The following table describes QSGMII.

Table 64 • QSGMII

Parameter	Data Rate	Min	Max	Unit
Total transmit jitter	5.0 Gbps		0.3	UI
Receiver jitter tolerance	5.0 Gbps	0.65		UI

7.5.6 SDI

The following table describes SDI.

Table 65 • SDI

Parameter	Data Rate	Min	Max	Unit
Total transmit jitter				UI
Receiver jitter tolerance				UI

7.6.3 FPGA Bitstream Sizes

The following table describes FPGA bitstream sizes.

Table 72 • Initialization Client Sizes

Device	Plaintext	Ciphertext
MPF100T, TL, TS, TLS		
MPF200T, TL, TS, TLS	2916 KB	3006 KB
MPF300T, TL, TS, TLS	4265 KB	4403 KB
MPF500T, TL, TS, TLS		

Note: Worst case initializing all fabric LSRAM, USRAM, and UPROM.

Table 73 • Bitstream Sizes

File	Devices	FPGA	Security	SNVM (all pages)	FPGA+ SNVM	FPGA+ Sec	SNVM+ Sec	FPGA+ SNVM+ Sec
SPI	MPF100T, TL, TS, TLS							
DAT	MPF100T, TL, TS, TLS							
SPI	MPF200T, TL, TS, TLS	5.9 MB	3.4 KB	59.7 KB	5.9 MB	5.9 MB	62.2 KB	6.0 MB
DAT	MPF200T, TL, TS, TLS	5.9 MB	7.3 KB	61.2 KB	6.0 MB	5.9 MB	66.3 KB	6.0 MB
SPI	MPF300T, TL, TS, TLS	9.3 MB	3.5 KB	59.7 KB	9.6 MB	9.5 MB	62.2 KB	9.6 MB
DAT	MPF300T, TL, TS, TLS	9.3 MB	7.6 KB	61.2 KB	9.6 MB	9.5 MB	66.3 KB	9.6 MB
SPI	MPF500T, TL, TS, TLS							
DAT	MPF500T, TL, TS, TLS							

7.6.4 Digest Cycles

Digests verify the integrity of the programmed non-volatile data. Digests are a cryptographic hash of various data areas. Any digest that reports back an error raises the digest tamper flag.

	Retention Since Programmed (N = Number Digests During that Time) ¹									
Digest Ti	Storage and Operating T	N ≤300	N = 500	N = 1000	N = 1500	N = 2000	N = 4000	N = 6000	Unit	Retention
–40 to 100	-40 to 100	20× LF	17× LF	12 × LF	10× LF	8× LF	4× LF	2 × LF	°C	Years
–40 to 100	0 to 100	20× LF	17× LF	12 × LF	10× LF	8× LF	4× LF	2 × LF	°C	Years
–40 to 85	–40 to 85	20× LF	20× LF	20× LF	20× LF	16× LF	8× LF	4 × LF	°C	Years
–40 to 55	–40 to 55	20× LF	20× LF	20× LF	20× LF	20× LF	20× LF	20× LF	°C	Years

Table 74 • Maximum Number of Digest Cycles

1. LF = Lifetime factor as defined by the number of programming cycles the device has seen under the conditions listed in the following table.

Devices	IAP	FlashPro4	Flash Pro 5	BP	Silicon Sculptor	Units
MPF500T, TL, TS, TLS						

Notes:

- FlashPro4 4 MHz TCK.
- FlashPro5 10 MHz TCK.
- PC configuration: Intel i7 at 3.6 GHz, 32 GB RAM, Windows 10.

Table 83 • Verify System Services

Parameter	Symbol	ServiceID	Devices	Тур	Max	Unit
In application verify by index	$T_{IAP_Ver_Index}$	44H	MPF100T, TL, TS, TLS			S
			MPF200T, TL, TS, TLS	8.2	9	S
			MPF300T, TL, TS, TLS	12.4	13	S
			MPF500T, TL, TS, TLS			S
In application verify by SPI address	TIAP_Ver_Addr	45H	MPF100T, TL, TS, TLS			S
			MPF200T, TL, TS, TLS	8.2	9	S
			MPF300T, TL, TS, TLS	12.4	13	S
			MPF500T, TL, TS, TLS			S

7.6.8 Authentication Time

The following tables describe authentication system service time.

Table 84 • Authentication Services

Parameter	Symbol	ServiceID	Devices	Тур	Max	Unit
Bitstream Authentication	TBIT_AUTH	22H	MPF100T, TL, TS, TLS			S
			MPF200T, TL, TS, TLS	3.3	3.7	S
			MPF300T, TL, TS, TLS	4.9	5.4	S
			MPF500T, TL, TS, TLS			S
IAP Image Authentication	TIAP_AUTH	23H	MPF100T, TL, TS, TLS			S
			MPF200T, TL, TS, TLS	3.3	3.7	S
			MPF300T, TL, TS, TLS	4.9	5.4	S
			MPF500T, TL, TS, TLS			

7.6.9 Secure NVM Performance

The following table describes secure NVM performance.

Table 85 • sNVM Read/Write Characteristics

Parameter	Symbol	Min	Тур	Max	Unit	Conditions
Plain text programming		7.0	7.2	7.9	ms	
Authenticated text programming		7.2	7.4	9.4	ms	
Authenticated and encrypted text programming		7.2	7.4	9.4	ms	
Authentication R/W 1st access from power-up overhead	Tpuf_ovhd		100	111	ms	From Tfab_ready
Plain text read		7.67	7.79	8.2	μs	

Parameter	Min	Тур	Max	Unit	Condition
Voltage sensing range	0.9		2.8	V	
Voltage sensing accuracy	-1.5		1.5	%	

Table 93 • Tamper Macro Timing Characteristics—Flags and Clearing

Parameter	Symbol	Тур	Max	Unit
From event detection to flag generation	TJTAG_ACTIVE ^{1, 2}	45	52	ns
	Tmesh_err ²	1.8	2.2	μs
	TCLK_GLITCH ^{1, 2}			ns
	TCLK_FREQ ^{1, 2}			μs
	TLOW_1P05 ²	70	108	μs
	Thigh_1P8 ²	85	120	μs
	Thigh_2p5 ²	130	520	μs
	TGLITCH_1P05 ²			μs
	Tsecdec ^{1, 2}			μs
	Tdri_err ²	14	18	μs
	Twdog ^{1, 2}			μs
	TLOCK_ERR ²			μs
Time from system controller instruction execution to flag generation	TINST_BUF_ACCESS ^{2, 3}	4	5	μs
	TINST_DEBUG ^{2, 3}	3.3	4	μs
	TINST_CHK_DIGEST ^{2, 3}	1.8	3	μs
	TINST_EC_SETUP ^{2, 3}	1.8	2	μs
	TINST_FACT_PRIV ^{2, 3}	3.8	5	μs
	TINST_KEY_VAL ^{2, 3}	2.5	3.1	μs
	TINST_MISC ^{2, 3}	1.5	2	μs
	TINST_PASSCODE_MATCH ^{2, 3}	2.5	3	μs
	TINST_PASSCODE_SETUP ^{2, 3}	4.2	5	μs
	TINST_PROG ^{2, 3}	3.8	4.1	μs
	TINST_PUB_INFO ^{2, 3}	4	4.5	μs
	TINST_ZERO_RECO ^{2, 3}	2.5	3	μs
	TINST_PASSCODE_FAIL ^{2, 3}	170	180	μs
	TINST_KEY_VAL_FAIL ^{2, 3}	92	110	μs
	TINST_UNUSED ^{2, 3}	4	5	μs
Time from sending the CLEAR to deassertion on FLAG	Tclear_flag	17	23	ns

1. Not available during Flash*Freeze.

- 2. The timing does not impact the user design, but it is useful for security analysis.
- 3. System service requests from the fabric will interrupt the system controller delaying the generation of the flag.

Table 94 • Tamper Macro Response Timing Characteristics

Parameter	Symbol	Тур	Max	Unit
Time from triggering the response to all I/Os disabled	TIO_DISABLE	40	50	ns

7.9.4 Design Dependence of T PUFT and T WRFT

Some phases of the device initialization are user design-dependent, as the device automatically initializes certain resources to user-specified configurations if those resources are used in the design. It is necessary to compute the overall power-up to functional time by referencing the following tables and adding the relevant phases, according to the design configuration. The following equation refers to timing parameters specified in the above timing diagrams. Please note T_{PCIE}, T_{XCVR}, T_{LSRAM}, and T_{USRAM} can be found in the PolarFire FPGA device power-up and resets user guide UG0725.

TPUFT = TFAB_READY(cold) + max((TPCIE + TXCVR + TLSRAM + TUSRAM), TCALIB)

TWRFT = TFAB_READY(warm) + max((TPCIE + TXCVR + TLSRAM + TUSRAM), TCALIB)

Note: TPCIE, TXCVR, TLSRAM, TUSRAM, and TCALIB are common to both cold and warm reset scenarios.

Auto-initialization of FPGA (if required) occurs in parallel with I/O calibration. The device may be considered fully functional only when the later of these two activities has finished, which may be either one, depending on the configuration, as may be calculated from the following tables. Note that I/O calibration may extend beyond T_{PUFT} (as I/O calibration process is independent of main device power-on and is instead dependent on I/O bank supply relative power-on time and ramp times). The previous timing diagram for power-on initialization shows the earliest that I/Os could be enabled, if the I/O power supplies are powered on before or at the same time as the main supplies.

7.9.5 Cold Reset to Fabric and I/Os (Low Speed) Functional

The following table specifies the minimum, typical, and maximum times from the power supplies reaching the above trip point levels until the FPGA fabric is operational and the FPGA IOs are functional for low-speed (sub 400 MHz) operation.

Table 99 • Cold Boot

Power-On (Cold) Reset to Fabric and I/O Operational	Min	Тур	Max	Unit
Time when input pins start working – $T_{\text{IN}_\text{ACTIVE(cold)}}$	1.17	4.51	7.84	ms
Time when weak pull-ups are enabled – TPU_PD_ACTIVE(cold)	1.17	4.51	7.84	ms
Time when fabric is operational – TFAB_READY(cold)	1.20	4.54	7.87	ms
Time when output pins start driving – Tout_ACTIVE(cold)	1.22	4.56	7.89	ms

7.9.6 Warm Reset to Fabric and I/Os (Low Speed) Functional

The following table specifies the minimum, typical, and maximum times from the negation of the warm reset event until the FPGA fabric is operational and the FPGA IOs are functional for low-speed (sub 400 MHz) operation.

Table 100 • Warm Boot

Warm Reset to Fabric and I/O Operational	Min	Тур	Max	Unit
Time when input pins start working – TIN_ACTIVE(warm)	0.91	1.76	2.62	ms
Time when weak pull-ups/pull-downs are enabled – $T_{PU_PD_ACTIVE(warm)}$	0.91	1.76	2.62	ms
Time when fabric is operational – TFAB_READY(warm)	0.94	1.79	2.65	ms
Time when output pins start driving – Tout_ACTIVE(warm)	0.96	1.81	2.67	ms

7.9.7 Miscellaneous Initialization Parameters

In the following table, T_{FAB_READY} refers to either T_{FAB_READY(cold)} or T_{FAB_READY(warm)} as specified in the previous tables, depending on whether the initialization is occurring as a result of a cold or warm reset, respectively.

Table 101 • Cold and Warm Boot

Parameter	Symbol	Min	Тур	Max	Unit	Condition
The time from T _{FAB_READY} to ready to program through JTAG/SPI-Slave		0	0	0	ms	
The time from T _{FAB_READY} to auto-update start			Tpuf_ovhd ¹	$T_{PUF_OVHD^1}$	ms	
The time from TFAB_READY to programming recovery start			$T_{PUF_OVHD^1}$	$T_{\text{PUF}_\text{OVHD}^1}$	ms	
The time from T _{FAB_READY} to the tamper flags being available	TTAMPER_READY	0	0	0	ms	
The time from T _{FAB_READY} to the Athena Crypto co-processor being available (for S devices only)	Tcrypto_ready	0	0	0	ms	

1. Programming depends on the PUF to power up. Refer to TPUF_OVHD at section Secure NVM Performance (see page 58).

7.9.8 I/O Calibration

The following tables specify the initial I/O calibration time for the fastest and slowest supported VDDI ramp times of 0.2 ms to 50 ms, respectively. This only applies to I/O banks specified by the user to be auto-calibrated.

Table 102 • I/O Initial Calibration Time (TCALIB)

Ramp Time	Min (ms)	Max (ms)	Condition
0.2 ms	0.98	2.63	Applies to HSIO and GPIO banks
50 ms	41.62	62.19	Applies to HSIO and GPIO banks

Notes:

- The user may specify any VDDI ramp time in the range specified above. The nominal initial calibration time is given by the specified VDDI ramp time plus 2 ms.
- In order for IO calibration to start, VDDI and VDDAUX of the I/O bank must be higher than the trip point levels specified in I/O-Related Supplies (see page 66).

Table 103 • I/O Fast Recalibration Time (TRECALIB)

I/O Type	Min (ms)	Typ (ms)	Max (ms)	Condition
GPIO bank	0.16	0.20	0.24	GPIO configured for 3.3 V operation
HSIO bank	0.20	0.25	0.30	HSIO configured for 1.8 V operation

Note: In order to obtain fast re-calibration, the user must assert the relevant clock request signal from the FPGA fabric to the I/O bank controller.

The following table describes the time to enter Flash*Freeze Mode and to exit Flash*Freeze mode.

Table 107 • SPI Master Mode (PolarFire Master) During Device Initialization

Parameter	Symbol	Min	Тур	Max	Unit	Condition
SCK frequency	Fмsck			40	MHz	

Table 108 • SPI Slave Mode (PolarFire Slave)

Parameter	Symbol	Min	Тур	Max	Unit	Condition
SCK frequency	Fssck			80	MHz	

7.10.3 SmartDebug Probe Switching Characteristics

The following table describes characteristics of SmartDebug probe switching.

Table 109 • SmartDebug Probe Performance Characteristics

Parameter	Symbol	V _{DD} = 1.0 V STD	V _{DD} = 1.0 V - 1	Vod = 1.05 V STD	V _{DD} = 1.05 V – 1	Unit
Maximum frequency of probe signal	Fmax	100	100	100	100	MHz
Minimum delay of probe signal	T_{Min_delay}	13	12	13	12	ns
Maximum delay of probe signal	T _{Max_delay}	13	12	13	12	ns

7.10.4 DEVRST_N Switching Characteristics

_

The following table describes characteristics of DEVRST_N switching.

Table 110 • DEVRST_N Electrical Characteristics

Parameter	Symbol	Min	Тур	Max	Unit	Condition
DEVRST_N ramp rate	DRRAMP		10		μs	It must be a normal clean digital signal, with typical rise and fall times
DEVRST_N assert time	DRASSERT	1			μs	The minimum time for DEVRST_N assertion to be recognized
DEVRST_N de-assert time	DRdeassert	2.75			ms	The minimum time DEVRST_N needs to be de-asserted before assertion

7.10.5 FF_EXIT Switching Characteristics

The following table describes characteristics of FF_EXIT switching.

Table 111 • FF_EXIT Electrical Characteristics

Parameter	Symbol	Min	Тур	Max	Unit	Condition
FF_EXIT_N ramp rate	FFRAMP		10		μs	
Minimum FF_EXIT_N assert time	FFassert	1			μs	The minimum time for FF_EXIT_N to be recognized
Minimum FF_EXIT_N de- assert time	FF deassert	170			μs	The minimum time FF_EXIT_N needs to be de-asserted before assertion

1. With DPA counter measures.

Table 115 • HMAC

Modes	Message Size (bits)	Athena TeraFire Crypto Core Clock-Cycles	CAL Delay In CPU Clock-Cycles
HMAC-SHA-256 ¹ ,	512	7477	2361
256-bit key	64K	88367	2099
HMAC-SHA-384 ¹ ,	1024	13049	2257
384-bit key	64K	106103	2153

1. With DPA counter measures.

Table 116 • CMAC

Modes	Message Size (bits)	Athena TeraFire Crypto Core Clock- Cycles	CAL Delay In CPU Clock- Cycles
AES-CMAC-2561	128	446	9058
(message is only authenticated)	64К	45494	111053

1. With DPA counter measures.

Table 117 • KEY TREE

Modes	Message Size (bits)	Athena TeraFire Crypto Core Clock-Cycles	CAL Delay In CPU Clock-Cycles
128-bit nonce +		102457	2751
8-bit optype			
256-bit nonce +		103218	2089
8-bit optype			

Table 118 • SHA

Modes	Message Size (bits)	Athena TeraFire Crypto Core Clock-Cycles	CAL Delay In CPU Clock-Cycles
SHA-1 ¹	512	2386	1579
	64K	77576	990
SHA-2561	512	2516	884
	64K	84752	938
SHA-3841	1024	4154	884
	64K	100222	938
SHA-512 ¹	1024	4154	881
	64K	100222	935

1. With DPA counter measures.

Table 119 • ECC

Modes	Message Size (bits)	Athena TeraFire Crypto Core Clock- Cycles	CAL Delay In CPU Clock- Cycles
ECDSA SigGen,	1024	12528912	6944
P-384/SHA-384 ¹	8К	12540448	5643
ECDSA SigGen, P-384/SHA-384	1024	5502928	6155