E·XFL

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Active
Number of LABs/CLBs	-
Number of Logic Elements/Cells	300000
Total RAM Bits	21094400
Number of I/O	512
Number of Gates	-
Voltage - Supply	0.97V ~ 1.08V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 100°C (TJ)
Package / Case	1152-BBGA, FCBGA
Supplier Device Package	1152-FCBGA (35x35)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/mpf300t-fcg1152e

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

7.9.4	Design Dependence of T PUFT and T WRFT	67
7.9.5	Cold Reset to Fabric and I/Os (Low Speed) Functional	67
7.9.6	Warm Reset to Fabric and I/Os (Low Speed) Functional	67
7.9.7	Miscellaneous Initialization Parameters	67
7.9.8	I/O Calibration	68
7.10 Ded	licated Pins	69
7.10.1	JTAG Switching Characteristics	69
7.10.2	SPI Switching Characteristics	69
7.10.3	SmartDebug Probe Switching Characteristics	70
7.10.4	DEVRST_N Switching Characteristics	70
7.10.5	FF_EXIT Switching Characteristics	70
7.11 Use	r Crypto	71
7.11.1	TeraFire 5200B Switching Characteristics	71
7.11.2	TeraFire 5200B Throughput Characteristics	71

6 DC Characteristics

This section lists the DC characteristics of the PolarFire FPGA device.

6.1 Absolute Maximum Rating

The following table lists the absolute maximum ratings for PolarFire devices.

Table 3 • Absolute Maximum Rating

Parameter	Symbol	Min	Max	Unit
FPGA core power supply	Vdd	-0.5	1.13	V
Transceiver Tx and Rx lanes supply	Vdda	-0.5	1.13	V
Programming and HSIO receiver supply	VDD18	-0.5	2.0	V
FPGA core and FPGA PLL high-voltage supply	VDD25	-0.5	2.7	V
Transceiver PLL high-voltage supply	VDDA25	-0.5	2.7	V
Transceiver reference clock supply	Vdd_xcvr_clk	-0.5	3.6	V
Global VREF for transceiver reference clocks	XCVRvref	-0.5	3.6	V
HSIO DC I/O supply ²	VDDIx	-0.5	2.0	V
GPIO DC I/O supply ²	VDDIx	-0.5	3.6	V
Dedicated I/O DC supply for JTAG and SPI	Vddi3	-0.5	3.6	V
GPIO auxiliary power supply for I/O bank x ²	Vddauxx	-0.5	3.6	V
Maximum DC input voltage on GPIO	Vin	-0.5	3.8	V
Maximum DC input voltage on HSIO	Vin	-0.5	2.2	V
Transceiver Receiver absolute input voltage	Transceiver VIN	-0.5	1.26	V
Transceiver Reference clock absolute input voltage	Transceiver REFCLK VIN	-0.5	3.6	V
Storage temperature (ambient) ¹	Tstg	-65	150	°C
Junction temperature ¹	T	-55	135	°C
Maximum soldering temperature RoHS	Tsolrohs		260	°C
Maximum soldering temperature leaded	TSOLPB		220	°C

- 1. See FPGA Programming Cycles vs Retention Characteristics for retention time vs. temperature. The total time used in calculating the device retention includes storage time and the device stored temperature.
- 2. The power supplies for a given I/O bank x are shown as VDDIx and VDDAUXx.

6.2 Recommended Operating Conditions

The following table lists the recommended operating conditions.

Table 4 • Recommended Operating Conditions

Parameter	Symbol	Min	Тур	Max	Unit
FPGA core supply at 1.0 V mode ¹	Vdd	0.97	1.00	1.03	V
FPGA core supply at 1.05 V mode ¹	Vdd	1.02	1.05	1.08	V
Transceiver TX and RX lanes supply at 1.0 V mode (when all lane rates are 10.3125 Gbps or less) ¹	Vdda	0.97	1.00	1.03	V

$\overline{2}$	MICROCHIP	company

Parameter	Symbol	Min	Тур	Max	Unit
Transceiver TX and RX lanes supply at 1.05 V mode	Vdda	1.02	1.05	1.08	V
(when any lane rate is greater than 10.3125 Gbps) ¹					
Programming and HSIO receiver supply	Vdd18	1.71	1.80	1.89	V
FPGA core and FPGA PLL high-voltage supply	VDD25	2.425	2.50	2.575	V
Transceiver PLL high-voltage supply	VDDA25	2.425	2.50	2.575	V
Transceiver reference clock supply –3.3 V nominal	Vdd_xcvr_clk	3.135	3.3	3.465	V
Transceiver reference clock supply –2.5 V nominal	Vdd_xcvr_clk	2.375	2.5	2.625	V
Global VREF for transceiver reference clocks ³	XCVRvref	Ground		Vdd_xcvr_clk	V
HSIO DC I/O supply. Allowed nominal options: 1.2 V,	VDDIx	1.14	Various	1.89	V
1.35 V, 1.5 V, and 1.8 V ⁴					
GPIO DC I/O supply. Allowed nominal options: 1.2 V,	VDDIx	1.14	Various	3.465	V
1.5 V, 1.8 V, 2.5 V, and 3.3 V ^{2,4}					
Dedicated I/O DC supply for JTAG and SPI (GPIO Bank	VDDI3	1.71	Various	3.465	V
3). Allowed nominal options: 1.8 V, 2.5 V, and 3.3 V					
GPIO auxiliary supply for I/O bank x with V_{DDIx} = 3.3 V	VDDAUXx	3.135	3.3	3.465	V
nominal ^{2,4}					
GPIO auxiliary supply for I/O bank x with V_{DDIx} = 2.5 V	VDDAUXx	2.375	2.5	2.625	V
nominal or lower ^{2,4}					
Extended commercial temperature range	T	0		100	°C
Industrial temperature range	Τι	-40		100	°C
Extended commercial programming temperature	Tprg	0		100	°C
range					
Industrial programming temperature range	Tprg	-40		100	°C

1. V_{DD} and V_{DDA} can independently operate at 1.0 V or 1.05 V nominal. These supplies are not dynamically adjustable.

For GPIO buffers where I/O bank is designated as bank number, if VDDIX is 2.5 V nominal or 3.3 V nominal, VDDAUXX must be connected to the VDDIX supply for that bank. If VDDIX for a given GPIO bank is <2.5 V nominal, VDDAUXX per I/O bank must be powered at 2.5 V nominal.

3. XCVR_{VREF} globally sets the reference voltage of the transceiver's single-ended reference clock input buffers. It is typically near V_{DD_XCVR_CLK}/2 V but is allowed in the specified range.

4. The power supplies for a given I/O bank x are shown as VDDIx and VDDAUXx.

The maximum overshoot duration is specified as a high-time percentage over the lifetime of the device. A DC signal is equivalent to 100% of the duty-cycle.

The following table shows the maximum AC input voltage (V_{IN}) overshoot duration for HSIO.

AC (VIN) Overshoot Duration as % at TJ = 100 °C	Condition (V)
100	1.8
100	1.85
100	1.9
100	1.95
100	2
100	2.05
100	2.1
100	2.15
100	2.2
90	2.25
30	2.3
7.5	2.35
1.9	2.4

Table 6 • Maximum Overshoot During Transitions for HSIO

Note: Overshoot level is for VDDI at 1.8 V.

The following table shows the maximum AC input voltage (V_{IN}) undershoot duration for HSIO.

AC (V _I N) Undershoot Duration as % at T₁ = 100 °C	Condition (V)
100	-0.05
100	-0.1
100	-0.15
100	-0.2
100	-0.25
100	-0.3
100	-0.35
100	-0.4
44	-0.45
14	-0.5
4.8	-0.55
1.6	-0.6

Table 7 • Maximum Undershoot During Transitions for HSIO

The following table shows the maximum AC input voltage (V_{IN}) overshoot duration for GPIO.

AC (Vin) Overshoot Duration as % at $T_J = 100 ^\circ\text{C}$	Condition (V)
100	3.8
100	3.85
100	3.9
100	3.95
70	4
50	4.05
33	4.1
22	4.15
14	4.2
9.8	4.25
6.5	4.3
4.4	4.35
3	4.4
2	4.45
1.4	4.5
0.9	4.55
0.6	4.6

Table 8 • Maximum Overshoot During Transitions for GPIO

Note: Overshoot level is for VDDI at 3.3 V.

The following table shows the maximum AC input voltage (V_{IN}) undershoot duration for GPIO.

AC (VIN) Undershoot Duration as % at TJ = 100 °C	Condition (V)
100	-0.5
100	-0.55
100	-0.6
100	-0.65
100	-0.7
100	-0.75
100	-0.8
100	-0.85
100	-0.9
100	-0.95
100	-1
100	-1.05
100	-1.1
100	-1.15
100	-1.2
69	-1.25
45	-1.3

Table 9 • Maximum Undershoot During Transitions for GPIO

PolarFire

SSTL1351 1.283 1.35 1.418 -0.3 Vmr - Vmr + Vmr 0.09 1.418 SSTL13511 1.283 1.35 1.418 -0.3 Vmr - Vmr + 1.418 SSTL13511 1.283 1.35 1.418 -0.3 Vmr - Vmr + 1.418 SSTL13511 1.425 1.5 1.575 -0.3 Vmr - Vmr + 1.575 HSTL1511 1.425 1.5 1.575 -0.3 Vmr - Vmr + 1.575 HSTL1511 1.425 1.5 1.575 -0.3 Vmr - Vmr + 1.418 HSTL1351 1.283 1.35 1.418 -0.3 Vmr + Vmr + 1.418 HSTL1351 1.283 1.35 1.418 -0.3 Vmr + Vmr + 1.418 HSTL121 1.14 1.2 1.26 -0.3 Vmr + Vmr + 1.26 HSTL1211 1.14 1.2 1.26 -0.3 Vmr + Vmr + 1.26 HSUL181 1.71 1.8 1.89 -0.3 0.3 <td< th=""><th>I/O Standard</th><th>Vooi Min (V)</th><th>Vooi Typ (V)</th><th>Vooi Max (V)</th><th>V⊾ Min (V)</th><th>V⊫ Max (V)</th><th>Vін Min (V)</th><th>Vін¹ Max (V)</th></td<>	I/O Standard	Vooi Min (V)	Vooi Typ (V)	Vooi Max (V)	V⊾ Min (V)	V⊫ Max (V)	Vін Min (V)	Vін¹ Max (V)
SSTL135II 1.283 1.35 1.418 -0.3 Var - - 0.09 Var - - 0.09 Var - - - 0.09 1.418 HSTL15I 1.425 1.5 1.575 -0.3 Var - 0.1 Var - - 0.1 Var - - 0.1 1.575 HSTL15I 1.425 1.5 1.575 -0.3 Var - 0.1 Var - - - Var - - Var - - Var - - 1.575 HSTL15I 1.425 1.5 1.575 -0.3 Var - Var - Var - 1.575 HSTL15I 1.283 1.35 1.418 -0.3 Var - Var - 1.418 HSTL12I 1.283 1.35 1.418 -0.3 Var - Var - 1.418 HSTL12I 1.14 1.2 1.26 -0.3 Var - Var - 1.26 HSUL18I 1.71 1.8 1.89 -0.3 0.3 0.7 1.89 HSUL18I 1.71 1.8 1.89 -0.3 Var - Var - 1.26 HSUL12I <	SSTL135I	1.283	1.35	1.418	-0.3	Vref	Vref +	1.418
SSTL135II 1.283 1.35 1.418 -0.3 Vmer - Vmer + Vmer - Vmer + 1.418 HSTL15I 1.425 1.5 1.575 -0.3 Vmer - Vmer + 1.575 HSTL15I 1.425 1.5 1.575 -0.3 Vmer - Vmer + 1.575 HSTL15II 1.425 1.5 1.575 -0.3 Vmer - Vmer + 1.575 HSTL15II 1.425 1.5 1.575 -0.3 Vmer - Vmer + 1.575 HSTL135I 1.283 1.35 1.418 -0.3 Vmer - 1.418 HSTL135II 1.283 1.35 1.418 -0.3 Vmer - 1.418 HSTL12I 1.14 1.2 1.26 -0.3 Vmer - 1.418 HSTL12I 1.14 1.2 1.26 -0.3 Vmer - 1.26 HSUL18I 1.71 1.8 1.89 -0.3 0.3 0.7 1.89 HSUL18I 1.71 1.8 1.89 -0.3 0.3 0.7 1.89 HSUL						0.09	0.09	
- + - + 1425 1.425 1.57 -0.3 Mer Var 1.575 HSTL15I 1.425 1.5 1.575 -0.3 Var Var 1.575 HSTL15II 1.425 1.5 1.575 -0.3 Var Var 1.575 HSTL15II 1.425 1.5 1.575 -0.3 Var Var 1.575 HSTL13SI 1.428 1.575 -0.3 Var Var 1.418 HSTL13SI 1.283 1.35 1.418 -0.3 Var Var 1.418 HSTL12I 1.283 1.35 1.418 -0.3 Var Var 1.418 HSTL12I 1.14 1.2 1.26 -0.3 Var Var 1.26 HSTL12I 1.14 1.2 1.26 -0.3 Var Var 1.26 HSUL18I 1.71 1.8 1.89 -0.3 0.3 0.7 1.89 <	SSTL135II	1.283	1.35	1.418	-0.3	VREF	VREF	1.418
HSTL15I 1.425 1.5 1.575 -0.3 Verer - 0.1 Verer 0.1 1.575 -0.3 Verer - 0.1 Verer 0.1 1.575 -0.3 Verer - 0.1 1.575 -0.3 Verer - 0.1 0.1 1.418 -0.3 Verer - 0.09 0.09 1.418 HSTL135II 1.283 1.35 1.418 -0.3 Verer - 0.1 1.418 -<						-	+	
HSILLSI 1.423 1.3 1.373 -0.3 VREP VREP 1.373 -1.375 HSTL15II 1.425 1.5 1.575 -0.3 VREP VREP 1.575 HSTL15II 1.425 1.5 1.575 -0.3 VREP VREP 1.575 HSTL13SI 1.283 1.35 1.418 -0.3 VREP VREP 1.418 HSTL13SI 1.283 1.35 1.418 -0.3 VREP VREP 1.418 HSTL13SI 1.283 1.35 1.418 -0.3 VREP VREP 1.418 HSTL12I 1.283 1.35 1.418 -0.3 VREP VREP 1.418 HSTL12I 1.14 1.2 1.26 -0.3 VREP VREP 1.26 HSTL12I 1.14 1.2 1.26 -0.3 VREP VREP 1.26 HSUL18I 1.71 1.8 1.89 -0.3 0.3 0.7 1.89 H		1 425	1 Г	1 575	0.2	0.09	0.09	1 575
HSTL15II 1.425 1.5 1.575 -0.3 Veer - - 0.1 Veer + 0.1 1.575 + 0.1 1.575 + 0.1 HSTL135I 1.283 1.35 1.418 -0.3 Veer - 0.09 Veer - 0.09 Veer + 0.09 1.418 - 0.09 1.418 - - - - - - - - - - 1.418 - - - - - - - - - - - 1.418 - - - - - - - - - - - - - - - - - - -	HSILISI	1.425	1.5	1.575	-0.3	V REF	V REF	1.575
HSTL15II 1.425 1.5 1.575 -0.3 VREF - 0.1 VREF + 0.1 1.575 + 0.0 HSTL135I 1.283 1.35 1.418 -0.3 VREF - 0.09 VREF - 0.09 1.418 HSTL135II 1.283 1.35 1.418 -0.3 VREF - 0.09 VREF - 0.09 1.418 HSTL135II 1.283 1.35 1.418 -0.3 VREF - 0.09 VREF 1.418 HSTL12I 1.14 1.2 1.26 -0.3 VREF - 0.1 VREF 1.26 HSTL12I 1.14 1.2 1.26 -0.3 VREF - 0.1 1.26 - HSTL12II 1.14 1.2 1.26 -0.3 VREF - 0.1 1.26 - HSUL18I 1.71 1.8 1.89 -0.3 0.3 0.7 1.89 HSUL12I 1.14 1.2 1.26 - - + 1.26 HSUL12I 1.14 1.2 1.26 -0.3 VREF - + 1.26						0.1	0.1	
HIND	HSTI 15II	1 425	15	1 575	-0.3	VREE	VREE	1 575
HSTL135I 1.283 1.35 1.418 -0.3 VREF VREF 1.418 HSTL135I 1.283 1.35 1.418 -0.3 VREF VREF 1.418 HSTL135II 1.283 1.35 1.418 -0.3 VREF VREF 1.418 HSTL135II 1.283 1.35 1.418 -0.3 VREF VREF 1.418 HSTL12I 1.14 1.2 1.26 -0.3 VREF VREF 1.26 HSTL12I 1.14 1.2 1.26 -0.3 VREF VREF 1.26 HSUL18I 1.14 1.2 1.26 -0.3 VREF VREF 1.26 HSUL18I 1.71 1.8 1.89 -0.3 0.3 0.7 1.89 HSUL12I 1.71 1.8 1.89 -0.3 VREF VREF 1.26 HSUL12I 1.14 1.2 1.26 -0.3 VREF VREF 1.26 POD12I 1.14		1.125	1.5	1.575	0.5	_	+	1.575
HSTL1351 1.283 1.35 1.418 -0.3 VRF VRF 1.418 HSTL121 1.24 1.26 -0.3 VRF VRF 1.26 HSTL121 1.14 1.2 1.26 -0.3 VRF VRF 1.26 HSTL121 1.14 1.2 1.26 -0.3 VRF VRF 1.26 HSUL181 1.14 1.2 1.26 -0.3 0.3 0.7 1.89 HSUL181 1.71 1.8 1.89 -0.3 0.3 0.7 1.89 HSUL181 1.71 1.8 1.89 -0.3 VRF VRF 1.26 HSUL121 1.14 1.2 1.26 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.1</td> <td>0.1</td> <td></td>						0.1	0.1	
HSTL135II 1.283 1.35 1.418 -0.3 VREF VREF 1.418 HSTL135II 1.283 1.35 1.418 -0.3 VREF VREF 1.418 HSTL12I 1.14 1.2 1.26 -0.3 VREF VREF 1.26 HSTL12I 1.14 1.2 1.26 -0.3 VREF VREF 1.26 HSTL12II 1.14 1.2 1.26 -0.3 VREF VREF 1.26 HSUL18I 1.14 1.2 1.26 -0.3 VREF VREF 1.26 HSUL18I 1.71 1.8 1.89 -0.3 0.3 0.7 1.89 HSUL18I 1.71 1.8 1.89 -0.3 0.3 0.7 1.89 HSUL18I 1.71 1.8 1.89 -0.3 0.3 0.7 1.89 HSUL12I 1.14 1.2 1.26 -0.3 VREF VREF 1.26 POD12I 1.14 1.2 1.26 -0.3 0.7 1.89 POD12I 1.14 1.2 1.26 -0.3 VREF VREF 1.26 -0.08 0.08 - - - - - <td< td=""><td>HSTL135I</td><td>1.283</td><td>1.35</td><td>1.418</td><td>-0.3</td><td>VREF</td><td>VREF</td><td>1.418</td></td<>	HSTL135I	1.283	1.35	1.418	-0.3	VREF	VREF	1.418
HSTL135II 1.283 1.35 1.418 -0.3 VREF - 0.09 VREF + 0.09 1.418 HSTL12I 1.14 1.2 1.26 -0.3 VREF - 0.1 VREF 1.26 HSTL12I 1.14 1.2 1.26 -0.3 VREF - 0.1 VREF 1.26 HSTL12I 1.14 1.2 1.26 -0.3 VREF - 0.1 VREF 1.26 HSTL12II 1.14 1.2 1.26 -0.3 VREF VREF 1.26 HSUL18I 1.71 1.8 1.89 -0.3 0.3 0.7 1.89 HSUL18I 1.71 1.8 1.89 -0.3 0.3 0.7 1.89 HSUL12I 1.14 1.2 1.26 -0.3 VREF VREF 1.26 HSUL12I 1.14 1.2 1.26 -0.3 VREF VREF 1.26 HSUL12I 1.14 1.2 1.26 -0.3 VREF VREF 1.26 - <td< td=""><td></td><td></td><td></td><td></td><td></td><td>-</td><td>+</td><td></td></td<>						-	+	
HSTL135II 1.283 1.35 1.418 -0.3 VREF VREF 1.418 - - + 0.09 0.09 - - + HSTL12I 1.14 1.2 1.26 -0.3 VREF VREF 1.26 HSTL12I 1.14 1.2 1.26 -0.3 VREF VREF 1.26 HSTL12II 1.14 1.2 1.26 -0.3 VREF VREF 1.26 HSTL12II 1.14 1.2 1.26 -0.3 VREF VREF 1.26 HSUL18I 1.14 1.2 1.26 -0.3 VREF VREF 1.89 HSUL18I 1.71 1.8 1.89 -0.3 0.3 0.7 1.89 HSUL12I 1.71 1.8 1.89 -0.3 VREF VREF 1.26 HSUL12I 1.14 1.2 1.26 -0.3 VREF VREF 1.26 POD12I 1.14 1.2						0.09	0.09	
- + - + 0.09 0.09 0.09 1.26 -0.3 VREF VREF 1.26 - + 1.26 - + 0.1 0.1 1.26 - - + 0.1 0.1 1.26 - - + 0.1 0.1 1.26 - - + 0.1 0.1 1.26 - - - + 0.1 0.1 1.26 - - - - - - 1.26 - 0.3 0.1 1.26 - 0.3 0.1 1.89 - 0.3 0.7 1.89 - <td< td=""><td>HSTL135II</td><td>1.283</td><td>1.35</td><td>1.418</td><td>-0.3</td><td>VREF</td><td>VREF</td><td>1.418</td></td<>	HSTL135II	1.283	1.35	1.418	-0.3	VREF	VREF	1.418
HSTL12I 1.14 1.2 1.26 -0.3 VREF - 1.0 VREF + 0.1 VREF + 0.1 1.26 HSTL12II 1.14 1.2 1.26 -0.3 VREF - 1.10 VREF + 0.1 1.26 HSUL18I 1.71 1.8 1.89 -0.3 0.3 0.7 1.89 HSUL18I 1.71 1.8 1.89 -0.3 0.3 0.7 1.89 HSUL18II 1.71 1.8 1.89 -0.3 0.3 0.7 1.89 HSUL18II 1.71 1.8 1.89 -0.3 0.3 0.7 1.89 HSUL12I 1.14 1.2 1.26 -0.3 VREF VREF 1.26 POD12I 1.14 1.2 1.26 -0.3 VREF VREF 1.26 - - - - - + 0.08 0.08 POD12I 1.14 1.2 1.26 -0.3 VREF VREF 1.26 - -						-	+	
HSTL12I 1.14 1.2 1.26 -0.3 VREF VREF 1.26 - HSTL12I 1.14 1.2 1.26 -0.3 VREF VREF 1.26 HSTL12II 1.14 1.2 1.26 -0.3 VREF VREF 1.26 HSUL18I 1.71 1.8 1.89 -0.3 0.3 0.7 1.89 HSUL18I 1.71 1.8 1.89 -0.3 0.3 0.7 1.89 HSUL18II 1.71 1.8 1.89 -0.3 0.3 0.7 1.89 HSUL18II 1.71 1.8 1.89 -0.3 0.3 0.7 1.89 HSUL12I 1.14 1.2 1.26 -0.3 VREF VREF 1.26 POD12I 1.14 1.2 1.26 -0.3 VREF VREF 1.26 - - - - - + 0.10 - POD12I 1.14 1.2						0.09	0.09	
- + NSUL12II 1.14 1.2 1.26 -0.3 VREF VREF 1.26 HSTL12II 1.14 1.2 1.26 -0.3 VREF 1.26 HSUL18I 1.71 1.8 1.89 -0.3 0.3 0.7 1.89 HSUL18I 1.71 1.8 1.89 -0.3 0.3 0.7 1.89 HSUL18II 1.71 1.8 1.89 -0.3 0.3 0.7 1.89 HSUL12I 1.71 1.8 1.89 -0.3 0.3 0.7 1.89 HSUL12I 1.14 1.2 1.26 -0.3 VREF VREF 1.26 -	HSTL12I	1.14	1.2	1.26	-0.3	VREF	VREF	1.26
HSTL12II 1.14 1.2 1.26 -0.3 VREF VREF 1.26 HSUL18I 1.71 1.8 1.89 -0.3 0.3 0.7 1.89 HSUL18I 1.71 1.8 1.89 -0.3 0.3 0.7 1.89 HSUL18I 1.71 1.8 1.89 -0.3 0.3 0.7 1.89 HSUL18II 1.71 1.8 1.89 -0.3 0.3 0.7 1.89 HSUL12I 1.71 1.8 1.89 -0.3 0.3 0.7 1.89 HSUL12I 1.14 1.2 1.26 -0.3 VREF VREF 1.26 POD12I 1.14 1.2 1.26 -0.3 VREF VREF 1.26 - + 0.08 0.08 - - + 0.08 0.08 POD12II 1.14 1.2 1.26 -0.3 VREF VREF 1.26 - - + 0.08 0.08 - - + 0.09 - - - <t< td=""><td></td><td></td><td></td><td></td><td></td><td>-</td><td>+</td><td></td></t<>						-	+	
HSTL12II 1.14 1.2 1.26 -0.3 VREF VREF VREF 1.26 HSUL18I 1.71 1.8 1.89 -0.3 0.3 0.7 1.89 HSUL18I 1.71 1.8 1.89 -0.3 0.3 0.7 1.89 HSUL18II 1.71 1.8 1.89 -0.3 0.3 0.7 1.89 HSUL18II 1.71 1.8 1.89 -0.3 0.3 0.7 1.89 HSUL12I 1.71 1.8 1.89 -0.3 0.3 0.7 1.89 HSUL12I 1.71 1.8 1.89 -0.3 0.3 0.7 1.89 HSUL12I 1.14 1.2 1.26 -0.3 VREF VREF 1.26 POD12I 1.14 1.2 1.26 -0.3 VREF VREF 1.26 POD12II 1.14 1.2 1.26 -0.3 VREF VREF 1.26 - - - - + 0.08 0.08 0.08						0.1	0.1	
HSUL18I 1.71 1.8 1.89 -0.3 0.3 0.7 1.89 HSUL18I 1.71 1.8 1.89 -0.3 0.3 0.7 1.89 HSUL18II 1.71 1.8 1.89 -0.3 0.3 0.7 1.89 HSUL18II 1.71 1.8 1.89 -0.3 0.3 0.7 1.89 HSUL18II 1.71 1.8 1.89 -0.3 0.3 0.7 1.89 HSUL12I 1.14 1.2 1.26 -0.3 VREF VREF 1.26 POD12I 1.14 1.2 1.26 -0.3 VREF VREF 1.26 POD12II 1.14 1.2 1.26 -0.3 VREF VREF 1.26 POD12II 1.14 1.2 1.26 -0.3 VREF VREF 1.26 POD12II 1.14 1.2 1.26 -0.3 VREF VREF 1.26 - + 0.08 0.09 - + 0.09 - + POD12II 1.14	HSTL12II	1.14	1.2	1.26	-0.3	VREF	VREF	1.26
HSUL18I 1.71 1.8 1.89 -0.3 0.3 0.7 1.89 HSUL18I 1.71 1.8 1.89 -0.3 0.3 0.7 1.89 HSUL18II 1.71 1.8 1.89 -0.3 0.3 0.7 1.89 HSUL12I 1.71 1.8 1.89 -0.3 0.3 0.7 1.89 HSUL12I 1.14 1.2 1.26 -0.3 VREF VREF 1.26 POD12I 1.14 1.2 1.26 -0.3 VREF VREF 1.26 POD12II 1.14 1.2 1.26 -0.3 VREF VREF 1.26 POD12II 1.14 1.2 1.26 -0.3 VREF VREF 1.26 - + 0.08 0.08 - - + - POD12II 1.14 1.2 1.26 -0.3 VREF VREF 1.26 - - - - - - + - 0.08 0.08 - - - - - -						-	+	
HSUL18I 1.71 1.8 1.89 -0.3 0.3 0.7 1.89 HSUL18II 1.14 1.2 1.26 -0.3 VREF VREF 1.26 -						0.1	0.1	
x x x x x x x x x y	HSUL18I	1.71	1.8	1.89	-0.3	0.3	0.7	1.89
HSUL18II 1.71 1.8 1.89 -0.3 0.3 0.7 1.89 × × VDDI VDDI HSUL12I 1.14 1.2 1.26 -0.3 VREF VREF 1.26 - + 0.1 0.1 POD12I 1.14 1.2 1.26 -0.3 VREF VREF 1.26 - + 0.08 0.08 POD12II 1.14 1.2 1.26 -0.3 VREF VREF 1.26 - + 0.08 0.08						×	×	
HSUL18II 1.71 1.8 1.89 -0.3 0.3 0.7 1.89 × × × VDDI VDDI VDDI HSUL12I 1.14 1.2 1.26 -0.3 VREF VREF 1.26 - + 0.1 0.1 POD12I 1.14 1.2 1.26 -0.3 VREF VREF 1.26 - + 0.08 0.08 POD12II 1.14 1.2 1.26 -0.3 VREF VREF 1.26 - + 0.08 0.08						VDDI	VDDI	
x x x VDDI VDDI HSUL12I 1.14 1.2 1.26 -0.3 VREF VREF 1.26 POD12I 1.14 1.2 1.26 -0.3 VREF VREF 1.26 POD12I 1.14 1.2 1.26 -0.3 VREF VREF 1.26 POD12II 1.14 1.2 1.26 -0.3 VREF VREF 1.26 POD12II 1.14 1.2 1.26 -0.3 VREF VREF 1.26 POD12II 0.08 0.08 - - + -	HSUL18II	1.71	1.8	1.89	-0.3	0.3	0.7	1.89
HSUL12I 1.14 1.2 1.26 -0.3 VREF VREF 1.26 POD12I 1.14 1.2 1.26 -0.3 VREF VREF 1.26 POD12I 1.14 1.2 1.26 -0.3 VREF VREF 1.26 POD12II 1.14 1.2 1.26 -0.3 VREF VREF 1.26 POD12II 1.14 1.2 1.26 -0.3 VREF VREF 1.26 POD12II 0.08 0.08 - - + 0.08 -						×	×	
HSUL12I 1.14 1.2 1.26 -0.3 VREF VREF 1.26 - + 0.1 0.1 POD12I 1.14 1.2 1.26 -0.3 VREF VREF 1.26 - + 0.08 0.08 POD12II 1.14 1.2 1.26 -0.3 VREF VREF 1.26 - + 0.08 0.08						VDDI	VDDI	
POD12I 1.14 1.2 1.26 -0.3 VREF VREF 1.26 - + 0.08 0.08 POD12II 1.14 1.2 1.26 -0.3 VREF VREF 1.26 - + 0.08 0.08	HSUL12I	1.14	1.2	1.26	-0.3	Vref	VREF	1.26
POD12I 1.14 1.2 1.26 -0.3 VREF VREF 1.26 - + 0.08 0.08 POD12II 1.14 1.2 1.26 -0.3 VREF VREF 1.26 - + 0.08 0.08						-	+	
POD12I 1.14 1.2 1.26 -0.3 VREF VREF 1.26 - + 0.08 0.08 POD12II 1.14 1.2 1.26 -0.3 VREF VREF 1.26 - + 0.08 0.08						0.1	0.1	
POD12II 1.14 1.2 1.26 -0.3 VREF VREF 1.26 - + 0.08 0.08	POD12I	1.14	1.2	1.26	-0.3	VREF	VREF	1.26
POD12II 1.14 1.2 1.26 -0.3 VREF VREF 1.26 - +						- 0.08	+ 0.08	
POD12II 1.14 1.2 1.26 -0.3 VREF VREF 1.26 - +						0.00	0.00	
	POD12II	1.14	1.2	1.26	-0.3	VREF	VREF	1.26
						- 0.08	+ 0.08	

1. GPIO V^{IH} max is 3.45 V with PCI clamp diode turned off regardless of mode, that is, over-voltage tolerant.

2. For external stub-series resistance. This resistance is on-die for GPIO.

Note: 3.3 V and 2.5 V are only supported in GPIO banks.

Parameter	Description	Min (%)	Тур	Max (%)	Unit	Condition
Single-ended	Internal	-20	120	20	Ω	V _{DDI} = 2.5 V/1.8 V/1.5 V/1.2 V
termination to Vss ^{4, 5}	parallel termination to Vss	-20	240	20	Ω	V _{DDI} = 2.5 V/1.8 V/1.5 V/1.2 V

1. Measured across P to N with 400 mV bias.

- 2. The venin impedance is calculated based on independent P and N as measured at 50% of $V_{\text{DDI}}.$
- 3. For 50 $\Omega/75 \Omega/150 \Omega$ cases, nearest supported values of 40 $\Omega/60 \Omega/120 \Omega$ are used.

4. Measured at 50% of V_{DDI} .

5. Supported terminations vary with the IO type regardless of V_DDI nominal voltage. Refer to Libero for available combinations.

PolarFire

_

Standard	Description	VL1	VH1	Vid2	VICM ²	Vmeas ^{3, 4}	Vref ^{1, 5}	Unit
SLVS25	SLVS 2.5 V	V _{ICM} – .125	V _{ICM} + .125	0.250	0.200	0		V
SLVS18	SLVS 1.8 V	V _{ICM} – .125	V _{ICM} + .125	0.250	0.200	0		V
HCSL33	High-speed current steering logic (HCSL) 3.3 V	Vісм – .125	V _{ICM} + .125	0.250	0.350	0		V
HCSL25	HCSL 2.5 V	V _{ICM} — .125	V _{ICM} + .125	0.250	0.350	0		V
HCSL18	HCSL 1.8 V	V _{ICM} – .125	V _{ICM} + .125	0.250	0.350	0		V
BLVDSE25 ⁶	Bus LVDS 2.5 V	V _{ICM} — .125	V _{ICM} + .125	0.250	1.250	0		V
MLVDSE256	Multipoint LVDS 2.5 V	Vісм – .125	Vісм + .125	0.250	1.250	0		V
LVPECL33	Low-voltage positive emitter coupled logic	V _{ICM} — .125	V _{ICM} + .125	0.250	1.650	0		V
LVPECLE336	Low-voltage positive emitter coupled logic	V _{ICM} — .125	V _{ICM} + .125	0.250	1.650	0		V
SSTL25I	Differential SSTL 2.5 V Class I	V _{ICM} — .125	V _{ICM} + .125	0.250	1.250	0		V
SSTL25II	Differential SSTL 2.5 V Class II	Vісм — .125	Vісм + .125	0.250	1.250	0		V
SSTL18I	Differential SSTL 1.8 V Class I	V _{ICM} — .125	V _{ICM} + .125	0.250	0.900	0		V
SSTL18II	Differential SSTL 1.8 V Class II	V _{ICM} — .125	V _{ICM} + .125	0.250	0.900	0		V
SSTL15	Differential SSTL 1.5 V Class I	V _{ICM} — .125	V _{ICM} + .125	0.250	0.750	0		V
SSTL135	Differential SSTL 1.5 V Class II	V _{ICM} — .125	VICM + .125	0.250	0.750	0		V
HSTL15I	Differential HSTL 1.5 V Class I	V _{ICM} — .125	V _{ICM} + .125	0.250	0.750	0		V
HSTL15II	Differential HSTL 1.5 V Class II	V _{ICM} – .125	V _{ICM} + .125	0.250	0.750	0		V
HSTL135I	Differential HSTL 1.35 V Class I	V _{ICM} – .125	V _{ICM} + .125	0.250	0.675	0		V

Standard	Description	VL1	VH1	VID ²	VICM ²	Vmeas ^{3, 4}	Vref ^{1, 5}	Unit
HSTL135II	Differential	VICM -	VICM +	0.250	0.675	0		V
	HSTL 1.35 V	.125	.125					
	Class II							
HSTL12	Differential	VICM -	VICM +	0.250	0.600	0		V
	HSTL 1.2 V	.125	.125					
HSUL18I	Differential	VICM -	VICM +	0.250	0.900	0		V
	HSUL 1.8 V	.125	.125					
	Class I							
HSUL18II	Differential	VICM -	VICM +	0.250	0.900	0		V
	HSUL 1.8 V	.125	.125					
	Class II							
HSUL12	Differential	VICM -	VICM +	0.250	0.600	0		V
	HSUL 1.2 V	.125	.125					
POD12I	Differential	VICM -	VICM +	0.250	0.600	0		V
	POD 1.2 V	.125	.125					
	Class I							
POD12II	Differential	VICM -	VICM +	0.250	0.600	0		V
	POD 1.2 V	.125	.125					
	Class II							
MIPI25	Mobile	VICM -	VICM +	0.250	0.200	0		V
	Industry	.125	.125					
	Processor							
	Interface							

- 1. Measurements are made at typical, minimum, and maximum V_{REF} values. Reported delays reflect worst-case of these measurements. V_{REF} values listed are typical. Input waveform switches between V_L and V_H . All rise and fall times must be 1 V/ns.
- 2. Differential receiver standards all use 250 mV V_{ID} for timing. V_{CM} is different between different standards.
- 3. Input voltage level from which measurement starts.
- 4. The value given is the differential input voltage.
- 5. This is an input voltage reference that bears no relation to the V_{REF}/V_{MEAS} parameters found in IBIS models or shown in Output Delay Measurement—Single-Ended Test Setup (see page 27).
- 6. Emulated bi-directional interface.

7.1.2 Output Delay Measurement Methodology

The following section provides information about the methodology for output delay measurement.

Table 23 • Output Delay Measurement Methodology

Standard	Description	Rref (Ω)	Cref (pF)	Vmeas (V)	Vref (V)
PCI	PCIE 3.3 V	25	10	1.65	
LVTTL33	LVTTL 3.3 V	1M	0	1.65	
LVCMOS33	LVCMOS 3.3 V	1M	0	1.65	
LVCMOS25	LVCMOS 2.5 V	1M	0	1.25	
LVCMOS18	LVCMOS 1.8 V	1M	0	0.90	
LVCMOS15	LVCMOS 1.5 V	1M	0	0.75	
LVCMOS12	LVCMOS 1.2 V	1M	0	0.60	
SSTL25I	Stub-series terminated logic 2.5 V Class I	50	0	Vref	1.25
SSTL25II	SSTL 2.5 V Class II	50	0	Vref	1.25

Standard	STD	-1	Unit
LVCMOS12 (8 mA)	250	300	Mbps

Table 27 • GPIO Maximum Output Buffer Speed

Standard	STD	-1	Unit
LVDS25/LCMDS25	1250	1250	Mbps
LVDS33/LCMDS33	1250	1600	Mbps
RSDS25	800	800	Mbps
MINILVDS25	800	800	Mbps
SUBLVDS25	800	800	Mbps
PPDS25	800	800	Mbps
SLVSE15	500	500	Mbps
BUSLVDSE25	500	500	Mbps
MLVDSE25	500	500	Mbps
LVPECLE33	500	500	Mbps
SSTL25I	800	800	Mbps
SSTL25II	800	800	Mbps
SSTL25I (differential)	800	800	Mbps
SSTL25II (differential)	800	800	Mbps
SSTL18I	800	800	Mbps
SSTL18II	800	800	Mbps
SSTL18I (differential)	800	800	Mbps
SSTL18II (differential)	800	800	Mbps
SSTL15I	800	1066	Mbps
SSTL15II	800	1066	Mbps
SSTL15I (differential)	800	1066	Mbps
SSTL15II (differential)	800	1066	Mbps
HSTL15I	900	900	Mbps
HSTL15II	900	900	Mbps
HSTL15I (differential)	900	900	Mbps
HSTL15II (differential)	900	900	Mbps
HSUL18I	400	400	Mbps
HSUL18II	400	400	Mbps
HSUL18I (differential)	400	400	Mbps
HSUL18II (differential)	400	400	Mbps
PCI	500	500	Mbps
LVTTL33 (20 mA)	500	500	Mbps
LVCMOS33 (20 mA)	500	500	Mbps
LVCMOS25 (16 mA)	500	500	Mbps
LVCMOS18 (12 mA)	500	500	Mbps
LVCMOS15 (10 mA)	500	500	Mbps
LVCMOS12 (8 mA)	250	300	Mbps
MIPIE25	500	500	Mbps

7.1.6 User I/O Switching Characteristics

The following section describes characteristics for user I/O switching.

For more information about user I/O timing, see the *PolarFire I/O Timing Spreadsheet* (to be released).

7.1.6.1 I/O Digital

The following tables provide information about I/O digital.

Table 30 • I/O Digital Receive Single-Data Rate Switching Characteristics

Parameter	Interface Name	Topology	STD Min	STD Typ	STD Max	-1 Min	—1 Тур	-1 Max	Unit	Clock-to-Data Condition
Fмах	RX_SDR_G_A	Rx SDR							MHz	From a global clock source, aligned
Fмах	RX_SDR_L_A	Rx SDR							MHz	From a lane clock source, aligned
Fмах	RX_SDR_G_C	Rx SDR							MHz	From a global clock source, centered
Fмах	RX_SDR_L_C	Rx SDR							MHz	From a lane clock source, centered

Table 31 • I/O Digital Receive Double-Data Rate Switching Characteristics

Parameter	Interface Name	Topology	STD Min	STD Typ	STD Max	–1 Min	—1 Тур	-1 Max	Unit	Clock-to- Data Condition
Fмах	RX_DDR_G_A	Rx DDR		335			335	MHz	MHz	From a global clock source, aligned
Fмах	RX_DDR_L_A	Rx DDR		250			250		MHz	From a lane clock source, aligned
Fмах	RX_DDR_G_C	Rx DDR		335			335		MHz	From a global clock source, centered
Fмах	RX_DDR_L_C	Rx DDR		250			250		MHz	From a lane clock source, centered
Fmax 2:1	RX_DDRX_B_A	Rx DDR digital mode							MHz	From a HS_IO_CLK clock source, aligned

Parameter	Symbol	Min	Тур	Max	Unit
Operating current (VDD18)	RCscvpp			0.1	μA
Operating current (VDD)	RCscvdd			60.7	μA

7.3 Fabric Specifications

The following section describes specifications for the fabric.

7.3.1 Math Blocks

The following tables describe math block performance.

Table 41 • Math Block Performance Extended Commercial Range (0 °C to 100 °C)

Parameter	Symbol	Modes	V _{DD} = 1.0 V – STD	V _{DD} = 1.0 V - 1	V _{DD} = 1.05 V – STD	V _{DD} = 1.05 V - 1	Unit
Maximum operating	Fмах	18 × 18 multiplication	370	470	440	500	MHz
-	18 × 18 multiplication summed with 48-bit input	370	470	440	500	MHz	
	18 × 19 multiplier pre-adder ROM mode	365	465	435	500	MHz	
		Two 9 × 9 multiplication	370	470	440	500	MHz
	9 × 9 dot product (DOTP)	370	470	440	500	MHz	
		Complex 18 × 19 multiplication	360	455	430	500	MHz

Table 42 • Math Block Performance Industrial Range (-40 °C to 100 °C)

Parameter	Symbol	Modes	VDD = 1.0 V - STD	V _{DD} = 1.0 V – 1	V _{DD} = 1.05 V – STD	V _{DD} = 1.05 V – 1	Unit
Maximum operating	Fmax	18 × 18 multiplication	365	465	435	500	MHz
frequency	18 × 18 multiplication summed with 48-bit input	365	465	435	500	MHz	
		18 × 19 multiplier pre-adder ROM mode	355	460	430	500	MHz
		Two 9 × 9 multiplication	365	465	435	500	MHz
		9 × 9 DOTP	365	465	435	500	MHz
		Complex 18 × 19 multiplication	350	450	425	500	MHz

Parameter	Symbol	Min	Тур	Max	Unit	Condition
		0.41			UI	>3.2–8.5 Gbps⁵
		0.41			UI	>1.6 to 3.2 Gbps ⁵
		0.41			UI	>0.8 to 1.6 Gbps ⁵
		0.41			UI	250 to 800 Mpbs ⁵
Total jitter tolerance with	TIJTOLSE	0.65			UI	3.125 Gbps⁵
stressed eye		0.65			UI	6.25 Gbps ⁶
		0.7			UI	10.3125 Gbps ⁶
					UI	12.7 Gbps ^{6, 10}
Sinusoidal jitter tolerance with	TSJTOLSE	0.1			UI	3.125 Gbps⁵
stressed eye		0.05			UI	6.25 Gbps ⁶
		0.05			UI	10.3125 Gbps ⁶
					UI	12.7 Gbps ^{6, 10}
CTLE DC gain (all stages, max settings)				10	dB	
CTLE AC gain (all stages, max settings)				16	dB	
DFE AC gain (per 5 stages, max settings)				7.5	dB	

1. Valid at 3.2 Gbps and below.

- 2. Data vs. Rx reference clock frequency.
- 3. Achieves compliance with PCIe electrical idle detection.
- 4. Achieves compliance with SATA OOB specification.
- 5. Rx jitter values based on bit error ratio (BER) of 10−12, AC coupled input with 400 mV V_{ID}, all stages of Rx CTLE enabled, DFE disabled, 80 MHz sinusoidal jitter injected to Rx data.
- 6. Rx jitter values based on bit error ratio (BER) of 10−12, AC coupled input with 400 mV V_{ID}, all stages of Rx CTLE enabled, DFE enabled, 80 MHz sinusoidal jitter injected to Rx data.
- 7. For PCIe: Low Threshold Setting = 1, High Threshold Setting = 2.
- 8. For SATA: Low Threshold Setting = 2, High Threshold Setting = 3.
- 9. Loss of signal detection is valid for input signals that transition at a density ≥1 Gbps for PRBS7 data or 6 Gbps for PRBS31 data.
- 10. For data rates greater than 10.3125 Gbps, VDDA must be set to 1.05 V mode. See supply tolerance in the section Recommended Operating Conditions (see page 6).

7.5 Transceiver Protocol Characteristics

The following section describes transceiver protocol characteristics.

7.5.1 PCI Express

The following tables describe the PCI express.

Table 54 • PCI Express Gen1

Parameter	Data Rate	Min	Max	Unit
Total transmit jitter	2.5 Gbps		0.25	UI
Receiver jitter tolerance	2.5 Gbps	0.4		UI

Note: With add-in card, as specified in PCI Express CEM Rev 2.0.

Parameter	Тур	Max	Unit	Conditions
Time to destroy data in non-volatile memory (non-recoverable) ^{1, 4}			ms	One iteration of scrubbing
Time to scrub the fabric data ¹			S	Full scrubbing
Time to scrub the pNVM data (like new) ^{1, 2}			S	Full scrubbing
Time to scrub the pNVM data (recoverable) ^{1,3}			S	Full scrubbing
Time to scrub the fabric data pNVM data (non-recoverable) $^{\scriptscriptstyle 1}$			S	Full scrubbing
Time to verify ⁵			S	

1. Total completion time after entering zeroization.

- 2. Like new mode—zeroizes user design security setting and sNVM content.
- 3. Recoverable mode—zeroizes user design security setting, sNVM and factory keys.
- 4. Non-recoverable mode—zeroizes user design security setting, sNVM and factory keys, and factory data required for programming.
- 5. Time to verify after scrubbing completes.

7.6.7 Verify Time

The following tables describe verify time.

Table 81 • Standalone Fabric Verify Times

Parameter	Devices	Max	Unit
Standalone verification over JTAG	MPF100T, TL, TS, TLS		S
	MPF200T, TL, TS, TLS	53 ¹	S
	MPF300T, TL, TS, TLS	90 ¹	S
	MPF500T, TL, TS, TLS		S
Standalone verification over SPI	MPF100T, TL, TS, TLS		S
	MPF200T, TL, TS, TLS	37 ²	S
	MPF300T, TL, TS, TLS	55²	S
	MPF500T, TL, TS, TLS		S

- 1. Programmer: FlashPro5, TCK 10 MHz; PC configuration: Intel i7 at 3.6 GHz, 32 GB RAM, Windows 10.
- 2. SmartFusion2 with MSS running at 100 MHz, MSS SPI 0 port running at 6.67 MHz. DirectC version
 - 4.1.

Notes:

- Standalone verify is limited to 2,000 total device hours ove r the industrial –40 °C to 100 °C temperature.
- Use the digest system service, for verify device time more than 2,000 hours.
- Standalone verify checks the programming margin on both the P and N gates of the push-pull cell.
 Digest checks only the P side of the push-pull gate. However, the push-pull gates work in tandem. Digest check is recommended if users believe they will exceed the 2,000-hour verify time specification.

Table 82 • Verify Time by Programming Hardware

Devices	IAP	FlashPro4	FlashPro5	BP	Silicon Sculptor	Units
MPF100T, TL, TS, TLS						
MPF200T, TL, TS, TLS	9	67	53			S
MPF300T, TL, TS, TLS	14	95	90			S

Devices	IAP	FlashPro4	Flash Pro 5	BP	Silicon Sculptor	Units
MPF500T, TL, TS, TLS						

Notes:

- FlashPro4 4 MHz TCK.
- FlashPro5 10 MHz TCK.
- PC configuration: Intel i7 at 3.6 GHz, 32 GB RAM, Windows 10.

Table 83 • Verify System Services

Parameter	Symbol	ServiceID	Devices	Тур	Max	Unit
In application verify by index	$T_{IAP_Ver_Index}$	44H	MPF100T, TL, TS, TLS			S
			MPF200T, TL, TS, TLS	8.2	9	S
			MPF300T, TL, TS, TLS	12.4	13	S
			MPF500T, TL, TS, TLS			S
In application verify by SPI address	TIAP_Ver_Addr	45H	MPF100T, TL, TS, TLS			S
			MPF200T, TL, TS, TLS	8.2	9	S
			MPF300T, TL, TS, TLS	12.4	13	S
			MPF500T, TL, TS, TLS			S

7.6.8 Authentication Time

The following tables describe authentication system service time.

Table 84 • Authentication Services

Parameter	Symbol	ServiceID	Devices	Тур	Max	Unit
Bitstream Authentication	TBIT_AUTH	22H	MPF100T, TL, TS, TLS			S
			MPF200T, TL, TS, TLS	3.3	3.7	S
			MPF300T, TL, TS, TLS	4.9	5.4	S
			MPF500T, TL, TS, TLS			S
IAP Image Authentication	TIAP_AUTH	23H	MPF100T, TL, TS, TLS			S
			MPF200T, TL, TS, TLS	3.3	3.7	S
			MPF300T, TL, TS, TLS	4.9	5.4	S
			MPF500T, TL, TS, TLS			

7.6.9 Secure NVM Performance

The following table describes secure NVM performance.

Table 85 • sNVM Read/Write Characteristics

Parameter	Symbol	Min	Тур	Max	Unit	Conditions
Plain text programming		7.0	7.2	7.9	ms	
Authenticated text programming		7.2	7.4	9.4	ms	
Authenticated and encrypted text programming		7.2	7.4	9.4	ms	
Authentication R/W 1st access from power-up overhead	Tpuf_ovhd		100	111	ms	From Tfab_ready
Plain text read		7.67	7.79	8.2	μs	

7.8.2 UJTAG_SEC Switching Characteristics

The following table describes characteristics of UJTAG_SEC switching.

Table 89 • UJTAG Security Performance Characteristics

Parameter	Symbol	Min	Тур	Max	Unit	Condition
TCK frequency	Fтск				MHz	

7.8.3 USPI Switching Characteristics

The following section describes characteristics of USPI switching.

Table 90 • SPI Macro Interface Timing Characteristics

Parameter	Symbol	V _{DDI} = 3.3 V Max	V _{DDI} = 2.5 V Max	V _{DDI} = 1.8 V Max	V _{DDI} = 1.5 V Max	V _{DDI} = 1.2 V Max	Unit
Propagation	TPD_MOSI	0.8	1	1.2	1.4	1.6	ns
delay from the fabric to	TPD_MISO	3.5	3.75	4	4.25	4.5	ns
pins ¹	TPD_SS	3.5	3.75	4	4.25	4.5	ns
	TPD_SCK	3.5	3.75	4	4.25	4.5	ns
	TPD_MOSI_OE	3.5	3.75	4	4.25	4.5	ns
	TPD_SS_OE	3.5	3.75	4	4.25	4.5	ns
	TPD_SCK_OE	3.5	3.75	4	4.25	4.5	ns

1. Assumes CL of the relevant I/O standard as described in the input and output delay measurement tables.

Table 101 • Cold and Warm Boot

Parameter	Symbol	Min	Тур	Max	Unit	Condition
The time from T _{FAB_READY} to ready to program through JTAG/SPI-Slave		0	0	0	ms	
The time from T _{FAB_READY} to auto-update start			Tpuf_ovhd ¹	$T_{PUF_OVHD^1}$	ms	
The time from TFAB_READY to programming recovery start			$T_{PUF_OVHD^1}$	$T_{\text{PUF}_\text{OVHD}^1}$	ms	
The time from T _{FAB_READY} to the tamper flags being available	TTAMPER_READY	0	0	0	ms	
The time from T _{FAB_READY} to the Athena Crypto co-processor being available (for S devices only)	Tcrypto_ready	0	0	0	ms	

1. Programming depends on the PUF to power up. Refer to TPUF_OVHD at section Secure NVM Performance (see page 58).

7.9.8 I/O Calibration

The following tables specify the initial I/O calibration time for the fastest and slowest supported VDDI ramp times of 0.2 ms to 50 ms, respectively. This only applies to I/O banks specified by the user to be auto-calibrated.

Table 102 • I/O Initial Calibration Time (TCALIB)

Ramp Time	Min (ms)	Max (ms)	Condition
0.2 ms	0.98	2.63	Applies to HSIO and GPIO banks
50 ms	41.62	62.19	Applies to HSIO and GPIO banks

Notes:

- The user may specify any VDDI ramp time in the range specified above. The nominal initial calibration time is given by the specified VDDI ramp time plus 2 ms.
- In order for IO calibration to start, VDDI and VDDAUX of the I/O bank must be higher than the trip point levels specified in I/O-Related Supplies (see page 66).

Table 103 • I/O Fast Recalibration Time (TRECALIB)

I/O Type	Min (ms)	Typ (ms)	Max (ms)	Condition
GPIO bank	0.16	0.20	0.24	GPIO configured for 3.3 V operation
HSIO bank	0.20	0.25	0.30	HSIO configured for 1.8 V operation

Note: In order to obtain fast re-calibration, the user must assert the relevant clock request signal from the FPGA fabric to the I/O bank controller.

The following table describes the time to enter Flash*Freeze Mode and to exit Flash*Freeze mode.

Table 107 • SPI Master Mode (PolarFire Master) During Device Initialization

Parameter	Symbol	Min	Тур	Max	Unit	Condition
SCK frequency	Fмsck			40	MHz	

Table 108 • SPI Slave Mode (PolarFire Slave)

Parameter	Symbol	Min	Тур	Max	Unit	Condition
SCK frequency	Fssck			80	MHz	

7.10.3 SmartDebug Probe Switching Characteristics

The following table describes characteristics of SmartDebug probe switching.

Table 109 • SmartDebug Probe Performance Characteristics

Parameter	Symbol	V _{DD} = 1.0 V STD	V _{DD} = 1.0 V - 1	Vod = 1.05 V STD	V _{DD} = 1.05 V – 1	Unit
Maximum frequency of probe signal	Fmax	100	100	100	100	MHz
Minimum delay of probe signal	T_{Min_delay}	13	12	13	12	ns
Maximum delay of probe signal	T _{Max_delay}	13	12	13	12	ns

7.10.4 DEVRST_N Switching Characteristics

_

The following table describes characteristics of DEVRST_N switching.

Table 110 • DEVRST_N Electrical Characteristics

Parameter	Symbol	Min	Тур	Max	Unit	Condition
DEVRST_N ramp rate	DRRAMP		10		μs	It must be a normal clean digital signal, with typical rise and fall times
DEVRST_N assert time	DRASSERT	1			μs	The minimum time for DEVRST_N assertion to be recognized
DEVRST_N de-assert time	DRdeassert	2.75			ms	The minimum time DEVRST_N needs to be de-asserted before assertion

7.10.5 FF_EXIT Switching Characteristics

The following table describes characteristics of FF_EXIT switching.

Table 111 • FF_EXIT Electrical Characteristics

Parameter	Symbol	Min	Тур	Max	Unit	Condition
FF_EXIT_N ramp rate	FFRAMP		10		μs	
Minimum FF_EXIT_N assert time	FFassert	1			μs	The minimum time for FF_EXIT_N to be recognized
Minimum FF_EXIT_N de- assert time	FF deassert	170			μs	The minimum time FF_EXIT_N needs to be de-asserted before assertion

1. With DPA counter measures.

Table 115 • HMAC

Modes	Message Size (bits)	Athena TeraFire Crypto Core Clock-Cycles	CAL Delay In CPU Clock-Cycles
HMAC-SHA-256 ¹ ,	512	7477	2361
256-bit key	64K	88367	2099
HMAC-SHA-384 ¹ ,	1024	13049	2257
384-bit key	64K	106103	2153

1. With DPA counter measures.

Table 116 • CMAC

Modes	Message Size (bits)	Athena TeraFire Crypto Core Clock- Cycles	CAL Delay In CPU Clock- Cycles
AES-CMAC-2561	128	446	9058
(message is only authenticated)	64К	45494	111053

1. With DPA counter measures.

Table 117 • KEY TREE

Modes	Message Size (bits)	Athena TeraFire Crypto Core Clock-Cycles	CAL Delay In CPU Clock-Cycles
128-bit nonce +		102457	2751
8-bit optype			
256-bit nonce +		103218	2089
8-bit optype			

Table 118 • SHA

Modes	Message Size (bits)	Athena TeraFire Crypto Core Clock-Cycles	CAL Delay In CPU Clock-Cycles
SHA-1 ¹	512	2386	1579
	64K	77576	990
SHA-2561	512	2516	884
	64K	84752	938
SHA-3841	1024	4154	884
	64K	100222	938
SHA-512 ¹	1024	4154	881
	64K	100222	935

1. With DPA counter measures.

Table 119 • ECC

Modes	Message Size (bits)	Athena TeraFire Crypto Core Clock- Cycles	CAL Delay In CPU Clock- Cycles
ECDSA SigGen,	1024	12528912	6944
P-384/SHA-384 ¹	8К	12540448	5643
ECDSA SigGen, P-384/SHA-384	1024	5502928	6155