E·XFL

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Active
Number of LABs/CLBs	-
Number of Logic Elements/Cells	300000
Total RAM Bits	21094400
Number of I/O	512
Number of Gates	-
Voltage - Supply	0.97V ~ 1.08V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	1152-BBGA, FCBGA
Supplier Device Package	1152-FCBGA (35x35)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/mpf300t-1fcg1152i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Contents

1	Revision H	listory	
	1.1 Revis	sion 1.3	1
	1.2 Revis	sion 1.2	
	1.3 Revis	sion 1.1	1
	1.4 Revis	sion 1.0	1
2	Overview		2
3	Reference	2S	3
4	Device Of	fering	4
5	Silicon Sta	itus	5
6	DC Charac	cteristics	6
	6.1 Absc	lute Maximum Rating	6
	6.2 Reco	mmended Operating Conditions	6
	6.2.1	DC Characteristics over Recommended Operating Conditions	8
	6.2.2	Maximum Allowed Overshoot and Undershoot	
	6.3 Inpu	t and Output	
	0.3.1	DC Input and Output Levels	12
	6.3.2		
	6.3.3	Complementary Differential DC Input and Output Levels	
	6.3.4	HSIO On-Die Termination	
	6.3.5	GPIO On-Die Termination	20
7	AC Switch	ing Characteristics	22
	7.1 I/O S	tandards Specifications	22
	7.1.1	Input Delay Measurement Methodology Maximum PHY Rate for Memory Interface IP	22
	7.1.2	Output Delay Measurement Methodology	25
	7.1.3	Input Buffer Speed	27
	7.1.4	Output Buffer Speed	29
	7.1.5	Maximum PHY Rate for Memory Interface IP	31
	7.1.6	User I/O Switching Characteristics	32
	7.2 Clocl	king Specifications	35
	7.2.1	Clocking	35
	7.2.2	PLL	36
	7.2.3	DLL	37
	7.2.4	RC Oscillators	38
	7.3 Fabr	ic Specifications	40
	7.3.1	Math Blocks	40

1 Revision History

The revision history describes the changes that were implemented in the document. The changes are listed by revision, starting with the most current publication.

1.1 Revision 1.3

Revision 1.3 was published in June 2018. The following is a summary of changes.

- The System Services section was updated. For more information, see System Services (see page 59).
- The Non-Volatile Characteristics section was updated. For more information, see Non-Volatile Characteristics (see page 51).
- The Fabric Macros section was updated. For more information, see Fabric Macros (see page 60).
- The Transceiver Switching Characteristics section was updated. For more information, see Transceiver Switching Characteristics (see page 42).

1.2 Revision 1.2

Revision 1.2 was published in June 2018. The following is a summary of changes.

• The datasheet has moved to preliminary status. Every table has been updated.

1.3 Revision 1.1

Revision 1.1 was published in August 2017. The following is a summary of changes.

- LVDS specifications changed to 1.25G. For more information, see HSIO Maximum Input Buffer Speed and HSIO Maximum Output Buffer Speed.
- LVDS18, LVDS25/LVDS33, and LVDS25 specifications changed to 800 Mbps. For more information, see I/O Standards Specifications.
- A note was added indicting a zeroization cycle counts as a programming cycle. For more information, see Non-Volatile Characteristics.
- A note was added defining power down conditions for programming recovery conditions. For more information, see Power-Supply Ramp Times.

1.4 Revision 1.0

Revision 1.0 was the first publication of this document.

5 Silicon Status

There are three silicon status levels:

- Advanced—initial estimated information based on simulations
- Preliminary—information based on simulation and/or initial characterization
- Production—final production silicon data

The following table shows the status of the PolarFire FPGA device.

Table 2 • PolarFire FPGA Silicon Status

Device	Silicon Status
MPF100T, TL, TS, TLS	Preliminary
MPF200T, TL, TS, TLS	Preliminary
MPF300T, TL, TS, TLS	Preliminary
MPF500T, TL, TS, TLS	Preliminary

6.2.1 DC Characteristics over Recommended Operating Conditions

The following table lists the DC characteristics over recommended operating conditions.

Parameter	Symbol	Min	Max	Unit	Condition
Input pin capacitance ¹	C _{IN} (dedicated GPIO)		5.6	pf	
	CIN (GPIO)		5.6	pf	
	CIN (HSIO)		2.8	pf	
Input or output leakage current per pin	I∟ (GPIO)		10	μΑ	I/O disabled, high – Z
	I∟ (HSIO)		10	μΑ	I/O disabled, high – Z
Input rise time (10%–90% of V_{DDix}) ^{2, 3, 4}	Trise	0.66	2.64	ns	V _{DDIx} = 3.3 V
Input rise time (10%–90% of V_{DDix}) ^{2, 3, 4}	_	0.50	2.00	ns	$V_{DDIx} = 2.5 V$
Input rise time (10%–90% of V_{DDix}) ^{2, 3, 4}	_	0.36	1.44	ns	V _{DDix} = 1.8 V
Input rise time (10%–90% of V_{DDix}) ^{2, 3, 4}		0.30	1.20	ns	V _{DDIx} = 1.5 V
Input rise time (10%–90% of V_{DDix}) ^{2, 3, 4}	_	0.24	0.96	ns	V _{DDIx} = 1.2 V
Input fall time (90%–10% of V_{DDIx}) ^{2, 3, 4}	TFALL	0.66	2.64	ns	V _{DDix} = 3.3 V
Input fall time (90%–10% of V_{DDIx}) ^{2, 3, 4}		0.50	2.00	ns	V _{DDIx} = 2.5 V
Input fall time (90%–10% of V_{DDIx}) ^{2, 3, 4}	_	0.36	1.44	ns	V _{DDIx} = 1.8 V
Input fall time (90%–10% of V_{DDIx}) ^{2, 3, 4}	_	0.30	1.20	ns	V _{DDix} = 1.5 V
Input fall time (90%–10% of V_{DDIx}) ^{2, 3, 4}		0.24	0.96	ns	V _{DDIx} = 1.2 V
Pad pull-up when $V_{IN} = 0^5$	Ipu	137	220	μΑ	V _{DDIx} = 3.3 V
Pad pull-up when $V_{IN} = 0^5$	_	102	166	μΑ	V _{DDIx} = 2.5 V
Pad pull-up when $V_{IN} = 0$	_	68	115	μΑ	V _{DDIx} = 1.8 V
Pad pull-up when $V_{IN} = 0$		51	88	μΑ	V _{DDIx} = 1.5 V
Pad pull-up when $V_{IN} = 0^6$	_	29	73	μΑ	V _{DDix} = 1.35 V
Pad pull-up when $V_{IN} = 0$	_	16	46	μΑ	V _{DDix} = 1.2 V
Pad pull-down when V_{IN} = 3.3 V ⁵	IPD	65	187	μΑ	V _{DDix} = 3.3 V
Pad pull-down when V_{IN} = 2.5 V ⁵	_	63	160	μΑ	V _{DDix} = 2.5 V
Pad pull-down when V_{IN} = 1.8 V	_	60	117	μΑ	V _{DDix} = 1.8 V
Pad pull-down when V_{IN} = 1.5 V	_	57	95	μΑ	V _{DDix} = 1.5 V
Pad pull-down when V_{IN} = 1.35 V	_	52	86	μΑ	V _{DDix} = 1.35 V
Pad pull-down when $V_{IN} = 1.2 V$	_	47	79	μA	V _{DDIx} = 1.2 V

Table 5 • DC Characteristics over Recommended Operating Conditions

1. Represents the die input capacitance at the pad not the package.

- 2. Voltage ramp must be monotonic.
- 3. Numbers based on rail-to-rail input signal swing and minimum 1 V/ns and maximum 4 V/ns. These are to be used for input delay measurement consistency.
- 4. I/O signal standards with smaller than rail-to-rail input swings can use a nominal value of 200 ps 20%–80% of swing and maximum value of 500 ps 20%–80% of swing.
- 5. GPIO only.

6.2.2 Maximum Allowed Overshoot and Undershoot

During transitions, input signals may overshoot and undershoot the voltage shown in the following table. Input currents must be limited to less than 100 mA per latch-up specifications.

The maximum overshoot duration is specified as a high-time percentage over the lifetime of the device. A DC signal is equivalent to 100% of the duty-cycle.

The following table shows the maximum AC input voltage (V_{IN}) overshoot duration for HSIO.

AC (VIN) Overshoot Duration as % at TJ = 100 °C	Condition (V)
100	1.8
100	1.85
100	1.9
100	1.95
100	2
100	2.05
100	2.1
100	2.15
100	2.2
90	2.25
30	2.3
7.5	2.35
1.9	2.4

Table 6 • Maximum Overshoot During Transitions for HSIO

Note: Overshoot level is for VDDI at 1.8 V.

The following table shows the maximum AC input voltage (V_{IN}) undershoot duration for HSIO.

AC (V _I N) Undershoot Duration as % at T₁ = 100 °C	Condition (V)
100	-0.05
100	-0.1
100	-0.15
100	-0.2
100	-0.25
100	-0.3
100	-0.35
100	-0.4
44	-0.45
14	-0.5
4.8	-0.55
1.6	-0.6

Table 7 • Maximum Undershoot During Transitions for HSIO

The following table shows the maximum AC input voltage (V_{IN}) overshoot duration for GPIO.

Note: The following dedicated pins do not support hot socketing: TMS, TDI, TRSTB, DEVRST_N, and FF_EXIT_N. Weak pull-up (as specified in GPIO) is always enabled.

6.3 Input and Output

The following section describes:

- DC I/O levels
- Differential and complementary differential DC I/O levels
- HSIO and GPIO on-die termination specifications
- LVDS specifications

6.3.1 DC Input and Output Levels

The following tables list the DC I/O levels.

Table 12 • DC Input Levels

I/O Standard	Vooi Min (V)	Vool Typ (V)	V _{DDI} Max (V)	V⊩ Min (V)	V⊫ Max (V)	V⊪ Min (V)	Vін ¹ Max (V)
PCI	3.15	3.3	3.45	-0.3	0.3	0.5	3.45
					×	×	
					VDDI	Vddi	
LVTTL	3.15	3.3	3.45	-0.3	0.8	2	3.45
LVCMOS33	3.15	3.3	3.45	-0.3	0.8	2	3.45
LVCMOS25	2.375	2.5	2.625	-0.3	0.7	1.7	2.625
LVCMOS18	1.71	1.8	1.89	-0.3	0.35	0.65	1.89
					×	×	
					Vddi	Vddi	
LVCMOS15	1.425	1.5	1.575	-0.3	0.35	0.65	1.575
					×	×	
					Vddi	VDDI	
LVCMOS12	1.14	1.2	1.26	-0.3	0.35	0.65	1.26
					x	×	
					Vddi	VDDI	
SSTL25I ²	2.375	2.5	2.625	-0.3	VREF	VREF	2.625
					-	+	
					0.15	0.15	
SSTL25II ²	2.375	2.5	2.625	-0.3	VREF	Vref	2.625
					-	+	
					0.15	0.15	
SSTL18I ²	1.71	1.8	1.89	-0.3	VREF	Vref	1.89
					-	+	
					0.125	0.125	
SSTL18II ²	1.71	1.8	1.89	-0.3	VREF	VREF	1.89
					-	+	
					0.125	0.125	
SSTL15I	1.425	1.5	1.575	-0.3	VREF	VREF	1.575
					-	+	
					0.1	0.1	
SSTL15II	1.425	1.5	1.575	-0.3	VREF	VREF	1.575
					-	+	
					0.1	0.1	

I/O Standard	Vooi Min (V)	VDDI Typ (V)	VDDI Max (V)	Vol Min (V)	VoL Max (V)	V _{он^{1,3} Min (V)}	lo⊦² Min (mA)	Іон² Min (mA)
SSTL25I	2.375	2.5	2.625		Vtt – 0.608	Vπ + 0.608	8.1	8.1
SSTL25II	2.375	2.5	2.625		VTT – 0.810	Vπ + 0.810	16.2	16.2
SSTL18I	1.71	1.8	1.89		VTT – 0.603	Vπ + 0.603	6.7	6.7
SSTL18II	1.71	1.8	1.89		Vπ – 0.603	Vπ + 0.603	13.4	13.4
SSTL15I ⁴	1.425	1.5	1.575		$0.2 \times V_{\text{DDI}}$	$0.8 \times V_{\text{DDI}}$	Vol/40	(V _{DDI} – V _{OH})/40
SSTL15II ⁴	1.425	1.5	1.575		$0.2 \times V_{\text{DDI}}$	$0.8 \times V_{\text{DDI}}$	Vol/34	(V _{DDI} – V _{OH})/34
SSTL135I ⁴	1.283	1.35	1.418		$0.2 \times V_{\text{DDI}}$	$0.8 \times V_{\text{DDI}}$	Vol/40	(V _{DDI} – V _{OH})/40
SSTL135II ⁴	1.283	1.35	1.418		$0.2 \times V_{\text{DDI}}$	$0.8 \times V_{\text{DDI}}$	Vol/34	(Vddi – Vон)/34
HSTL15I	1.425	1.5	1.575		0.4	V _{DDI} - 0.4	8	8
HSTL15II	1.425	1.5	1.575		0.4	V _{DDI} - 0.4	16	16
HSTL135I ⁴	1.283	1.35	1.418		$0.2 \times V_{\text{DDI}}$	$0.8 \times V_{\text{DDI}}$	Vol/50	(Vddi – Vон)/50
HSTL135II ⁴	1.283	1.35	1.418		$0.2 \times V_{\text{DDI}}$	$0.8 \times V_{\text{DDI}}$	Vol/25	(Vррі – Vон)/25
HSTL12I ⁴	1.14	1.2	1.26		$0.1 \times V_{\text{DDI}}$	$0.9 \times V_{\text{DDI}}$	Vol/50	(Vddi – Vон)/50
HSUL18I ⁴	1.71	1.8	1.89		$0.1 \times V_{\text{DDI}}$	$0.9 \times V_{\text{DDI}}$	Vol/55	(Vddi – Vон)/55
HSUL18II ⁴	1.71	1.8	1.89		$0.1 \times V_{\text{DDI}}$	$0.9 \times V_{\text{DDI}}$	Vol/25	(Vррі – Vон)/25
HSUL12I ⁴	1.14	1.2	1.26		$0.1 \times V_{\text{DDI}}$	$0.9 \times V_{\text{DDI}}$	Vol/40	(V _{DDI} – V _{OH})/40
POD12I ^{3,4}	1.14	1.2	1.26		$0.5 \times V_{\text{DDI}}$		Vol/48	(V _{DDI} – V _{OH})/48
POD12II ^{3,4}	1.14	1.2	1.26		$0.5 \times V_{\text{DDI}}$		Vol/34	(V _{DDI} – V _{OH})/34

Table 17 • Complementary Differential DC Output Levels

1. V_{OH} is the single-ended high-output voltage.

- 2. The total DC sink/source current of all IOs within a lane is limited as follows:
 - a. HSIO lane: 120 mA per 12 IO buffers.
 - b. GPIO lane: 160 mA per 12 IO buffers
- 3. VOH_MAX based on external pull-up termination (pseudo-open drain).
- 4. IoL/IOH units for impedance standards in amps (not mA).

6.3.4 HSIO On-Die Termination

The following tables lists the on-die termination calibration accuracy specifications for HSIO bank.

Table 18 • Single-Ended Thevenin Termination (Internal Parallel Thevenin Termination)

Min (%)	Тур	Max (%)	Unit	Condition
-40	50	20	Ω	V _{DDI} = 1.8 V/1.5 V/1.35 V/1.2 V
-40	75	20	Ω	V _{DDI} = 1.8 V
-40	150	20	Ω	V _{DDI} = 1.8 V
-20	20	20	Ω	V _{DDI} = 1.5 V/1.35 V
-20	30	20	Ω	V _{DDI} = 1.5 V/1.35 V
-20	40	20	Ω	V _{DDI} = 1.5 V/1.35 V
-20	60	20	Ω	V _{DDI} = 1.5 V/1.35 V
-20	120	20	Ω	V _{DDI} = 1.5 V/1.35 V

Parameter	Description	Min (%)	Тур	Max (%)	Unit	Condition
Single-ended	Internal	-20	120	20	Ω	V _{DDI} = 2.5 V/1.8 V/1.5 V/1.2 V
termination to Vss ^{4, 5}	parallel termination to Vss	-20	240	20	Ω	V _{DDI} = 2.5 V/1.8 V/1.5 V/1.2 V

1. Measured across P to N with 400 mV bias.

- 2. The venin impedance is calculated based on independent P and N as measured at 50% of $V_{\text{DDI}}.$
- 3. For 50 $\Omega/75 \Omega/150 \Omega$ cases, nearest supported values of 40 $\Omega/60 \Omega/120 \Omega$ are used.

4. Measured at 50% of V_{DDI} .

5. Supported terminations vary with the IO type regardless of V_DDI nominal voltage. Refer to Libero for available combinations.

Standard	Description	VL1	VH1	VID ²	VICM ²	Vmeas ^{3, 4}	Vref ^{1, 5}	Unit
HSTL135II	Differential	VICM -	VICM +	0.250	0.675	0		V
	HSTL 1.35 V	.125	.125					
	Class II							
HSTL12	Differential	VICM -	VICM +	0.250	0.600	0		V
	HSTL 1.2 V	.125	.125					
HSUL18I	Differential	VICM -	VICM +	0.250	0.900	0		V
	HSUL 1.8 V	.125	.125					
	Class I							
HSUL18II	Differential	VICM -	VICM +	0.250	0.900	0		V
	HSUL 1.8 V	.125	.125					
	Class II							
HSUL12	Differential	VICM -	VICM +	0.250	0.600	0		V
	HSUL 1.2 V	.125	.125					
POD12I	Differential	VICM -	VICM +	0.250	0.600	0		V
	POD 1.2 V	.125	.125					
	Class I							
POD12II	Differential	VICM -	VICM +	0.250	0.600	0		V
	POD 1.2 V	.125	.125					
	Class II							
MIPI25	Mobile	VICM -	VICM +	0.250	0.200	0		V
	Industry	.125	.125					
	Processor							
	Interface							

- 1. Measurements are made at typical, minimum, and maximum V_{REF} values. Reported delays reflect worst-case of these measurements. V_{REF} values listed are typical. Input waveform switches between V_L and V_H . All rise and fall times must be 1 V/ns.
- 2. Differential receiver standards all use 250 mV V_{ID} for timing. V_{CM} is different between different standards.
- 3. Input voltage level from which measurement starts.
- 4. The value given is the differential input voltage.
- 5. This is an input voltage reference that bears no relation to the V_{REF}/V_{MEAS} parameters found in IBIS models or shown in Output Delay Measurement—Single-Ended Test Setup (see page 27).
- 6. Emulated bi-directional interface.

7.1.2 Output Delay Measurement Methodology

The following section provides information about the methodology for output delay measurement.

Table 23 • Output Delay Measurement Methodology

Standard	Description	Rref (Ω)	Cref (pF)	Vmeas (V)	Vref (V)
PCI	PCIE 3.3 V	25	10	1.65	
LVTTL33	LVTTL 3.3 V	1M	0	1.65	
LVCMOS33	LVCMOS 3.3 V	1M	0	1.65	
LVCMOS25	LVCMOS 2.5 V	1M	0	1.25	
LVCMOS18	LVCMOS 1.8 V	1M	0	0.90	
LVCMOS15	LVCMOS 1.5 V	1M	0	0.75	
LVCMOS12	LVCMOS 1.2 V	1M	0	0.60	
SSTL25I	Stub-series terminated logic 2.5 V Class I	50	0	Vref	1.25
SSTL25II	SSTL 2.5 V Class II	50	0	Vref	1.25

PolarFire

Standard	STD	-1	Unit
HSTL15I	900	1100	Mbps
HSTL15II	900	1100	Mbps
HSTL135I	1066	1066	Mbps
HSTL135II	1066	1066	Mbps
HSUL18I	400	400	Mbps
HSUL18II	400	400	Mbps
HSUL12	1066	1333	Mbps
HSTL12	1066	1266	Mbps
POD12I	1333	1600	Mbps
POD12II	1333	1600	Mbps
LVCMOS18 (12 mA)	500	500	Mbps
LVCMOS15 (10 mA)	500	500	Mbps
LVCMOS12 (8 mA)	300	300	Mbps

1. Performance is achieved with $V_{\text{ID}} \ge 200 \text{ mV}$.

Table 25 • GPIO Maximum Input Buffer Speed

Standard	STD	-1	Unit
LVDS25/LVDS33/LCMDS25/LCMDS33	1250	1600	Mbps
RSDS25/RSDS33	800	800	Mbps
MINILVDS25/MINILVDS33	800	800	Mbps
SUBLVDS25/SUBLVDS33	800	800	Mbps
PPDS25/PPDS33	800	800	Mbps
SLVS25/SLVS33	800	800	Mbps
SLVSE15	800	800	Mbps
HCSL25/HCSL33	800	800	Mbps
BUSLVDSE25	800	800	Mbps
MLVDSE25	800	800	Mbps
LVPECL33	800	800	Mbps
SSTL25I	800	800	Mbps
SSTL25II	800	800	Mbps
SSTL18I	800	800	Mbps
SSTL18II	800	800	Mbps
SSTL15I	800	1066	Mbps
SSTL15II	800	1066	Mbps
HSTL15I	800	900	Mbps
HSTL15II	800	900	Mbps
HSUL18I	400	400	Mbps
HSUL18II	400	400	Mbps
PCI	500	500	Mbps
LVTTL33 (20 mA)	500	500	Mbps
LVCMOS33 (20 mA)	500	500	Mbps
LVCMOS25 (16 mA)	500	500	Mbps

Standard	STD	-1	Unit
LVCMOS18 (12 mA)	500	500	Mbps
LVCMOS15 (10 mA)	500	500	Mbps
LVCMOS12 (8 mA)	300	300	Mbps
MIPI25/MIPI33	800	800	Mbps

1. All SSTLD/HSTLD/HSULD/LVSTLD/POD type receivers use the LVDS differential receiver. 2. Performance is achieved with $V_{\rm ID} \ge 200$ mV.

7.1.4 **Output Buffer Speed**

Table 26 • HSIO Maximum Output Buffer Speed

Standard	STD	-1	Unit
SSTL18I	800	1066	Mbps
SSTL18II	800	1066	Mbps
SSTL18I (differential)	800	1066	Mbps
SSTL18II (differential)	800	1066	Mbps
SSTL15I	1066	1333	Mbps
SSTL15II	1066	1333	Mbps
SSTL15I (differential)	1066	1333	Mbps
SSTL15II (differential)	1066	1333	Mbps
SSTL135I	1066	1333	Mbps
SSTL135II	1066	1333	Mbps
SSTL135I (differential)	1066	1333	Mbps
SSTL135II (differential)	1066	1333	Mbps
HSTL15I	900	1100	Mbps
HSTL15II	900	1100	Mbps
HSTL15I (differential)	900	1100	Mbps
HSTL15II (differential)	900	1100	Mbps
HSTL135I	1066	1066	Mbps
HSTL135II	1066	1066	Mbps
HSTL135I (differential)	1066	1066	Mbps
HSTL135II (differential)	1066	1066	Mbps
HSUL18I	400	400	Mbps
HSUL18II	400	400	Mbps
HSUL18II (differential)	400	400	Mbps
HSUL12	1066	1333	Mbps
HSUL12I (differential)	1066	1333	Mbps
HSTL12	1066	1266	Mbps
HSTL12I (differential)	1066	1266	Mbps
POD12I	1333	1600	Mbps
POD12II	1333	1600	Mbps
LVCMOS18 (12 mA)	500	500	Mbps
LVCMOS15 (10 mA)	500	500	Mbps

Parameter	Interface Name	Topology	STD Min	STD Typ	STD Max	-1 Min	—1 Тур	-1 Max	Unit	Forwarded Clock-to- Data Skew
Output F _{MAX} 2:1	TX_DDRX_B_C	Tx DDR digital mode							MHz	From a HS_IO_CLK clock source, centered with PLL
Output F _{MAX} 4:1	TX_DDRX_B_C	Tx DDR digital mode							MHz	From a HS_IO_CLK clock source, centered with PLL
Output F _{MAX} 8:1	TX_DDRX_B_C	Tx DDR digital mode							MHz	From a HS_IO_CLK clock source, centered with PLL
In delay, out delay, DLL delay step sizes			12.7	30	35	12.7	25	29.5	ps	

Table 34 • I/O CDR Switching Characteristics

Parameter	Min	Max	Unit
Data rate	266	1250	Mbps
Receiver Sinusoidal jitter tolerance ¹	0.2		UI

1. Jitter values based on bit error ratio (BER) of 10–12, 80 MHz sinusoidal jitter injected to Rx data. **Note:** See the LVDS output buffer specifications for transmit characteristics.

7.2 Clocking Specifications

This section describes the PLL and DLL clocking and oscillator specifications.

7.2.1 Clocking

The following table provides clocking specifications.

Table 35 • Global and Regional Clock Characteristics (-40 °C to 100 °C)

Parameter	Symbol	V _{DD} = 1.0 V STD	V _{DD} = 1.0 V –1	V _{DD} = 1.05 V STD	V _{DD} = 1.05 V –1	Unit	Condition
Global clock F _{MAX}	Fmaxg	500	500	500	500	MHz	
Regional clock Fmax	Fmaxr	375	375	375	375	MHz	Transceiver interfaces only
-	Fmaxr	250	250	250	250	MHz	All other interfaces
Global clock duty cycle distortion	Tdcdg	190	190	190	190	ps	At 500 MHz

а 🕵 Міскоснір company

Parameter	Symbol	STD	STD	STD	-1	-1	-1	Unit
		Min	Тур	Max	Min	Тур	Max	
Reference clock input	FXCVRREFCLKMAX	20		156	20		156	MHz
rate ^{1, 2, 3}	CASCADE							
Reference clock rate at	FTXREFCLKPFD	20		156	20		156	MHz
the PFD⁴								
Reference clock rate	FTXREFCLKPFD10G	75		156	75		156	MHz
recommended at the								
PFD for Tx rates 10 Gbps								
and above ^₄								
Tx reference clock	FTXREFPN			-110			-110	dBc
phase noise								/Hz
requirements to meet								
jitter specifications (156								
MHz clock at reference								
clock input) ⁵								
Phase noise at 10 KHz	FTXREFPN			-110			-110	dBc
								/Hz
Phase noise at 100 KHz	FTXREFPN			-115			-115	dBc
								/Hz
Phase noise at 1 MHz	FTXREFPN			-135			-135	dBc
								/Hz
Reference clock input	Trefrise		200	500		200	500	ps
rise time (10%–90%)								
Reference clock input	TREFFALL		200	500		200	500	ps
fall time (90%–10%)								
Reference clock duty	TREFDUTY	40		60	40		60	%
cycle								
Spread spectrum	Mod_Spread	0.1		3.1	0.1		3.1	%
modulation spread ⁶								
Spread spectrum	Mod_Freq	TxREF	32	TxREF	TxREF	32	TxREF	KHz
modulation frequency ⁷		CLKPFD/		CLKPFD/	CLKPFD/		CLKPFD/	
		(128)		(128*63)	(128)		(128*63)	

1. See the maximum reference clock rate allowed per input buffer standard.

2. The minimum value applies to this clock when used as an XCVR reference clock. It does not apply when used as a non-XCVR input buffer (DC input allowed).

- 3. Cascaded reference clock.
- 4. After reference clock input divider.
- 5. Required maximum phase noise is scaled based on actual $F_{TxRefClkPFD}$ value by 20 × log10 (TxRefClkPFD /156 MHz). It is assumed that the reference clock divider of 4 is used for these calculations to always meet the maximum PFD frequency specification.
- 6. Programmable capability for depth of down-spread or center-spread modulation.
- 7. Programmable modulation rate based on the modulation divider setting (1 to 63).

7.4.3 Transceiver Reference Clock I/O Standards

The following table describes the differential I/O standards supported as transceiver reference clocks.

Table 48 • Transceiver Differential Reference Clock I/O Standards

I/O Standard	Comment
LVDS25	For DC input levels, se e table Differential DC Input and Output Levels.
HCSL25 (for PCIe)	

Note: The transceiver reference clock differential receiver supports V_{CM} common mode.

7.4.4 Transceiver Interface Performance

The following table describes the single-ended I/O standards supported as transceiver reference clocks.

Table 49 • Transceiver Single-Ended Reference Clock I/O Standards

I/O Standard	Comment
LVCMOS25	For DC input levels, see table DC Input and Output Levels.

7.4.5 Transmitter Performance

The following tables describe performance of the transmitter.

Table 50 • Transceiver Reference Clock Input Termination

Parameter	Symbol	Min	Тур	Max	Unit
Single-ended termination	RefTerm		50		Ω
Single-ended termination	RefTerm		75		Ω
Single-ended termination	RefTerm		150		Ω
Differential termination	RefDiffTerm		115 ¹		Ω
Power-up termination			>50K		Ω

1. Measured at VCM= 1.2 V and VID= 350 mV.

Note: All pull-ups are disabled at power-up to allow hot plug capability.

Table 51 • PolarFire Transceiver User Interface Clocks

Parameter	Modes ¹	STD Min	STD Max	–1 Min	-1 Max	Unit
Transceiver TX_CLK	8-bit, max data rate = 1.6 Gbps		200		200	MHz
range (non-	10-bit, max data rate = 1.6 Gbps		160		160	MHz
with global or regional	16-bit, max data rate = 4.8 Gbps		300		300	MHz
fabric clocks)	20-bit, max data rate = 6.0 Gbps		300		300	MHz
	32-bit, max data rate =		325		325	MHz
	10.3125 Gbps (–STD) / 12.7 Gbps (–1)1					
	40-bit, max data rate =		260		320	MHz
	10.3125 Gbps (–STD) / 12.7 Gbps (–1)1					
	64-bit, max data rate =		165		160	MHz
	10.3125 Gbps (–STD) / 12.7 Gbps (–1)1					
	80-bit, max data rate =		130		130	MHz
	10.3125 Gbps(–STD) / 12.7 Gbps (–1)1					
	Fabric pipe mode 32-bit, max data rate = 6.0 Gbps		150		150	MHz
	8-bit, max data rate = 1.6 Gbps		200		200	MHz

Table 60 • 10GbE (RXAUI)

	Data Rate	Min	Max	Unit
Total transmit jitter	6.25 Gbps			UI
Receiver jitter tolerance	6.25 Gbps			UI

7.5.4 1GbE (1000BASE-T)

The following table describes 1GbE (1000BASE-T).

Table 61 • 1GbE (1000BASE-T)

	Data Rate	Min	Max	Unit
Total transmit jitter	1.25 Gbps			UI
Receiver jitter tolerance	1.25 Gbps			UI

The following table describes 1GbE (1000BASE-X).

Table 62 • 1GbE (1000BASE-X)

	Data Rate	Min	Max	Unit
Total transmit jitter	1.25 Gbps			UI
Receiver jitter tolerance	1.25 Gbps			UI

7.5.5 SGMII and QSGMII

The following table describes SGMII.

Table 63 • SGMII

Parameter	Data Rate	Min	Max	Unit
Total transmit jitter	1.25 Gbps		0.24	UI
Receiver jitter tolerance	1.25 Gbps	0.749		UI

The following table describes QSGMII.

Table 64 • QSGMII

Parameter	Data Rate	Min	Max	Unit
Total transmit jitter	5.0 Gbps		0.3	UI
Receiver jitter tolerance	5.0 Gbps	0.65		UI

7.5.6 SDI

The following table describes SDI.

Table 65 • SDI

Parameter	Data Rate	Min	Max	Unit
Total transmit jitter				UI
Receiver jitter tolerance				UI

7.6.1 FPGA Programming Cycle and Retention

The following table describes FPGA programming cycle and retention.

Programming T	Programming Cycles, Max	Retention Years	Retention Years at T
0 °C to 85 °C	1000	20	85 °C
0 °C to 100 °C	500	20	100 °C
–20 °C to 100 °C	500	20	100 °C
–40 °C to 100 °C	500	20	100 °C
–40 °C to 85 °C	1000	16	100 °C
–40 °C to 55 °C	2000	12	100 °C

Table 68 • FPGA Programming Cycles vs Retention Characteristics

Note: Power supplied to the device must be valid during programming operations such as programming and verify . Programming recovery mode is available only for in-application programming mode and requires an external SPI flash.

7.6.2 FPGA Programming Time

The following tables describe FPGA programming time.

Table 69 • Master SPI Programming Time (IAP)

Parameter	Symbol	Devices	Тур	Max	Unit
Programming time	TPROG	MPF100T, TL, TS, TLS			S
	_	MPF200T, TL, TS, TLS	17	25	S
	—	MPF300T, TL, TS, TLS	26	32	S
	_	MPF500T, TL, TS, TLS			S

Table 70 • Slave SPI Programming Time

Parameter	Symbol	Devices	Тур	Max	Unit
Programming time	Tprog	MPF100T, TL, TS, TLS			S
	_	MPF200T, TL, TS, TLS	411		S
	-	MPF300T, TL, TS, TLS	50 ¹	60	S
	-	MPF500T, TL, TS, TLS			S

1. SmartFusion2 with MSS running at 100 MHz, MSS_SPI_0 port running at 6.67 MHz. Bitstream stored in DDR. DirectC version 4.1.

Table 71 • JTAG Programming Time

Parameter	Symbol	Devices	Тур	Max	Unit
Programming time	TPROG	MPF100T, TL, TS, TLS			S
		MPF200T, TL, TS, TLS		56	S
		MPF300T, TL, TS, TLS ¹		95	S
		MPF500T, TL, TS, TLS			S

1. Programmer: FlashPro5 with TCK 10 MHz. PC Configuration: Intel i7 at 3.6 GHz, 32 GB RAM, Windows 10.

Parameter	Symbol	Тур	Max	Unit
Time from negation of RESPONSE to all I/Os re-enabled	$T_{CLR_IO_DISABLE}$	28	38	μs
Time from triggering the response to security locked	TLOCKDOWN			ns
Time from negation of RESPONSE to earlier security unlock condition	Tclr_lockdown			ns
Time from triggering the response to device enters RESET	Ttr_RESET	11.7	14	μs
Time from triggering the response to start of zeroization	Ttr_ZEROLISE	7.4	8.2	ms

7.8.5 System Controller Suspend Switching Characteristics

The following table describes the characteristics of system controller suspend switching.

Table 95 • System Controller Suspend Entry and Exit Characteristics

Parameter	Symbol	Definition	Тур	Max	Unit
Time from TRSTb falling edge to SUSPEND_EN signal assertion	Tsuspend_Tr ^{1, 2}	Suspend entry time from TRST_N assertion	42	44	ns
Time from TRSTb rising edge to ACTIVE signal assertion	Tsuspend_exit	Suspend exit time from TRST_N negation	361	372	ns

1. ACTIVE indicates that the system controller is inactive or active regardless of the state of SUSPEND_EN.

2. ACTIVE signal must never be asserted with SUSPEND_EN is asserted.

7.8.6 Dynamic Reconfiguration Interface

The following table provides interface timing information for the DRI, which is an embedded APB slave interface within the FPGA fabric that does not use FPGA resources.

Table 96 • Dynamic Reconfiguration Interface Timing Characteristics

Parameter	Symbol	Max	Unit
PCLK frequency	FPD_PCLK	200	MHz

7.9 Power-Up to Functional Timing

Microsemi non-volatile FPGA technology offers the fastest boot-time of any mid-range FPGA in the market. The following tables describes both cold-boot (from power-on) and warm-boot (assertion of DEVRST_N pin or assertion of reset from the tamper macro) timing. The power-up diagrams assume all power supplies to the device are stable.

7.9.1 Power-On (Cold) Reset Initialization Sequence

The following cold reset timing diagram shows the initialization sequencing of the device.

Figure 5 • Cold Reset Timing

Notes:

- The previous diagram showsthe case where VDDI/VDDAUX of I/O banks are powered either before
 or sufficiently soon after VDD/VDD18/VDD25 that the I/O bank enable time is measured from the
 assertion time of VDD/VDD18/VDD25 (that is, the PUFT specification). If VDDI/VDDAUX of I/O banks
 are powered sufficiently after VDD/VDD18/VDD25, then the I/O bank enable time is measured from
 the assertion of VDDI/VDDAUX and is not specified by the PUFT specification. In this case, I/O
 operation is indicated by the assertion of BANK_i_VDDI_STATUS, rather than being measured
 relative to FABRIC_POR_N negation.
- AUTOCALIB_DONE assertion indicates the completion of calibration for any I/O banks specified by the user for auto-calibration. AUTOCALIB_DONE asserts independently of DEVICE_INIT_DONE. It may assert before or after DEVICE_INIT_DONE and is determined by the following:
 - How long after VDD/VDD18/VDD25 that VDDI/VDDAUX are powered on. Note that if any of the user-specified I/O banks are not powered on within the auto-calibration timeout window, then AUTOCALIB DONE doesn't assert until after this timeout.
 - The specified ramp times of VDDI of each I/O bank designated for auto-calibration.
 - How much auto-initialization is to be performed for the PCIe, SERDES transceivers, and fabric LSRAMs.
- If any of the I/O banks specified for auto-calibration do not have their VDDI/VDDAUX powered on within the auto-calibration timeout window, then it will be approximately auto-calibrated whenever VDDI/VDDAUX is subsequently powered on. To obtain an accurate calibration however, on such IO banks, it is necessary to initiate a re-calibration (using CALIB_START from fabric).
- AVM_ACTIVE only asserts if avionics mode is being used. It is asserted when the later of DEVICE_INIT_DONE or AUTOCALIB_DONE assert.

7.9.2 Warm Reset Initialization Sequence

The following warm reset timing diagram shows the initialization sequencing of the device when either DEVRST_N or TAMPER_RESET_DEVICE signals are asserted.

7.9.4 Design Dependence of T PUFT and T WRFT

Some phases of the device initialization are user design-dependent, as the device automatically initializes certain resources to user-specified configurations if those resources are used in the design. It is necessary to compute the overall power-up to functional time by referencing the following tables and adding the relevant phases, according to the design configuration. The following equation refers to timing parameters specified in the above timing diagrams. Please note T_{PCIE}, T_{XCVR}, T_{LSRAM}, and T_{USRAM} can be found in the PolarFire FPGA device power-up and resets user guide UG0725.

TPUFT = TFAB_READY(cold) + max((TPCIE + TXCVR + TLSRAM + TUSRAM), TCALIB)

TWRFT = TFAB_READY(warm) + max((TPCIE + TXCVR + TLSRAM + TUSRAM), TCALIB)

Note: TPCIE, TXCVR, TLSRAM, TUSRAM, and TCALIB are common to both cold and warm reset scenarios.

Auto-initialization of FPGA (if required) occurs in parallel with I/O calibration. The device may be considered fully functional only when the later of these two activities has finished, which may be either one, depending on the configuration, as may be calculated from the following tables. Note that I/O calibration may extend beyond T_{PUFT} (as I/O calibration process is independent of main device power-on and is instead dependent on I/O bank supply relative power-on time and ramp times). The previous timing diagram for power-on initialization shows the earliest that I/Os could be enabled, if the I/O power supplies are powered on before or at the same time as the main supplies.

7.9.5 Cold Reset to Fabric and I/Os (Low Speed) Functional

The following table specifies the minimum, typical, and maximum times from the power supplies reaching the above trip point levels until the FPGA fabric is operational and the FPGA IOs are functional for low-speed (sub 400 MHz) operation.

Table 99 • Cold Boot

Power-On (Cold) Reset to Fabric and I/O Operational	Min	Тур	Max	Unit
Time when input pins start working – $T_{\text{IN}_\text{ACTIVE(cold)}}$	1.17	4.51	7.84	ms
Time when weak pull-ups are enabled – TPU_PD_ACTIVE(cold)	1.17	4.51	7.84	ms
Time when fabric is operational – TFAB_READY(cold)	1.20	4.54	7.87	ms
Time when output pins start driving – Tout_ACTIVE(cold)	1.22	4.56	7.89	ms

7.9.6 Warm Reset to Fabric and I/Os (Low Speed) Functional

The following table specifies the minimum, typical, and maximum times from the negation of the warm reset event until the FPGA fabric is operational and the FPGA IOs are functional for low-speed (sub 400 MHz) operation.

Table 100 • Warm Boot

Warm Reset to Fabric and I/O Operational	Min	Тур	Max	Unit
Time when input pins start working – TIN_ACTIVE(warm)	0.91	1.76	2.62	ms
Time when weak pull-ups/pull-downs are enabled – $T_{PU_PD_ACTIVE(warm)}$	0.91	1.76	2.62	ms
Time when fabric is operational – TFAB_READY(warm)	0.94	1.79	2.65	ms
Time when output pins start driving – Tout_ACTIVE(warm)	0.96	1.81	2.67	ms

7.9.7 Miscellaneous Initialization Parameters

In the following table, T_{FAB_READY} refers to either T_{FAB_READY(cold)} or T_{FAB_READY(warm)} as specified in the previous tables, depending on whether the initialization is occurring as a result of a cold or warm reset, respectively.

ECDSA SigVer,	1024	6421841	5759	
P-384/SHA-384	8K	6273510	5759	
Key Agreement (KAS), P- 384		5039125	6514	
Point Multiply, P-256 ¹		5176923	4482	
Point Multiply, P-384 ¹		12043199	5319	
Point Multiply, P-521 ¹		26887187	6698	
Point Addition, P-384		3018067	5779	
KeyGen (PKG), P-384		12055368	6908	
Point Verification, P-384		5091	3049	

1. With DPA counter measures.

Table 120 • IFC (RSA)

Modes	Message Size (bits)	Athena TeraFire Crypto Core Clock-Cycles	CAL Delay In CPU Clock- Cycles
Encrypt, RSA-2048, e=65537	2048	436972	8,972
Encrypt, RSA-3072, e=65537	3072	962162	12,583
Decrypt, RSA-2048 ¹ , CRT	2048	26862392	15900
Decrypt, RSA-3072 ¹ , CRT	3072	75153782	22015
Decrypt, RSA-4096, CRT	4096	89235615	23710
Decrypt, RSA-3072, CRT	3072	37880180	18638
SigGen, RSA-3072/SHA-384 ¹ ,CRT, PKCS #1 V 1 1.5	1024	75197644	20032
	8K	75213653	19303
SigGen, RSA-3072/SHA-384, PKCS #1, V 1.5	1024	148090970	14642
	8K	148102576	13936
SigVer, RSA-3072/SHA-384, e = 65537, PKCS #1 V 1.5	1024	970991	12000
	8K	982011	11769
SigVer, RSA-2048/SHA-256, e = 65537,	1024	443493	8436
PKCS #1 V 1.5	8K	453007	8436
SigGen, RSA-3072/SHA-384, ANSI X9.31	1024	147138254	13945
	8K	147155896	13523
SigVer, RSA-3072/SHA-384, e = 65537,	1024	973269	11313
ANSI X9.31	8K	983255	11146

1. With DPA counter measures.

Table 121 • FFC (DH)

Modes	Message Size (bits)	Athena TeraFire Crypto Core Clock-Cycles	CAL Delay In CPU Clock- Cycles
SigGen, DSA-3072/SHA-3841	1024	27932907	13969
	8K	27942415	13501
SigGen, DSA-3072/SHA-384	1024	12086356	13602
SigVer, DSA-3072/SHA-384	1024	24597916	15662
	8K	24229420	15133