

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

-XF

Product Status	Active
Number of LABs/CLBs	-
Number of Logic Elements/Cells	300000
Total RAM Bits	21094400
Number of I/O	244
Number of Gates	-
Voltage - Supply	$0.97V \sim 1.08V$
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	484-BBGA, FCBGA
Supplier Device Package	484-FCBGA (23x23)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/mpf300t-fcg484i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1 Revision History

The revision history describes the changes that were implemented in the document. The changes are listed by revision, starting with the most current publication.

1.1 Revision 1.3

Revision 1.3 was published in June 2018. The following is a summary of changes.

- The System Services section was updated. For more information, see System Services (see page 59).
- The Non-Volatile Characteristics section was updated. For more information, see Non-Volatile Characteristics (see page 51).
- The Fabric Macros section was updated. For more information, see Fabric Macros (see page 60).
- The Transceiver Switching Characteristics section was updated. For more information, see Transceiver Switching Characteristics (see page 42).

1.2 Revision 1.2

Revision 1.2 was published in June 2018. The following is a summary of changes.

• The datasheet has moved to preliminary status. Every table has been updated.

1.3 Revision 1.1

Revision 1.1 was published in August 2017. The following is a summary of changes.

- LVDS specifications changed to 1.25G. For more information, see HSIO Maximum Input Buffer Speed and HSIO Maximum Output Buffer Speed.
- LVDS18, LVDS25/LVDS33, and LVDS25 specifications changed to 800 Mbps. For more information, see I/O Standards Specifications.
- A note was added indicting a zeroization cycle counts as a programming cycle. For more information, see Non-Volatile Characteristics.
- A note was added defining power down conditions for programming recovery conditions. For more information, see Power-Supply Ramp Times.

1.4 Revision 1.0

Revision 1.0 was the first publication of this document.

4 Device Offering

The following table lists the PolarFire FPGA device options using the MPF300T as an example. The MPF100T, MPF200T, and MPF500T device densities have identical offerings.

Table 1 • PolarFire FPGA Device Options

Device Options	Extended Commercial 0 °C–100 °C	Industrial –40 °C–100 °C	STD	-1	Transceivers T	Lower Static Power L	Data Security S
MPF300T	Yes	Yes	Yes	Yes	Yes		
MPF300TL	Yes	Yes	Yes		Yes	Yes	
MPF300TS		Yes	Yes	Yes	Yes		Yes
MPF300TLS		Yes	Yes		Yes	Yes	Yes

$\overline{2}$	MICROCHIP	company

Parameter	Symbol	Min	Тур	Max	Unit
Transceiver TX and RX lanes supply at 1.05 V mode	Vdda	1.02	1.05	1.08	V
(when any lane rate is greater than 10.3125 Gbps) ¹					
Programming and HSIO receiver supply	Vdd18	1.71	1.80	1.89	V
FPGA core and FPGA PLL high-voltage supply	VDD25	2.425	2.50	2.575	V
Transceiver PLL high-voltage supply	VDDA25	2.425	2.50	2.575	V
Transceiver reference clock supply –3.3 V nominal	Vdd_xcvr_clk	3.135	3.3	3.465	V
Transceiver reference clock supply –2.5 V nominal	Vdd_xcvr_clk	2.375	2.5	2.625	V
Global VREF for transceiver reference clocks ³	XCVRvref	Ground		Vdd_xcvr_clk	V
HSIO DC I/O supply. Allowed nominal options: 1.2 V,	VDDIx	1.14	Various	1.89	V
1.35 V, 1.5 V, and 1.8 V ⁴					
GPIO DC I/O supply. Allowed nominal options: 1.2 V,	VDDIx	1.14	Various	3.465	V
1.5 V, 1.8 V, 2.5 V, and 3.3 V ^{2,4}					
Dedicated I/O DC supply for JTAG and SPI (GPIO Bank	VDDI3	1.71	Various	3.465	V
3). Allowed nominal options: 1.8 V, 2.5 V, and 3.3 V					
GPIO auxiliary supply for I/O bank x with V_{DDIx} = 3.3 V	VDDAUXx	3.135	3.3	3.465	V
nominal ^{2,4}					
GPIO auxiliary supply for I/O bank x with V_{DDIx} = 2.5 V	VDDAUXx	2.375	2.5	2.625	V
nominal or lower ^{2,4}					
Extended commercial temperature range	T	0		100	°C
Industrial temperature range	Τι	-40		100	°C
Extended commercial programming temperature	Tprg	0		100	°C
range					
Industrial programming temperature range	Tprg	-40		100	°C

1. V_{DD} and V_{DDA} can independently operate at 1.0 V or 1.05 V nominal. These supplies are not dynamically adjustable.

For GPIO buffers where I/O bank is designated as bank number, if VDDIX is 2.5 V nominal or 3.3 V nominal, VDDAUXX must be connected to the VDDIX supply for that bank. If VDDIX for a given GPIO bank is <2.5 V nominal, VDDAUXX per I/O bank must be powered at 2.5 V nominal.

3. XCVR_{VREF} globally sets the reference voltage of the transceiver's single-ended reference clock input buffers. It is typically near V_{DD_XCVR_CLK}/2 V but is allowed in the specified range.

4. The power supplies for a given I/O bank x are shown as VDDIx and VDDAUXx.

6.2.2.1 Power-Supply Ramp Times

The following table shows the allowable power-up ramp times. Times shown correspond to the ramp of the supply from 0 V to the minimum recommended voltage as specified in the section Recommended Operating Conditions (see page 6). All supplies must rise and fall monotonically.

Table 10	Power-S	upply R	amp Times
----------	---------	---------	-----------

Parameter	Symbol	Min	Max	Unit
FPGA core supply	Vdd	0.2	50	ms
Transceiver core supply	Vdda	0.2	50	ms
Must connect to 1.8 V supply	Vdd18	0.2	50	ms
Must connect to 2.5 V supply	VDD25	0.2	50	ms
Must connect to 2.5 V supply	VDDA25	0.2	50	ms
HSIO bank I/O power supplies	VDDI[0,1,6,7]	0.2	50	ms
GPIO bank I/O power supplies	VDDI[2,4,5]	0.2	50	ms
Bank 3 dedicated I/O buffers (GPIO)	Vddi3	0.2	50	ms
GPIO bank auxiliary power supplies	VDDAUX[2,4,5]	0.2	50	ms
Transceiver reference clock supply	Vdd_xcvr_clk	0.2	50	ms
Global V_{REF} for transceiver reference clocks	XCVRvref	0.2	50	ms

Note: For proper operation of programming recovery mode, if a VDD supply brownout occurs during programming, a minimum supply ramp down time for only the VDD supply is recommended to be 10 ms or longer by using a programmable regulator or on-board capacitors.

6.2.2.2 Hot Socketing

The following table lists the hot-socketing DC characteristics over recommended operating conditions.

Table 11 • Hot Socketing DC Characteristics over Recommended Operating Conditions

Parameter	Symbol	Min	Тур	Max	Unit	Condition
Current per transceiver Rx input pin (P or N single-ended) ^{1, 2}	XCVRRX_HS			±4	mA	V _{DDA} = 0 V
Current per transceiver Tx output pin (P or N single-ended) ³	XCVRTX_HS			±10	mA	V _{DDA} = 0 V
Current per transceiver reference clock input pin (P or N single-ended) ⁴	XCVRREF_HS			±1	mA	Vdd_xcvr_clk = 0 V
Current per GPIO pin (P or N single-ended)⁵	Igpio_hs			±1	mA	V _{DDix} = 0 V
Current per HSIO pin (P or N single-ended)						Hot socketing is not supported in HSIO.

1. Assumes that the device is powered-down, all supplies are grounded, AC-coupled interface, and input pin pairs are driven by a CML driver at the maximum amplitude (1 V pk-pk) that is toggling at any rate with PRBS7 data.

- 2. Each P and N transceiver input has less than the specified maximum input current.
- 3. Each P and N transceiver output is connected to a 40 Ω resistor (50 Ω CML termination 20% tolerance) to the maximum allowed output voltage (V_{DDAmax} + 0.3 V = 1.4 V) through an AC-coupling capacitor with all PolarFire device supplies grounded. This shows the current for a worst-case DC coupled interface. As an AC-coupled interface, the output signal will settle at ground and no hot socket current will be seen.
- 4. Vdd_xcvr_clk is powered down and the device is driven to -0.3 V < VIN < Vdd_xcvr_clk.
- 5. V_{DDIx} is powered down and the device is driven to $-0.3 V < V_{IN} < GPIO V_{DDImax}$.

PolarFire

SSTL1351 1.283 1.35 1.418 -0.3 Vmr - Vmr + Vmr 0.09 1.418 SSTL13511 1.283 1.35 1.418 -0.3 Vmr - Vmr + 1.418 SSTL13511 1.283 1.35 1.418 -0.3 Vmr - Vmr + 1.418 SSTL13511 1.425 1.5 1.575 -0.3 Vmr - Vmr + 1.575 HSTL1511 1.425 1.5 1.575 -0.3 Vmr - Vmr + 1.575 HSTL1511 1.425 1.5 1.575 -0.3 Vmr - Vmr + 1.418 HSTL1351 1.283 1.35 1.418 -0.3 Vmr + Vmr + 1.418 HSTL1351 1.283 1.35 1.418 -0.3 Vmr + Vmr + 1.418 HSTL121 1.14 1.2 1.26 -0.3 Vmr + Vmr + 1.26 HSTL1211 1.14 1.2 1.26 -0.3 Vmr + Vmr + 1.26 HSUL181 1.71 1.8 1.89 -0.3 0.3 <td< th=""><th>I/O Standard</th><th>Vooi Min (V)</th><th>V_{DDI} Typ (V)</th><th>Vooi Max (V)</th><th>V⊫ Min (V)</th><th>V⊫ Max (V)</th><th>Vін Min (V)</th><th>Vін¹ Max (V)</th></td<>	I/O Standard	Vooi Min (V)	V _{DDI} Typ (V)	Vooi Max (V)	V⊫ Min (V)	V⊫ Max (V)	Vін Min (V)	Vін¹ Max (V)
SSTL135II 1.283 1.35 1.418 -0.3 Var - - 0.09 Var - - 0.09 Var - - - 0.09 1.418 HSTL15I 1.425 1.5 1.575 -0.3 Var - 0.1 Var - - 0.1 Var - - 0.1 1.575 HSTL15I 1.425 1.5 1.575 -0.3 Var - 0.1 Var - - - Var - - Var - - Var - - 1.575 HSTL15I 1.425 1.5 1.575 -0.3 Var - Var - Var - 1.575 HSTL15I 1.283 1.35 1.418 -0.3 Var - Var - 1.418 HSTL12I 1.283 1.35 1.418 -0.3 Var - Var - 1.418 HSTL12I 1.14 1.2 1.26 -0.3 Var - Var - 1.26 HSUL18I 1.71 1.8 1.89 -0.3 0.3 0.7 1.89 HSUL18I 1.71 1.8 1.89 -0.3 Var - Var - 1.26 HSUL12I <	SSTL135I	1.283	1.35	1.418	-0.3	Vref	Vref +	1.418
SSTL135II 1.283 1.35 1.418 -0.3 Vmer - Vmer + Vmer - Vmer + 1.418 HSTL15I 1.425 1.5 1.575 -0.3 Vmer - Vmer + 1.575 HSTL15I 1.425 1.5 1.575 -0.3 Vmer - Vmer + 1.575 HSTL15II 1.425 1.5 1.575 -0.3 Vmer - Vmer + 1.575 HSTL15II 1.425 1.5 1.575 -0.3 Vmer - Vmer + 1.575 HSTL135I 1.283 1.35 1.418 -0.3 Vmer - 1.418 HSTL135II 1.283 1.35 1.418 -0.3 Vmer - 1.418 HSTL12I 1.14 1.2 1.26 -0.3 Vmer - 1.418 HSTL12I 1.14 1.2 1.26 -0.3 Vmer - 1.26 HSUL18I 1.71 1.8 1.89 -0.3 0.3 0.7 1.89 HSUL18I 1.71 1.8 1.89 -0.3 0.3 0.7 1.89 HSUL						0.09	0.09	
- + - + 1425 1.425 1.57 -0.3 Mer Var 1.575 HSTL15I 1.425 1.5 1.575 -0.3 Var Var 1.575 HSTL15II 1.425 1.5 1.575 -0.3 Var Var 1.575 HSTL15II 1.425 1.5 1.575 -0.3 Var Var 1.575 HSTL13SI 1.428 1.575 -0.3 Var Var 1.418 HSTL13SI 1.283 1.35 1.418 -0.3 Var Var 1.418 HSTL13SII 1.283 1.35 1.418 -0.3 Var Var 1.418 HSTL12I 1.14 1.2 1.26 -0.3 Var Var 1.26 HSTL12I 1.14 1.2 1.26 -0.3 Var Var 1.26 HSUL18I 1.71 1.8 1.89 -0.3 0.3 0.7 1.89	SSTL135II	1.283	1.35	1.418	-0.3	VREF	VREF	1.418
HSTL15I 1.425 1.5 1.575 -0.3 Verer - 0.1 Verer 0.1 1.575 -0.3 Verer - 0.1 Verer 0.1 1.575 -0.3 Verer - 0.1 1.575 -0.3 Verer - 0.1 0.1 1.418 -0.3 Verer - 0.09 0.09 1.418 HSTL135II 1.283 1.35 1.418 -0.3 Verer - 0.1 1.418 -<						-	+	
HSILLSI 1.423 1.3 1.373 -0.3 VREP VREP 1.373 -1.375 HSTL15II 1.425 1.5 1.575 -0.3 VREP VREP 1.575 HSTL15II 1.425 1.5 1.575 -0.3 VREP VREP 1.575 HSTL13SI 1.283 1.35 1.418 -0.3 VREP VREP 1.418 HSTL13SI 1.283 1.35 1.418 -0.3 VREP VREP 1.418 HSTL13SI 1.283 1.35 1.418 -0.3 VREP VREP 1.418 HSTL12I 1.283 1.35 1.418 -0.3 VREP VREP 1.418 HSTL12I 1.14 1.2 1.26 -0.3 VREP VREP 1.26 HSTL12I 1.14 1.2 1.26 -0.3 VREP VREP 1.26 HSUL18I 1.71 1.8 1.89 -0.3 0.3 0.7 1.89 H		1 425	1 Г	1 575	0.2	0.09	0.09	1 575
HSTL15II 1.425 1.5 1.575 -0.3 Veer - - 0.1 Veer + 0.1 1.575 + 0.1 1.575 + 0.1 HSTL135I 1.283 1.35 1.418 -0.3 Veer - 0.09 Veer - 0.09 Veer + 0.09 1.418 - 0.09 1.418 - - - - - - - - - - 1.418 - - - - - - - - - - - 1.418 - - - - - - - - - - - - - - - - - - -	HSILISI	1.425	1.5	1.575	-0.3	V REF	V REF	1.575
HSTL15II 1.425 1.5 1.575 -0.3 VREF - 0.1 VREF + 0.1 1.575 + 0.0 HSTL135I 1.283 1.35 1.418 -0.3 VREF - 0.09 VREF - 0.09 1.418 HSTL135II 1.283 1.35 1.418 -0.3 VREF - 0.09 VREF - 0.09 1.418 HSTL135II 1.283 1.35 1.418 -0.3 VREF - 0.09 VREF 1.418 HSTL12I 1.14 1.2 1.26 -0.3 VREF - 0.1 VREF 1.26 HSTL12I 1.14 1.2 1.26 -0.3 VREF - 0.1 1.26 - HSTL12II 1.14 1.2 1.26 -0.3 VREF - 0.1 1.26 - HSUL18I 1.71 1.8 1.89 -0.3 0.3 0.7 1.89 HSUL12I 1.14 1.2 1.26 - - + 1.26 HSUL12I 1.14 1.2 1.26 -0.3 VREF - + 1.26						0.1	0.1	
HIND	HSTI 15II	1 425	15	1 575	-0.3	VREE	VREE	1 575
HSTL135I 1.283 1.35 1.418 -0.3 VREF VREF 1.418 HSTL135I 1.283 1.35 1.418 -0.3 VREF VREF 1.418 HSTL135II 1.283 1.35 1.418 -0.3 VREF VREF 1.418 HSTL135II 1.283 1.35 1.418 -0.3 VREF VREF 1.418 HSTL12I 1.14 1.2 1.26 -0.3 VREF VREF 1.26 HSTL12I 1.14 1.2 1.26 -0.3 VREF VREF 1.26 HSUL18I 1.14 1.2 1.26 -0.3 VREF VREF 1.26 HSUL18I 1.71 1.8 1.89 -0.3 0.3 0.7 1.89 HSUL12I 1.71 1.8 1.89 -0.3 VREF VREF 1.26 HSUL12I 1.14 1.2 1.26 -0.3 VREF VREF 1.26 POD12I 1.14		1.125	1.5	1.575	0.5	_	+	1.575
HSTL1351 1.283 1.35 1.418 -0.3 VRF VRF 1.418 HSTL121 1.24 1.26 -0.3 VRF VRF 1.26 HSTL121 1.14 1.2 1.26 -0.3 VRF VRF 1.26 HSTL121 1.14 1.2 1.26 -0.3 VRF VRF 1.26 HSUL181 1.14 1.2 1.26 -0.3 0.3 0.7 1.89 HSUL181 1.71 1.8 1.89 -0.3 0.3 0.7 1.89 HSUL181 1.71 1.8 1.89 -0.3 VRF VRF 1.26 HSUL121 1.14 1.2 1.26 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.1</td> <td>0.1</td> <td></td>						0.1	0.1	
- + - + 1.281 1.35 1.418 -0.3 Vref Vref 1.418 - - - - - - - + 1.09 0.09 0.09 - - - + - - + - - + - - + - <td>HSTL135I</td> <td>1.283</td> <td>1.35</td> <td>1.418</td> <td>-0.3</td> <td>VREF</td> <td>VREF</td> <td>1.418</td>	HSTL135I	1.283	1.35	1.418	-0.3	VREF	VREF	1.418
HSTL135II 1.283 1.35 1.418 -0.3 VREF - 0.09 VREF - 0.09 1.418 HSTL12I 1.14 1.2 1.26 -0.3 VREF - 0.1 VREF 1.26 HSTL12I 1.14 1.2 1.26 -0.3 VREF - 0.1 VREF 1.26 HSTL12I 1.14 1.2 1.26 -0.3 VREF - 0.1 VREF 1.26 HSTL12II 1.14 1.2 1.26 -0.3 VREF VREF 1.26 HSUL18I 1.71 1.8 1.89 -0.3 0.3 0.7 1.89 HSUL18I 1.71 1.8 1.89 -0.3 0.3 0.7 1.89 HSUL12I 1.14 1.2 1.26 -0.3 VREF VREF 1.26 HSUL12I 1.14 1.2 1.26 -0.3 VREF VREF 1.26 HSUL12I 1.14 1.2 1.26 -0.3 VREF VREF 1.26 - <td< td=""><td></td><td></td><td></td><td></td><td></td><td>-</td><td>+</td><td></td></td<>						-	+	
HSTL135II 1.283 1.35 1.418 -0.3 VREF VREF 1.418 - - + 0.09 0.09 - - + HSTL12I 1.14 1.2 1.26 -0.3 VREF VREF 1.26 HSTL12I 1.14 1.2 1.26 -0.3 VREF VREF 1.26 HSTL12II 1.14 1.2 1.26 -0.3 VREF VREF 1.26 HSTL12II 1.14 1.2 1.26 -0.3 VREF VREF 1.26 HSUL18I 1.14 1.2 1.26 -0.3 VREF VREF 1.89 HSUL18I 1.71 1.8 1.89 -0.3 0.3 0.7 1.89 HSUL12I 1.71 1.8 1.89 -0.3 VREF VREF 1.26 HSUL12I 1.14 1.2 1.26 -0.3 VREF VREF 1.26 POD12I 1.14 1.2						0.09	0.09	
- + - + 0.09 0.09 0.09 1.26 -0.3 VREF VREF 1.26 - + 1.26 - + 0.1 0.1 1.26 - - + 0.1 0.1 1.26 - - + 0.1 0.1 1.26 - - + 0.1 0.1 1.26 - - - + 0.1 0.1 1.26 - - - - - - 1.26 - 0.3 0.1 1.26 - 0.3 0.1 1.89 - 0.3 0.7 1.89 - <td< td=""><td>HSTL135II</td><td>1.283</td><td>1.35</td><td>1.418</td><td>-0.3</td><td>VREF</td><td>VREF</td><td>1.418</td></td<>	HSTL135II	1.283	1.35	1.418	-0.3	VREF	VREF	1.418
HSTL12I 1.14 1.2 1.26 -0.3 VREF - 1.0 VREF + 0.1 VREF + 0.1 1.26 HSTL12II 1.14 1.2 1.26 -0.3 VREF - 1.10 VREF + 0.1 1.26 HSUL18I 1.71 1.8 1.89 -0.3 0.3 0.7 1.89 HSUL18I 1.71 1.8 1.89 -0.3 0.3 0.7 1.89 HSUL18II 1.71 1.8 1.89 -0.3 0.3 0.7 1.89 HSUL18II 1.71 1.8 1.89 -0.3 0.3 0.7 1.89 HSUL12I 1.14 1.2 1.26 -0.3 VREF VREF 1.26 POD12I 1.14 1.2 1.26 -0.3 VREF VREF 1.26 - - - - - + 0.08 0.08 POD12I 1.14 1.2 1.26 -0.3 VREF VREF 1.26 - -						-	+	
HSTL12I 1.14 1.2 1.26 -0.3 VREF VREF 1.26 - HSTL12I 1.14 1.2 1.26 -0.3 VREF VREF 1.26 HSTL12II 1.14 1.2 1.26 -0.3 VREF VREF 1.26 HSUL18I 1.71 1.8 1.89 -0.3 0.3 0.7 1.89 HSUL18I 1.71 1.8 1.89 -0.3 0.3 0.7 1.89 HSUL18II 1.71 1.8 1.89 -0.3 0.3 0.7 1.89 HSUL18II 1.71 1.8 1.89 -0.3 0.3 0.7 1.89 HSUL12I 1.14 1.2 1.26 -0.3 VREF VREF 1.26 POD12I 1.14 1.2 1.26 -0.3 VREF VREF 1.26 - - - - - + 0.10 - POD12I 1.14 1.2						0.09	0.09	
- + NSUL12II 1.14 1.2 1.26 -0.3 VREF VREF 1.26 HSTL12II 1.14 1.2 1.26 -0.3 VREF 1.26 HSUL18I 1.71 1.8 1.89 -0.3 0.3 0.7 1.89 HSUL18I 1.71 1.8 1.89 -0.3 0.3 0.7 1.89 HSUL18II 1.71 1.8 1.89 -0.3 0.3 0.7 1.89 HSUL12I 1.71 1.8 1.89 -0.3 0.3 0.7 1.89 HSUL12I 1.14 1.2 1.26 -0.3 VREF VREF 1.26 -	HSTL12I	1.14	1.2	1.26	-0.3	VREF	VREF	1.26
HSTL12II 1.14 1.2 1.26 -0.3 VREF VREF 1.26 HSUL18I 1.71 1.8 1.89 -0.3 0.3 0.7 1.89 HSUL18I 1.71 1.8 1.89 -0.3 0.3 0.7 1.89 HSUL18I 1.71 1.8 1.89 -0.3 0.3 0.7 1.89 HSUL18II 1.71 1.8 1.89 -0.3 0.3 0.7 1.89 HSUL12I 1.71 1.8 1.89 -0.3 0.3 0.7 1.89 HSUL12I 1.14 1.2 1.26 -0.3 VREF VREF 1.26 POD12I 1.14 1.2 1.26 -0.3 VREF VREF 1.26 - + 0.08 0.08 - - + 0.08 0.08 POD12II 1.14 1.2 1.26 -0.3 VREF VREF 1.26 - - + 0.08 0.08 - - + 0.09 - - - <t< td=""><td></td><td></td><td></td><td></td><td></td><td>-</td><td>+</td><td></td></t<>						-	+	
HSTL12II 1.14 1.2 1.26 -0.3 VREF VREF VREF 1.26 HSUL18I 1.71 1.8 1.89 -0.3 0.3 0.7 1.89 HSUL18I 1.71 1.8 1.89 -0.3 0.3 0.7 1.89 HSUL18II 1.71 1.8 1.89 -0.3 0.3 0.7 1.89 HSUL18II 1.71 1.8 1.89 -0.3 0.3 0.7 1.89 HSUL12I 1.71 1.8 1.89 -0.3 0.3 0.7 1.89 HSUL12I 1.71 1.8 1.89 -0.3 0.3 0.7 1.89 HSUL12I 1.14 1.2 1.26 -0.3 VREF VREF 1.26 POD12I 1.14 1.2 1.26 -0.3 VREF VREF 1.26 POD12II 1.14 1.2 1.26 -0.3 VREF VREF 1.26 - - - - + 0.08 0.08 0.08						0.1	0.1	
HSUL18I 1.71 1.8 1.89 -0.3 0.3 0.7 1.89 HSUL18I 1.71 1.8 1.89 -0.3 0.3 0.7 1.89 HSUL18II 1.71 1.8 1.89 -0.3 0.3 0.7 1.89 HSUL18II 1.71 1.8 1.89 -0.3 0.3 0.7 1.89 HSUL18II 1.71 1.8 1.89 -0.3 0.3 0.7 1.89 HSUL12I 1.14 1.2 1.26 -0.3 VREF VREF 1.26 POD12I 1.14 1.2 1.26 -0.3 VREF VREF 1.26 POD12II 1.14 1.2 1.26 -0.3 VREF VREF 1.26 POD12II 1.14 1.2 1.26 -0.3 VREF VREF 1.26 POD12II 1.14 1.2 1.26 -0.3 VREF VREF 1.26 - + 0.08 0.09 - + 0.09 - + POD12II 1.14	HSTL12II	1.14	1.2	1.26	-0.3	VREF	VREF	1.26
HSUL18I 1.71 1.8 1.89 -0.3 0.3 0.7 1.89 HSUL18I 1.71 1.8 1.89 -0.3 0.3 0.7 1.89 HSUL18II 1.71 1.8 1.89 -0.3 0.3 0.7 1.89 HSUL12I 1.71 1.8 1.89 -0.3 0.3 0.7 1.89 HSUL12I 1.14 1.2 1.26 -0.3 VREF VREF 1.26 POD12I 1.14 1.2 1.26 -0.3 VREF VREF 1.26 POD12II 1.14 1.2 1.26 -0.3 VREF VREF 1.26 POD12II 1.14 1.2 1.26 -0.3 VREF VREF 1.26 - + 0.08 0.08 - - + - POD12II 1.14 1.2 1.26 -0.3 VREF VREF 1.26 - - - - - - + - 0.08 0.08 - - - - - -						-	+	
HSUL18I 1.71 1.8 1.89 -0.3 0.3 0.7 1.89 HSUL18II 1.14 1.2 1.26 -0.3 VREF VREF 1.26 -						0.1	0.1	
x x x x x x x x x y	HSUL18I	1.71	1.8	1.89	-0.3	0.3	0.7	1.89
HSUL18II 1.71 1.8 1.89 -0.3 0.3 0.7 1.89 × × VDDI VDDI HSUL12I 1.14 1.2 1.26 -0.3 VREF VREF 1.26 - + 0.1 0.1 POD12I 1.14 1.2 1.26 -0.3 VREF VREF 1.26 - + 0.08 0.08 POD12II 1.14 1.2 1.26 -0.3 VREF VREF 1.26 - + 0.08 0.08						×	×	
HSUL18II 1.71 1.8 1.89 -0.3 0.3 0.7 1.89 × × × VDDI VDDI VDDI HSUL12I 1.14 1.2 1.26 -0.3 VREF VREF 1.26 - + 0.1 0.1 POD12I 1.14 1.2 1.26 -0.3 VREF VREF 1.26 - + 0.08 0.08 POD12II 1.14 1.2 1.26 -0.3 VREF VREF 1.26 - + 0.08 0.08						VDDI	VDDI	
x x x VDDI VDDI HSUL12I 1.14 1.2 1.26 -0.3 VREF VREF 1.26 POD12I 1.14 1.2 1.26 -0.3 VREF VREF 1.26 POD12I 1.14 1.2 1.26 -0.3 VREF VREF 1.26 POD12II 1.14 1.2 1.26 -0.3 VREF VREF 1.26 POD12II 1.14 1.2 1.26 -0.3 VREF VREF 1.26 POD12II 0.08 0.08 - - + -	HSUL18II	1.71	1.8	1.89	-0.3	0.3	0.7	1.89
HSUL12I 1.14 1.2 1.26 -0.3 VREF VREF 1.26 POD12I 1.14 1.2 1.26 -0.3 VREF VREF 1.26 POD12I 1.14 1.2 1.26 -0.3 VREF VREF 1.26 POD12II 1.14 1.2 1.26 -0.3 VREF VREF 1.26 POD12II 1.14 1.2 1.26 -0.3 VREF VREF 1.26 POD12II 0.08 0.08 - - + 0.08 -						×	×	
HSUL12I 1.14 1.2 1.26 -0.3 VREF VREF 1.26 - + 0.1 0.1 POD12I 1.14 1.2 1.26 -0.3 VREF VREF 1.26 - + 0.08 0.08 POD12II 1.14 1.2 1.26 -0.3 VREF VREF 1.26 - + 0.08 0.08						VDDI	VDDI	
POD12I 1.14 1.2 1.26 -0.3 VREF VREF 1.26 - + 0.08 0.08 POD12II 1.14 1.2 1.26 -0.3 VREF VREF 1.26 - + 0.08 0.08	HSUL12I	1.14	1.2	1.26	-0.3	Vref	VREF	1.26
POD12I 1.14 1.2 1.26 -0.3 VREF VREF 1.26 - + 0.08 0.08 POD12II 1.14 1.2 1.26 -0.3 VREF VREF 1.26 - + 0.08 0.08						-	+	
POD12I 1.14 1.2 1.26 -0.3 VREF VREF 1.26 - + 0.08 0.08 POD12II 1.14 1.2 1.26 -0.3 VREF VREF 1.26 - + 0.08 0.08						0.1	0.1	
POD12II 1.14 1.2 1.26 -0.3 VREF VREF 1.26 - + 0.08 0.08	POD12I	1.14	1.2	1.26	-0.3	VREF	VREF	1.26
POD12II 1.14 1.2 1.26 -0.3 VREF VREF 1.26 - +						- 0.08	+ 0.08	
POD12II 1.14 1.2 1.26 -0.3 VREF VREF 1.26 - +						0.00	0.00	
	POD12II	1.14	1.2	1.26	-0.3	VREF	VREF	1.26
						- 0.08	+ 0.08	

1. GPIO V^{IH} max is 3.45 V with PCI clamp diode turned off regardless of mode, that is, over-voltage tolerant.

2. For external stub-series resistance. This resistance is on-die for GPIO.

Note: 3.3 V and 2.5 V are only supported in GPIO banks.

Parameter	Description	Min (%)	Тур	Max (%)	Unit	Condition
Single-ended	Internal	-20	120	20	Ω	V _{DDI} = 2.5 V/1.8 V/1.5 V/1.2 V
termination to Vss ^{4, 5}	parallel termination to Vss	-20	240	20	Ω	V _{DDI} = 2.5 V/1.8 V/1.5 V/1.2 V

1. Measured across P to N with 400 mV bias.

- 2. The venin impedance is calculated based on independent P and N as measured at 50% of $V_{\text{DDI}}.$
- 3. For 50 $\Omega/75 \Omega/150 \Omega$ cases, nearest supported values of 40 $\Omega/60 \Omega/120 \Omega$ are used.

4. Measured at 50% of V_{DDI} .

5. Supported terminations vary with the IO type regardless of V_DDI nominal voltage. Refer to Libero for available combinations.

Parameter	Interface Name	Topology	STD Min	STD Typ	STD Max	–1 Min	—1 Тур	-1 Max	Unit	Clock-to- Data Condition
Fмах 4:1	RX_DDRX_B_A	Rx DDR digital mode							MHz	From a HS_IO_CLK clock source, aligned
Fmax 8:1	RX_DDRX_B_A	Rx DDR digital mode							MHz	From a HS_IO_CLK clock source, aligned
Fmax 2:1	RX_DDRX_B_C	Rx DDR digital mode							MHz	From a HS_IO_CLK clock source, centered
Fmax 4:1	RX_DDRX_B_C	Rx DDR digital mode							MHz	From a HS_IO_CLK clock source, centered
Fmax 8:1	RX_DDRX_B_C	Rx DDR digital mode							MHz	From a HS_IO_CLK clock source, centered
Fmax 2:1	RX_DDRX_BL_A	Rx DDR digital mode							MHz	From a HS_IO_CLK clock source, aligned
Fmax 4:1	RX_DDRX_BL_A	Rx DDR digital mode							MHz	From a HS_IO_CLK clock source, aligned
Fmax 8:1	RX_DDRX_BL_A	Rx DDR digital mode							MHz	From a HS_IO_CLK clock source, aligned
Fмах 2:1	RX_DDRX_BL_C	Rx DDR digital mode							MHz	From a HS_IO_CLK clock source, centered
Fmax 4:1	RX_DDRX_BL_C	Rx DDR digital mode							MHz	From a HS_IO_CLK clock source, centered

7.3 Fabric Specifications

The following section describes specifications for the fabric.

7.3.1 Math Blocks

The following tables describe math block performance.

Table 41 • Math Block Performance Extended Commercial Range (0 °C to 100 °C)

Parameter	Symbol	Modes	V _{DD} = 1.0 V – STD	V _{DD} = 1.0 V - 1	V _{DD} = 1.05 V – STD	V _{DD} = 1.05 V - 1	Unit
Maximum F _{MAX} operating frequency -	Fмах	18 × 18 multiplication	370	470	440	500	MHz
	18 × 18 multiplication summed with 48-bit input	370	470	440	500	MHz	
	18 × 19 multiplier pre-adder ROM mode	365	465	435	500	MHz	
		Two 9 × 9 multiplication	370	470	440	500	MHz
	9 × 9 dot product (DOTP)	370	470	440	500	MHz	
		Complex 18 × 19 multiplication	360	455	430	500	MHz

Table 42 • Math Block Performance Industrial Range (-40 °C to 100 °C)

Parameter	Symbol	Modes	VDD = 1.0 V - STD	V _{DD} = 1.0 V – 1	V _{DD} = 1.05 V – STD	V _{DD} = 1.05 V – 1	Unit
Maximum operating	Fmax	18 × 18 multiplication	365	465	435	500	MHz
frequency -	18 × 18 multiplication summed with 48-bit input	365	465	435	500	MHz	
		18 × 19 multiplier pre-adder ROM mode	355	460	430	500	MHz
		Two 9 × 9 multiplication	365	465	435	500	MHz
		9 × 9 DOTP	365	465	435	500	MHz
		Complex 18 × 19 multiplication	350	450	425	500	MHz

7.3.2 SRAM Blocks

The following tables describe the LSRAM blocks' performance.

Parameter	V _{DD} = 1.0 V – STD	V _{DD} = 1.0 V - 1	V _{DD} = 1.05 V – STD	V _{DD} = 1.05 V - 1	Unit	Condition
Operating frequency	343	428	343	428	MHz	Two-port, all supported widths, pipelined, simple-write, and write- feed-through
-	309	428	309	428	MHz	Two-port, all supported widths, non-pipelined, simple-write, and write-feed-through
_	343	428	343	428	MHz	Dual-port, all supported widths, pipelined, simple-write, and write- feed-through
-	309	428	309	428	MHz	Dual-port, all supported widths, non-pipelined, simple-write, and write-feed-through
-	343	428	343	428	MHz	Two-port pipelined ECC mode, pipelined, simple-write, and write- feed-through
-	279	295	279	295	MHz	Two-port non-pipelined ECC mode, pipelined, simple-write, and write-feed-through
-	343	428	343	428	MHz	Two-port pipelined ECC mode, non-pipelined, simple-write, and write-feed-through
-	196	285	196	285	MHz	Two-port non-pipelined ECC mode, non-pipelined, simple- write, and write-feed-through
-	274	285	274	285	MHz	Two-port, all supported widths, pipelined, and read-before-write
-	274	285	274	285	MHz	Two-port, all supported widths, non-pipelined, and read-before- write
-	274	285	274	285	MHz	Dual-port, all supported widths, pipelined, and read-before-write
-	274	285	274	285	MHz	Dual-port, all supported widths, non-pipelined, and read-before- write
-	274	285	274	285	MHz	Two-port pipelined ECC mode, pipelined, and read-before-write
-	274	285	274	285	MHz	Two-port non-pipelined ECC mode, pipelined, and read-before- write
-	274	285	274	285	MHz	Two-port pipelined ECC mode, non-pipelined, and read-before- write
	193	285	193	285	MHz	Two-port non-pipelined ECC mode, non-pipelined, and read- before-write

	N		
- K N	MICROCHIP	com	Dan

Parameter	Modes ¹	STD Min	STD Max	-1 Min	-1 Max	Unit
Transceiver RX_CLK	10-bit, max data rate = 1.6 Gbps		160		160	MHz
range (non-	16-bit, max data rate = 4.8 Gbps		300		300	MHz
with global or regional	20-bit, max data rate = 6.0 Gbps		300		300	MHz
fabric clocks)	32-bit, max data rate = 10.3125 Gbps		325		325	MHz
	40-bit, max data rate = 10.3125 Gbps (–STD) / 12.7 Gbps (–1)1		260		320	MHz
	64-bit, max data rate = 10.3125 Gbps (–STD) / 12.7 Gbps (–1)1		165		200	MHz
	80-bit, max data rate = 10.3125 Gbps (–STD) / 12.7 Gbps (–1)1		130		160	MHz
	Fabric pipe mode 32-bit, max data rate = 6.0 Gbps		150		150	MHz
Transceiver TX_CLK	8-bit, max data rate = 1.6 Gbps		200		200	MHz
range (deterministic PCS mode with regional fabric clocks)	10-bit, max data rate = 1.6 Gbps		160		160	MHz
	16-bit, max data rate = 3.6 Gbps (–STD) / 4.25 Gbps (–1)		225		266	MHz
	20-bit, max data rate = 4.5 Gbps (–STD) / 5.32 Gbps (–1)		225		266	MHz
	32-bit, max data rate = 7.2 Gbps (–STD) / 8.5 Gbps (–1)		225		266	MHz
	40-bit, max data rate = 9.0 Gbps (–STD) / 10.6 Gbps (–1) ¹		225		266	Mhz
	64-bit, max data rate = 10.3125 Gbps (–STD) / 12.7 Gbps (–1)1		165		200	MHz
	80-bit, max data rate = 10.3125 Gbps (–STD) / 12.7 Gbps (–1)1		130		160	MHz
Transceiver RX_CLK	8-bit, max data rate = 1.6 Gbps		200		200	MHz
range (deterministic	10-bit, max data rate = 1.6 Gbps		160		160	MHz
PCS mode with regional fabric clocks)	16-bit, max data rate = 3.6 Gbps (–STD) / 4.25 Gbps (–1)		225		266	MHz
	20-bit, max data rate = 4.5 Gbps (–STD) / 5.32 Gbps (–1)		225		266	MHz
	32-bit, max data rate = 7.2 Gbps (–STD) / 8.5 Gbps (–1)		225		266	MHz
	40-bit, max data rate = 9.0 Gbps (–STD) / 10.6 Gbps (–1) ¹		225		266	MHz
	64-bit, max data rate = 10.3125 Gbps (–STD) / 12.7 Gbps (–1)1		165		200	MHz
	80-bit, max data rate = 10.3125 Gbps (–STD) / 12.7 Gbps (–1) ¹		130		160	MHz

1. For data rates greater than 10.3125 Gbps, VDDA must be set to 1.05 V mode. See supply tolerance in the section Recommended Operating Conditions (see page 6).

Note: Until specified, all modes are non-deterministic. For more information, see UG0677: PolarFire FPGA Transceiver User Guide.

7.6.3 FPGA Bitstream Sizes

The following table describes FPGA bitstream sizes.

Table 72 • Initialization Client Sizes

Device	Plaintext	Ciphertext
MPF100T, TL, TS, TLS		
MPF200T, TL, TS, TLS	2916 KB	3006 KB
MPF300T, TL, TS, TLS	4265 KB	4403 KB
MPF500T, TL, TS, TLS		

Note: Worst case initializing all fabric LSRAM, USRAM, and UPROM.

Table 73 • Bitstream Sizes

File	Devices	FPGA	Security	SNVM (all pages)	FPGA+ SNVM	FPGA+ Sec	SNVM+ Sec	FPGA+ SNVM+ Sec
SPI	MPF100T, TL, TS, TLS							
DAT	MPF100T, TL, TS, TLS							
SPI	MPF200T, TL, TS, TLS	5.9 MB	3.4 KB	59.7 KB	5.9 MB	5.9 MB	62.2 KB	6.0 MB
DAT	MPF200T, TL, TS, TLS	5.9 MB	7.3 KB	61.2 KB	6.0 MB	5.9 MB	66.3 KB	6.0 MB
SPI	MPF300T, TL, TS, TLS	9.3 MB	3.5 KB	59.7 KB	9.6 MB	9.5 MB	62.2 KB	9.6 MB
DAT	MPF300T, TL, TS, TLS	9.3 MB	7.6 KB	61.2 KB	9.6 MB	9.5 MB	66.3 KB	9.6 MB
SPI	MPF500T, TL, TS, TLS							
DAT	MPF500T, TL, TS, TLS							

7.6.4 Digest Cycles

Digests verify the integrity of the programmed non-volatile data. Digests are a cryptographic hash of various data areas. Any digest that reports back an error raises the digest tamper flag.

Retention Since Programmed (N = Number Digests During that Time) ¹										
Digest Tı	Storage and Operating T	N ≤300	N = 500	N = 1000	N = 1500	N = 2000	N = 4000	N = 6000	Unit	Retention
–40 to 100	-40 to 100	20× LF	17× LF	12 × LF	10× LF	8× LF	4× LF	2 × LF	°C	Years
–40 to 100	0 to 100	20× LF	17 × LF	12 × LF	10 × LF	8 × LF	4 × LF	2 × LF	°C	Years
–40 to 85	–40 to 85	20× LF	20× LF	20× LF	20× LF	16× LF	8× LF	4 × LF	°C	Years
–40 to 55	–40 to 55	20× LF	20× LF	20× LF	20× LF	20× LF	20× LF	20 × LF	°C	Years

Table 74 • Maximum Number of Digest Cycles

1. LF = Lifetime factor as defined by the number of programming cycles the device has seen under the conditions listed in the following table.

Table 75 • FPGA Programming Cycles Lifetime Factor

Programming T	Programming Cycles	LF
–40 °C to 100 °C	500	1
–40 °C to 85 °C	1000	0.8
–40 °C to 55 °C	2000	0.6

Notes:

- The maximum number of device digest cycles is 100K.
- Digests are operational only over the -40 °C to 100 °C temperature range.
- After a program cycle, an additional N digests cycles are allowed with the resultant retention characteristics for the total operating and storage temperature shown.
- Retention is specified for total device storage and operating temperature.
- All temperatures are junction temperatures (T_J).
- Example 1—500 digests cycles are performed between programming cycles. N = 500. The operating conditions are -40 °C to 85 °C TJ. 501 programming cycles have occurred. The retention under these operating conditions is 20 × LF = 20 × .8 = 16 years.
- Example 2—one programming cycle has occurred, N = 1500 digest cycles have occurred. Temperature range is -40 °C to 100 °C. The resultant retention is 10 × LF or 10 years over the industrial temperature range.

7.6.5 Digest Time

The following table describes digest time.

Table 76 • Digest Times

Parameter	Devices	Тур	Max	Unit
Setup time	All	2		μs
Fabric digest run time	MPF100T, TL, TS, TLS			ms
	MPF200T, TL, TS, TLS	1005	1072	ms
	MPF300T, TL, TS, TLS	1503.9	1582	ms
	MPF500T, TL, TS, TLS			ms
UFS CC digest run time	MPF100T, TL, TS, TLS			μs
	MPF200T, TL, TS, TLS	33.2	35	μs
	MPF300T, TL, TS, TLS	33.2	35	μs
	MPF500T, TL, TS, TLS			μs
sNVM digest run time ¹	MPF100T, TL, TS, TLS			ms
	MPF200T, TL, TS, TLS	4.4	4.8	ms
	MPF300T, TL, TS, TLS	4.4	4.8	ms
	MPF500T, TL, TS, TLS			ms
UFS UL digest run time	MPF100T, TL, TS, TLS			μs
	MPF200T, TL, TS, TLS	46.6	48.8	μs
	MPF300T, TL, TS, TLS	46.6	48.8	μs
	MPF500T, TL, TS, TLS			μs
User key digest run time ²	MPF100T, TL, TS, TLS			μs
	MPF200T, TL, TS, TLS	525.4	543.3	μs
	MPF300T, TL, TS, TLS	525.4	543.3	μs
	MPF500T, TL, TS, TLS			μs

Parameter	Devices	Тур	Max	Unit
UFS UPERM digest run time	MPF100T, TL, TS, TLS			μs
	MPF200T, TL, TS, TLS	33.2	34.9	μs
	MPF300T, TL, TS, TLS	33.2	34.9	μs
	MPF500T, TL, TS, TLS			μs
Factory digest run time	MPF100T, TL, TS, TLS			μs
	MPF200T, TL, TS, TLS	493.6	510.1	μs
	MPF300T, TL, TS, TLS	493.6	510.1	μs
	MPF500T, TL, TS, TLS			μs

1. The entire sNVM is used as ROM.

2. Valid for user key 0 through 6.

Note: These times do not include the power-up to functional timing overhead when using digest checks on power-up.

7.6.6 Zeroization Time

The following tables describe zeroization time. A zeroization operation is counted as one programming cycle.

Table 77 • Zeroization Times for MPF100T, TL, TS, and TLS Devices

Parameter	Тур	Max	Unit	Conditions
Time to enter zeroization			ms	Zip flag set
Time to destroy the fabric data ¹			ms	Data erased
Time to destroy data in non-volatile memory (like new) ^{1, 2}			ms	One iteration of scrubbing
Time to destroy data in non-volatile memory (recoverable) $^{\rm 1,3}$			ms	One iteration of scrubbing
Time to destroy data in non-volatile memory (non-recoverable) ^{1, 4}			ms	One iteration of scrubbing
Time to scrub the fabric data ¹			S	Full scrubbing
Time to scrub the pNVM data (like new) ^{1, 2}			S	Full scrubbing
Time to scrub the pNVM data (recoverable) ^{1, 3}			S	Full scrubbing
Time to scrub the fabric data pNVM data (non-recoverable) ^{1,4}			S	Full scrubbing
Time to verify ⁵			S	

- 1. Total completion time after entering zeroization.
- 2. Like new mode—zeroizes user design security setting and sNVM content.
- 3. Recoverable mode—zeroizes user design security setting, sNVM and factory keys.
- 4. Non-recoverable mode—zeroizes user design security setting, sNVM and factory keys, and factory data required for programming.
- 5. Time to verify after scrubbing completes.

Table 78 • Zeroization Times for MPF200T, TL, TS, and TLS Devices

Parameter	Тур	Max	Unit	Conditions
Time to enter zeroization			ms	Zip flag set
Time to destroy the fabric data ¹			ms	Data erased
Time to destroy data in non-volatile memory (like new) ^{1, 2}			ms	One iteration of scrubbing

Parameter	Symbol	Min	Тур	Max	Unit	Conditions
Authenticated text read		113.25	114.02	118.5	μs	
Authenticated and decrypted text read		159.59	160.53	166.5	μs	

Notes:

- Page size= 252 bytes (non-authenticated), 236 bytes (authenticated).
- Only page reads and writes allowed.
- TPUF_OVHD is an additional time that occurs on the first R/W, after cold or warm boot, to sNVM using authenticated or authenticated and encrypted text.

7.6.10 Secure NVM Programming Cycles

The following table describes secure NVM programming cycles.

Table 86 • sNVM Programming Cycles vs. Retention Characteristics

Programming Temperature	Programming Cycles per Page, Max	Programming Cycles per Block, Max	Retention Years
–40 °C to 100 °C	10,000	100,000	20
–40 °C to 85 °C	10,000	100,000	20
–40 °C to 55 °C	10,000	100,000	20

Note: Page size = 128 bytes. Block size = 56 KBytes.

7.7 System Services

This section describes system switching and throughput characteristics.

7.7.1 System Services Throughput Characteristics

The following table describes system services throughput characteristics.

Table 87 • System Services Throughput Characteristics

Parameter	Symbol	Service ID	Тур	Max	Unit	Conditions
Serial number	Tserial	00H	65	67	μs	
User code	Tuser	01H	0.8	1.05	μs	
Design information	TDesign	02H	2.4	2.7	μs	
Device certificate	TCert	03H	255	271	ms	
Read digests	T_{digest_read}	04H	201	215	μs	
Query security locks	Tsec_Query	05H	15	17	μs	
Read debug information	T_{Rd_debug}	06H	34	38	μs	
Reserved		07H-0FH				
Secure NVM write plain text	TSNVM_Wr_Plain	10H				Note 1
Secure NVM write authenticated plain text	$T_{SNVM_wr_Auth}$	11H				Note 1
Secure NVM write authenticated cipher text	TSNVM_Wr_Cipher	12H				Note 1
Reserved		13H-				
		17H				

Figure 5 • Cold Reset Timing

Notes:

- The previous diagram showsthe case where VDDI/VDDAUX of I/O banks are powered either before
 or sufficiently soon after VDD/VDD18/VDD25 that the I/O bank enable time is measured from the
 assertion time of VDD/VDD18/VDD25 (that is, the PUFT specification). If VDDI/VDDAUX of I/O banks
 are powered sufficiently after VDD/VDD18/VDD25, then the I/O bank enable time is measured from
 the assertion of VDDI/VDDAUX and is not specified by the PUFT specification. In this case, I/O
 operation is indicated by the assertion of BANK_i_VDDI_STATUS, rather than being measured
 relative to FABRIC_POR_N negation.
- AUTOCALIB_DONE assertion indicates the completion of calibration for any I/O banks specified by the user for auto-calibration. AUTOCALIB_DONE asserts independently of DEVICE_INIT_DONE. It may assert before or after DEVICE_INIT_DONE and is determined by the following:
 - How long after VDD/VDD18/VDD25 that VDDI/VDDAUX are powered on. Note that if any of the user-specified I/O banks are not powered on within the auto-calibration timeout window, then AUTOCALIB DONE doesn't assert until after this timeout.
 - The specified ramp times of VDDI of each I/O bank designated for auto-calibration.
 - How much auto-initialization is to be performed for the PCIe, SERDES transceivers, and fabric LSRAMs.
- If any of the I/O banks specified for auto-calibration do not have their VDDI/VDDAUX powered on within the auto-calibration timeout window, then it will be approximately auto-calibrated whenever VDDI/VDDAUX is subsequently powered on. To obtain an accurate calibration however, on such IO banks, it is necessary to initiate a re-calibration (using CALIB_START from fabric).
- AVM_ACTIVE only asserts if avionics mode is being used. It is asserted when the later of DEVICE_INIT_DONE or AUTOCALIB_DONE assert.

7.9.2 Warm Reset Initialization Sequence

The following warm reset timing diagram shows the initialization sequencing of the device when either DEVRST_N or TAMPER_RESET_DEVICE signals are asserted.

Figure 6 • Warm Reset Timing

7.9.3 Power-On Reset Voltages

7.9.3.1 Main Supplies

The start of power-up to functional time (T_{PUFT}) is defined as the point at which the latest of the main supplies (VDD, VDD18, VDD25) reach the reference voltage levels specified in the following table. This starts the process of releasing the reset of the device and powering on the FPGA fabric and IOs.

Table 97 • POR Ref Voltages

Supply	Power-On Reset Start Point (V)	Note
VDD	0.95	Applies to both 1.0 V and 1.05 V operation.
VDD18	1.71	
VDD25	2.25	

7.9.3.2 I/O-Related Supplies

For the I/Os to become functional (for low speed, sub 400 MHz operation), the (per-bank) I/O supplies (VDDI, VDDAUX) must reach the trip point voltage levels specified in the following table and the main supplies above must also be powered on.

Table 98 • I/O-Related Supplies

Supply	I/O Power-Up Start Point (V)
VDDI	0.85
VDDAUX	1.6

There are no sequencing requirements for the power supplies. However, VDDI3 and must be valid at same time as the main supplies. The other IO supplies (VDDI, VDDAUX) have no effect on power-up of FPGA fabric (that is, the fabric still powers up even if the IO supplies of some IO banks remain powered off).

7.9.4 Design Dependence of T PUFT and T WRFT

Some phases of the device initialization are user design-dependent, as the device automatically initializes certain resources to user-specified configurations if those resources are used in the design. It is necessary to compute the overall power-up to functional time by referencing the following tables and adding the relevant phases, according to the design configuration. The following equation refers to timing parameters specified in the above timing diagrams. Please note T_{PCIE}, T_{XCVR}, T_{LSRAM}, and T_{USRAM} can be found in the PolarFire FPGA device power-up and resets user guide UG0725.

TPUFT = TFAB_READY(cold) + max((TPCIE + TXCVR + TLSRAM + TUSRAM), TCALIB)

TWRFT = TFAB_READY(warm) + max((TPCIE + TXCVR + TLSRAM + TUSRAM), TCALIB)

Note: TPCIE, TXCVR, TLSRAM, TUSRAM, and TCALIB are common to both cold and warm reset scenarios.

Auto-initialization of FPGA (if required) occurs in parallel with I/O calibration. The device may be considered fully functional only when the later of these two activities has finished, which may be either one, depending on the configuration, as may be calculated from the following tables. Note that I/O calibration may extend beyond T_{PUFT} (as I/O calibration process is independent of main device power-on and is instead dependent on I/O bank supply relative power-on time and ramp times). The previous timing diagram for power-on initialization shows the earliest that I/Os could be enabled, if the I/O power supplies are powered on before or at the same time as the main supplies.

7.9.5 Cold Reset to Fabric and I/Os (Low Speed) Functional

The following table specifies the minimum, typical, and maximum times from the power supplies reaching the above trip point levels until the FPGA fabric is operational and the FPGA IOs are functional for low-speed (sub 400 MHz) operation.

Table 99 • Cold Boot

Power-On (Cold) Reset to Fabric and I/O Operational	Min	Тур	Max	Unit
Time when input pins start working – $T_{\text{IN}_\text{ACTIVE(cold)}}$	1.17	4.51	7.84	ms
Time when weak pull-ups are enabled – TPU_PD_ACTIVE(cold)	1.17	4.51	7.84	ms
Time when fabric is operational – TFAB_READY(cold)	1.20	4.54	7.87	ms
Time when output pins start driving – Tout_ACTIVE(cold)	1.22	4.56	7.89	ms

7.9.6 Warm Reset to Fabric and I/Os (Low Speed) Functional

The following table specifies the minimum, typical, and maximum times from the negation of the warm reset event until the FPGA fabric is operational and the FPGA IOs are functional for low-speed (sub 400 MHz) operation.

Table 100 • Warm Boot

Warm Reset to Fabric and I/O Operational	Min	Тур	Max	Unit
Time when input pins start working – TIN_ACTIVE(warm)	0.91	1.76	2.62	ms
Time when weak pull-ups/pull-downs are enabled – $T_{PU_PD_ACTIVE(warm)}$	0.91	1.76	2.62	ms
Time when fabric is operational – TFAB_READY(warm)	0.94	1.79	2.65	ms
Time when output pins start driving – Tout_ACTIVE(warm)	0.96	1.81	2.67	ms

7.9.7 Miscellaneous Initialization Parameters

In the following table, T_{FAB_READY} refers to either T_{FAB_READY(cold)} or T_{FAB_READY(warm)} as specified in the previous tables, depending on whether the initialization is occurring as a result of a cold or warm reset, respectively.

Table 107 • SPI Master Mode (PolarFire Master) During Device Initialization

Parameter	Symbol	Min	Тур	Max	Unit	Condition
SCK frequency	Fмsck			40	MHz	

Table 108 • SPI Slave Mode (PolarFire Slave)

Parameter	Symbol	Min	Тур	Max	Unit	Condition
SCK frequency	Fssck			80	MHz	

7.10.3 SmartDebug Probe Switching Characteristics

The following table describes characteristics of SmartDebug probe switching.

Table 109 • SmartDebug Probe Performance Characteristics

Parameter	Symbol	V _{DD} = 1.0 V STD	V _{DD} = 1.0 V - 1	Vod = 1.05 V STD	V _{DD} = 1.05 V – 1	Unit
Maximum frequency of probe signal	Fmax	100	100	100	100	MHz
Minimum delay of probe signal	T_{Min_delay}	13	12	13	12	ns
Maximum delay of probe signal	T _{Max_delay}	13	12	13	12	ns

7.10.4 DEVRST_N Switching Characteristics

_

The following table describes characteristics of DEVRST_N switching.

Table 110 • DEVRST_N Electrical Characteristics

Parameter	Symbol	Min	Тур	Max	Unit	Condition
DEVRST_N ramp rate	DRRAMP		10		μs	It must be a normal clean digital signal, with typical rise and fall times
DEVRST_N assert time	DRASSERT	1			μs	The minimum time for DEVRST_N assertion to be recognized
DEVRST_N de-assert time	DRdeassert	2.75			ms	The minimum time DEVRST_N needs to be de-asserted before assertion

7.10.5 FF_EXIT Switching Characteristics

The following table describes characteristics of FF_EXIT switching.

Table 111 • FF_EXIT Electrical Characteristics

Parameter	Symbol	Min	Тур	Max	Unit	Condition
FF_EXIT_N ramp rate	FFRAMP		10		μs	
Minimum FF_EXIT_N assert time	FFassert	1			μs	The minimum time for FF_EXIT_N to be recognized
Minimum FF_EXIT_N de- assert time	FF deassert	170			μs	The minimum time FF_EXIT_N needs to be de-asserted before assertion

7.11 User Crypto

The following section describes user crypto.

7.11.1 TeraFire 5200B Switching Characteristics

The following table describes TeraFire 5200B switching characteristics.

Table 112 • TeraFire F5200B Switching Characteristics

Parameter	Symbol	VDD = 1.0 V STD	VDD = 1.0 V - 1	VDD = 1.05 V STD	VDD = 1.05 V - 1	Unit	Condition
Operating frequency	Fмах	189		189		MHz	–40 °C to 100 °C

7.11.2 TeraFire 5200B Throughput Characteristics

The following tables for each algorithm describe the TeraFire 5200B throughput characteristics.

Note: Throughput cycle count collected with Athena TeraFire Core and RISCV running at 100 MHz.

Modes	Message Size (bits)	Athena TeraFire Crypto Core Clock-Cycles	CAL Delay In CPU Clock-Cycles
AES-ECB-128 encrypt ¹	128	515	1095
	64K	50157	933
AES-ECB-128 decrypt ¹	128	557	1760
	64K	48385	1524
AES-ECB-256 encrypt ¹	128	531	1203
	64K	58349	1203
AES-ECB-256 decrypt ¹	128	589	1676
	64K	56673	1671
AES-CBC-256 encrypt ¹	128	576	1169
	64K	52547	1169
AES-CBC-256 decrypt ¹	128	585	1744
	64K	48565	1652
AES-GCM-128 encrypt ¹ ,	128	1925	2740
128-bit tag, (full message encrypted/authenticated)	64К	60070	2158
AES-GCM-256 encrypt ¹ ,	128	1973	2268
128-bit tag, (full message encrypted/authenticated)	64K	60102	2151

Table 113 • AES

1. With DPA counter measures.

Table 114 • GMAC

Modes	Message Size (bits)	Athena TeraFire Crypto Core Clock- Cycles	CAL Delay In CPU Clock- Cycles
AES-GCM-256 ¹ , 128-bit tag,	128	1863	2211
(message is only authenticated)	64К	49707	2128

Microsemi Headquarters

One Enterprise, Aliso Viejo, CA 92656 USA Within the USA: +1 (800) 713-4113 Outside the USA: +1 (949) 380-6100 Sales: +1 (949) 380-6136 Fax: +1 (949) 215-4996 Email: sales.support@microsemi.com www.microsemi.com

© 2018 Microsemi. All rights reserved. Microsemi and the Microsemi logo are trademarks of Microsemi Corporation. All other trademarks and service marks are the property of their respective owners. Microsemi makes no warranty, representation, or guarantee regarding the information contained herein or the suitability of its products and services for any particular purpose, nor does Microsemi assume any liability whatsoever arising out of the application or use of any product or circuit. The products sold by Microsemi have been subject to limited testing and should not be used in conjunction with mision-critical equipment or applications. Any performance specifications are believed to be reliable but are not verified, and Buyer must conduct and complete all performance and other testing of the products, alone and together with, or installed in, any end-products. Buyer shall not rely on any data and performance specifications or parameters provided by Microsemi. It is the Buyer's responsibility to indpendently determine suitability of any products and to test and verify the same. The information provided by Microsemi des not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other IP rights, whether with regard to such information itself or anything described by such information. Information provided in this document is provider by such information. Information provided in this document is provider any time without notice.

Microsemi, a wholly owned subsidiary of Microchip Technology Inc. (Nasdaq: MCHP), offers a comprehensive portfolio of semiconductor and system solutions for aerospace & defense, communications, data center and industrial markets. Products include high-performance and radiation-hardened analog mixed-signal integrated circuits, FPGAS, SoCs and ASICs; power management products; timing and synchronization devices and precise time solutions; security technologies and scalable anti-tamper products; thermet solutions; discrete components; enterprise storage and communication solutions; security technologies and scalable anti-tamper products; thermet solutions; Power-over-Ethernet ICs and midspans; as well as custom design capabilities and services. Microsemi is headquartered in Aliso Viejo, California, and has approximately 4,800 employees globally. Learn more at www microsemi.com.

51700141