

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

E·XFI

Product Status	Active
Number of LABs/CLBs	-
Number of Logic Elements/Cells	300000
Total RAM Bits	21094400
Number of I/O	300
Number of Gates	-
Voltage - Supply	0.97V ~ 1.08V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	536-LFBGA, CSPBGA
Supplier Device Package	536-CSPBGA (16x16)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/mpf300tl-fcsg536i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

7.9.4	Design Dependence of T PUFT and T WRFT	67
7.9.5	Cold Reset to Fabric and I/Os (Low Speed) Functional	67
7.9.6	Warm Reset to Fabric and I/Os (Low Speed) Functional	67
7.9.7	Miscellaneous Initialization Parameters	67
7.9.8	I/O Calibration	68
7.10 Ded	licated Pins	69
7.10.1	JTAG Switching Characteristics	69
7.10.2	SPI Switching Characteristics	
7.10.3	SmartDebug Probe Switching Characteristics	70
7.10.4	DEVRST_N Switching Characteristics	70
7.10.5	FF_EXIT Switching Characteristics	70
7.11 Use	r Crypto	71
7.11.1	TeraFire 5200B Switching Characteristics	
7.11.2	TeraFire 5200B Throughput Characteristics	71

1 Revision History

The revision history describes the changes that were implemented in the document. The changes are listed by revision, starting with the most current publication.

1.1 Revision 1.3

Revision 1.3 was published in June 2018. The following is a summary of changes.

- The System Services section was updated. For more information, see System Services (see page 59).
- The Non-Volatile Characteristics section was updated. For more information, see Non-Volatile Characteristics (see page 51).
- The Fabric Macros section was updated. For more information, see Fabric Macros (see page 60).
- The Transceiver Switching Characteristics section was updated. For more information, see Transceiver Switching Characteristics (see page 42).

1.2 Revision 1.2

Revision 1.2 was published in June 2018. The following is a summary of changes.

• The datasheet has moved to preliminary status. Every table has been updated.

1.3 Revision 1.1

Revision 1.1 was published in August 2017. The following is a summary of changes.

- LVDS specifications changed to 1.25G. For more information, see HSIO Maximum Input Buffer Speed and HSIO Maximum Output Buffer Speed.
- LVDS18, LVDS25/LVDS33, and LVDS25 specifications changed to 800 Mbps. For more information, see I/O Standards Specifications.
- A note was added indicting a zeroization cycle counts as a programming cycle. For more information, see Non-Volatile Characteristics.
- A note was added defining power down conditions for programming recovery conditions. For more information, see Power-Supply Ramp Times.

1.4 Revision 1.0

Revision 1.0 was the first publication of this document.

5 Silicon Status

There are three silicon status levels:

- Advanced—initial estimated information based on simulations
- Preliminary—information based on simulation and/or initial characterization
- Production—final production silicon data

The following table shows the status of the PolarFire FPGA device.

Table 2 • PolarFire FPGA Silicon Status

Device	Silicon Status
MPF100T, TL, TS, TLS	Preliminary
MPF200T, TL, TS, TLS	Preliminary
MPF300T, TL, TS, TLS	Preliminary
MPF500T, TL, TS, TLS	Preliminary

K	X	MICROCHIP	company
2	``	WICHOCHIE	company

Parameter	Symbol	Min	Тур	Max	Unit
Transceiver TX and RX lanes supply at 1.05 V mode (when any lane rate is greater than 10.3125 Gbps) ¹	Vdda	1.02	1.05	1.08	V
Programming and HSIO receiver supply	VDD18	1.71	1.80	1.89	V
FPGA core and FPGA PLL high-voltage supply	VDD25	2.425	2.50	2.575	V
Transceiver PLL high-voltage supply	VDDA25	2.425	2.50	2.575	V
Transceiver reference clock supply –3.3 V nominal	Vdd_xcvr_clk	3.135	3.3	3.465	V
Transceiver reference clock supply –2.5 V nominal	Vdd_xcvr_clk	2.375	2.5	2.625	V
Global VREF for transceiver reference clocks ³	XCVRvref	Ground		VDD_XCVR_CLK	V
HSIO DC I/O supply. Allowed nominal options: 1.2 V, 1.35 V, 1.5 V, and 1.8 V ⁴	VDDIx	1.14	Various	1.89	V
GPIO DC I/O supply. Allowed nominal options: 1.2 V, 1.5 V, 1.8 V, 2.5 V, and 3.3 $V^{2,4}$	VDDIx	1.14	Various	3.465	V
Dedicated I/O DC supply for JTAG and SPI (GPIO Bank 3). Allowed nominal options: 1.8 V, 2.5 V, and 3.3 V	Vddi3	1.71	Various	3.465	V
GPIO auxiliary supply for I/O bank x with V_{DDIx} = 3.3 V nominal^{2,4}	Vddauxx	3.135	3.3	3.465	V
GPIO auxiliary supply for I/O bank x with V_{DDIx} = 2.5 V nominal or lower ^{2,4}	Vddauxx	2.375	2.5	2.625	V
Extended commercial temperature range	TJ	0		100	°C
Industrial temperature range	Tı	-40		100	°C
Extended commercial programming temperature range	Tprg	0		100	°C
Industrial programming temperature range	Tprg	-40		100	°C

1. V_{DD} and V_{DDA} can independently operate at 1.0 V or 1.05 V nominal. These supplies are not dynamically adjustable.

For GPIO buffers where I/O bank is designated as bank number, if VDDIX is 2.5 V nominal or 3.3 V nominal, VDDAUXX must be connected to the VDDIX supply for that bank. If VDDIX for a given GPIO bank is <2.5 V nominal, VDDAUXX per I/O bank must be powered at 2.5 V nominal.

3. XCVR_{VREF} globally sets the reference voltage of the transceiver's single-ended reference clock input buffers. It is typically near V_{DD_XCVR_CLK}/2 V but is allowed in the specified range.

4. The power supplies for a given I/O bank x are shown as VDDIx and VDDAUXx.

PolarFire

I/O Standard	Vool Min (V)	Vooi Typ (V)	Vool Max (V)	V⊾ Min (V)	V⊩ Max (V)	V⊮ Min (V)	Vін ¹ Max (V)
SSTL135I	1.283	1.35	1.418	-0.3	VREF	VREF	1.418
					-	+	
					0.09	0.09	
SSTL135II	1.283	1.35	1.418	-0.3	VREF	VREF	1.418
					-	+	
					0.09	0.09	
HSTL15I	1.425	1.5	1.575	-0.3	VREF	VREF	1.575
					-	+	
					0.1	0.1	
HSTL15II	1.425	1.5	1.575	-0.3	VREF	VREF	1.575
					-	+	
					0.1	0.1	
HSTL135I	1.283	1.35	1.418	-0.3	VREF	VREF	1.418
					-	+	
					0.09	0.09	
HSTL135II	1.283	1.35	1.418	-0.3	VREF	VREF	1.418
					-	+	
					0.09	0.09	
HSTL12I	1.14	1.2	1.26	-0.3	VREF	VREF	1.26
					-	+	
					0.1	0.1	
HSTL12II	1.14	1.2	1.26	-0.3	VREF	VREF	1.26
					-	+	
					0.1	0.1	
HSUL18I	1.71	1.8	1.89	-0.3	0.3	0.7	1.89
					×	×	
					Vddi	Vddi	
HSUL18II	1.71	1.8	1.89	-0.3	0.3	0.7	1.89
					×	×	
					Vddi	Vddi	
HSUL12I	1.14	1.2	1.26	-0.3	VREF	VREF	1.26
					-	+	
					0.1	0.1	
POD12I	1.14	1.2	1.26	-0.3	VREF	VREF	1.26
					-	+	
					0.08	0.08	
POD12II	1.14	1.2	1.26	-0.3	VREF	VREF	1.26
					-	+	
					0.08	0.08	

1. GPIO V^{IH} max is 3.45 V with PCI clamp diode turned off regardless of mode, that is, over-voltage tolerant.

2. For external stub-series resistance. This resistance is on-die for GPIO.

Note: 3.3 V and 2.5 V are only supported in GPIO banks.

Parameter	Description	Min (%)	Тур	Max (%)	Unit	Condition
Single-ended	Internal	-20	120	20	Ω	V _{DDI} = 2.5 V/1.8 V/1.5 V/1.2 V
termination to V ₅₅ ^{4, 5}	parallel termination to Vss	-20	240	20	Ω	V _{DDI} = 2.5 V/1.8 V/1.5 V/1.2 V

1. Measured across P to N with 400 mV bias.

- 2. The venin impedance is calculated based on independent P and N as measured at 50% of $V_{\text{DDI}}.$
- 3. For 50 $\Omega/75 \Omega/150 \Omega$ cases, nearest supported values of 40 $\Omega/60 \Omega/120 \Omega$ are used.

4. Measured at 50% of V_{DDI} .

5. Supported terminations vary with the IO type regardless of V_DDI nominal voltage. Refer to Libero for available combinations.

7 AC Switching Characteristics

This section contains the AC switching characteristics of the PolarFire FPGA device.

7.1 I/O Standards Specifications

This section describes I/O delay measurement methodology, buffer speed, switching characteristics, digital latency, gearing training calibration, and maximum physical interface (PHY) rate for memory interface IP.

7.1.1 Input Delay Measurement Methodology Maximum PHY Rate for Memory Interface IP

The following table provides information about the methodology for input delay measurement.

Standard	Description	VL1	VH1	VID ²	VICM ²	Vmeas ^{3, 4}	Vref ^{1, 5}	Uni
PCI	PCIE 3.3 V	0	VDDI			VDDI/2		V
LVTTL33	LVTTL 3.3 V	0	VDDI			VDDI/2		V
LVCMOS33	LVCMOS 3.3 V	0	VDDI			VDDI/2		V
LVCMOS25	LVCMOS 2.5 V	0	VDDI			VDDI/2		V
LVCMOS18	LVCMOS 1.8 V	0	VDDI			VDDI/2		V
LVCMOS15	LVCMOS 1.5 V	0	VDDI			VDDI/2		V
LVCMOS12	LVCMOS 1.2 V	0	VDDI			VDDI/2		V
SSTL25I	SSTL 2.5 V	Vref -	VREF +			Vref	1.25	V
	Class I	0.5	0.5					
SSTL25II	SSTL 2.5 V	Vref -	VREF +			VREF	1.25	V
	Class II	0.5	0.5					
SSTL18I	SSTL 1.8 V	VREF -	VREF +			VREF	0.90	V
	Class I	0.5	0.5					
SSTL18II	SSTL 1.8 V	Vref -	VREF +			VREF	0.90	V
	Class II	0.5	0.5					
SSTL15I	SSTL 1.5 V	Vref -	VREF +			VREF	0.75	V
	Class I	.175	.175					
SSTL15II	SSTL 1.5 V	Vref -	VREF +			VREF	0.75	V
	Class II	.175	.175					
SSTL135I	SSTL 1.35 V	Vref -	VREF +			VREF	0.675	V
	Class I	.16	.16					
SSTL135II	SSTL 1.35 V	Vref -	VREF +			VREF	0.675	V
	Class II	.16	.16					
HSTL15I	HSTL 1.5 V	VREF -	V _{REF} +			VREF	0.75	V
	Class I	.5	.5					
HSTL15II	HSTL 1.5 V	Vref -	V _{REF} +			VREF	0.75	V
	Class II	.5	.5					
HSTL135I	HSTL 1.35 V	Vref -	VREF + .			VREF	0.675	V
	Class I	0.45	45					
HSTL135II	HSTL 1.35 V	Vref -	V _{REF} +			VREF	0.675	V
	Class II	.45	.45					
HSTL12	HSTL 1.2 V	Vref -	V _{REF} +			VREF	0.60	V
		.4	.4					

Table 22 • Input Delay Measurement Methodology

Standard	STD	-1	Unit
LVCMOS12 (8 mA)	250	300	Mbps

Table 27 • GPIO Maximum Output Buffer Speed

Standard	STD	-1	Unit
LVDS25/LCMDS25	1250	1250	Mbps
LVDS33/LCMDS33	1250	1600	Mbps
RSDS25	800	800	Mbps
MINILVDS25	800	800	Mbps
SUBLVDS25	800	800	Mbps
PPDS25	800	800	Mbps
SLVSE15	500	500	Mbps
BUSLVDSE25	500	500	Mbps
MLVDSE25	500	500	Mbps
LVPECLE33	500	500	Mbps
SSTL25I	800	800	Mbps
SSTL25II	800	800	Mbps
SSTL25I (differential)	800	800	Mbps
SSTL25II (differential)	800	800	Mbps
SSTL18I	800	800	Mbps
SSTL18II	800	800	Mbps
SSTL18I (differential)	800	800	Mbps
SSTL18II (differential)	800	800	Mbps
SSTL15I	800	1066	Mbps
SSTL15II	800	1066	Mbps
SSTL15I (differential)	800	1066	Mbps
SSTL15II (differential)	800	1066	Mbps
HSTL15I	900	900	Mbps
HSTL15II	900	900	Mbps
HSTL15I (differential)	900	900	Mbps
HSTL15II (differential)	900	900	Mbps
HSUL18I	400	400	Mbps
HSUL18II	400	400	Mbps
HSUL18I (differential)	400	400	Mbps
HSUL18II (differential)	400	400	Mbps
PCI	500	500	Mbps
LVTTL33 (20 mA)	500	500	Mbps
LVCMOS33 (20 mA)	500	500	Mbps
LVCMOS25 (16 mA)	500	500	Mbps
LVCMOS18 (12 mA)	500	500	Mbps
LVCMOS15 (10 mA)	500	500	Mbps
LVCMOS12 (8 mA)	250	300	Mbps
MIPIE25	500	500	Mbps

7.1.6 User I/O Switching Characteristics

The following section describes characteristics for user I/O switching.

For more information about user I/O timing, see the *PolarFire I/O Timing Spreadsheet* (to be released).

7.1.6.1 I/O Digital

The following tables provide information about I/O digital.

Table 30 • I/O Digital Receive Single-Data Rate Switching Characteristics

Parameter	Interface Name	Topology	STD Min	STD Typ	STD Max	–1 Min	—1 Тур	-1 Max	Unit	Clock-to-Data Condition
Fмах	RX_SDR_G_A	Rx SDR							MHz	From a global clock source, aligned
Fмах	RX_SDR_L_A	Rx SDR							MHz	From a lane clock source, aligned
Fmax	RX_SDR_G_C	Rx SDR							MHz	From a global clock source, centered
Fmax	RX_SDR_L_C	Rx SDR							MHz	From a lane clock source, centered

Table 31 • I/O Digital Receive Double-Data Rate Switching Characteristics

Parameter	Interface Name	Topology	STD Min	STD Typ	STD Max	-1 Min	—1 Тур	-1 Max	Unit	Clock-to- Data Condition
Fмах	RX_DDR_G_A	Rx DDR		335			335	MHz	MHz	From a global clock source, aligned
Fмах	RX_DDR_L_A	Rx DDR		250			250		MHz	From a lane clock source, aligned
Fмах	RX_DDR_G_C	Rx DDR		335			335		MHz	From a global clock source, centered
Fмах	RX_DDR_L_C	Rx DDR		250			250		MHz	From a lane clock source, centered
Fмах 2:1	RX_DDRX_B_A	Rx DDR digital mode							MHz	From a HS_IO_CLI clock source, aligned

Parameter	Interface Name	Topology	STD Min	STD Typ	STD Max	–1 Min	—1 Тур	-1 Max	Unit	Clock-to- Data Condition
Fмах 4:1	RX_DDRX_B_A	Rx DDR digital mode							MHz	From a HS_IO_CLI clock source, aligned
Fmax 8:1	RX_DDRX_B_A	Rx DDR digital mode							MHz	From a HS_IO_CLI clock source, aligned
Fмах 2:1	RX_DDRX_B_C	Rx DDR digital mode							MHz	From a HS_IO_CLI clock source, centered
Fмах 4:1	RX_DDRX_B_C	Rx DDR digital mode							MHz	From a HS_IO_CLI clock source, centered
Fмах 8:1	RX_DDRX_B_C	Rx DDR digital mode							MHz	From a HS_IO_CLI clock source, centered
Fмах 2:1	RX_DDRX_BL_A	Rx DDR digital mode							MHz	From a HS_IO_CLI clock source, aligned
Fмах 4:1	RX_DDRX_BL_A	Rx DDR digital mode							MHz	From a HS_IO_CLI clock source, aligned
Fмах 8:1	RX_DDRX_BL_A	Rx DDR digital mode							MHz	From a HS_IO_CLI clock source, aligned
Fмах 2:1	RX_DDRX_BL_C	Rx DDR digital mode							MHz	From a HS_IO_CLI clock source, centered
Fmax 4:1	RX_DDRX_BL_C	Rx DDR digital mode							MHz	From a HS_IO_CLH clock source, centered

Parameter	Interface Name	Topology	STD Min	STD Typ	STD Max	–1 Min	—1 Тур	-1 Max	Unit	Forwarded Clock-to- Data Skew
Output F _{MAX} 2:1	TX_DDRX_B_C	Tx DDR digital mode							MHz	From a HS_IO_CLK clock source, centered with PLL
Output FMAX 4:1	TX_DDRX_B_C	Tx DDR digital mode							MHz	From a HS_IO_CLK clock source, centered with PLL
Output FMAX 8:1	TX_DDRX_B_C	Tx DDR digital mode							MHz	From a HS_IO_CLK clock source, centered with PLL
In delay, out delay, DLL delay step sizes			12.7	30	35	12.7	25	29.5	ps	

Table 34 • I/O CDR Switching Characteristics

Parameter	Min	Max	Unit
Data rate	266	1250	Mbps
Receiver Sinusoidal jitter tolerance ¹	0.2		UI

1. Jitter values based on bit error ratio (BER) of 10–12, 80 MHz sinusoidal jitter injected to Rx data. **Note:** See the LVDS output buffer specifications for transmit characteristics.

7.2 Clocking Specifications

This section describes the PLL and DLL clocking and oscillator specifications.

7.2.1 Clocking

The following table provides clocking specifications.

Table 35 • Global and Regional Clock Characteristics (-40 °C to 100 °C)

Parameter	Symbol	V dd = 1.0 V STD	V _{DD} = 1.0 V –1	V dd = 1.05 V STD	V dd = 1.05 V -1	Unit	Condition
Global clock FMAX	Fmaxg	500	500	500	500	MHz	
Regional clock Fmax	Fmaxr	375	375	375	375	MHz	Transceiver interfaces only
	Fmaxr	250	250	250	250	MHz	All other interfaces
Global clock duty cycle distortion	Tdcdg	190	190	190	190	ps	At 500 MHz

7.3.2 SRAM Blocks

The following tables describe the LSRAM blocks' performance.

Parameter	V _{DD} = 1.0 V – STD	V _{DD} = 1.0 V - 1	V _{DD} = 1.05 V – STD	V _{DD} = 1.05 V – 1	Unit	Condition
Operating frequency	343	428	343	428	MHz	Two-port, all supported widths, pipelined, simple-write, and write- feed-through
	309	428	309	428	MHz	Two-port, all supported widths, non-pipelined, simple-write, and write-feed-through
	343	428	343	428	MHz	Dual-port, all supported widths, pipelined, simple-write, and write- feed-through
	309	428	309	428	MHz	Dual-port, all supported widths, non-pipelined, simple-write, and write-feed-through
	343	428	343	428	MHz	Two-port pipelined ECC mode, pipelined, simple-write, and write- feed-through
	279	295	279	295	MHz	Two-port non-pipelined ECC mode, pipelined, simple-write, and write-feed-through
	343	428	343	428	MHz	Two-port pipelined ECC mode, non-pipelined, simple-write, and write-feed-through
	196	285	196	285	MHz	Two-port non-pipelined ECC mode, non-pipelined, simple- write, and write-feed-through
	274	285	274	285	MHz	Two-port, all supported widths, pipelined, and read-before-write
	274	285	274	285	MHz	Two-port, all supported widths, non-pipelined, and read-before- write
	274	285	274	285	MHz	Dual-port, all supported widths, pipelined, and read-before-write
	274	285	274	285	MHz	Dual-port, all supported widths, non-pipelined, and read-before- write
	274	285	274	285	MHz	Two-port pipelined ECC mode, pipelined, and read-before-write
	274	285	274	285	MHz	Two-port non-pipelined ECC mode, pipelined, and read-before- write
	274	285	274	285	MHz	Two-port pipelined ECC mode, non-pipelined, and read-before- write
	193	285	193	285	MHz	Two-port non-pipelined ECC mode, non-pipelined, and read- before-write

а 🕵 Міскоснір company

								· · · p · · j
Parameter	Symbol	STD	STD	STD	-1	-1	-1	Unit
		Min	Тур	Max	Min	Тур	Max	
Reference clock input	Fxcvrrefclkmax	20		156	20		156	MHz
rate ^{1, 2, 3}	CASCADE							
Reference clock rate at	Ftxrefclkpfd	20		156	20		156	MHz
the PFD⁴								
Reference clock rate	FTXREFCLKPFD10G	75		156	75		156	MHz
recommended at the								
PFD for Tx rates 10 Gbps								
and above ⁴								
Tx reference clock	Ftxrefpn			-110			-110	dBc
phase noise								/Hz
requirements to meet								
jitter specifications (156								
MHz clock at reference								
clock input)⁵								
Phase noise at 10 KHz	FTXREFPN			-110			-110	dBc
								/Hz
Phase noise at 100 KHz	FTXREFPN			-115			-115	dBc
								/Hz
Phase noise at 1 MHz	FTXREFPN			-135			-135	dBc
								/Hz
Reference clock input	TREFRISE		200	500		200	500	ps
rise time (10%–90%)								
Reference clock input	TREFFALL		200	500		200	500	ps
fall time (90%–10%)								
Reference clock duty	TREFDUTY	40		60	40		60	%
cycle								
Spread spectrum	Mod_Spread	0.1		3.1	0.1		3.1	%
modulation spread ⁶								
Spread spectrum	Mod_Freq	TxREF	32	TxREF	TxREF	32	TxREF	KHz
modulation frequency ⁷		CLKPFD/		CLKPFD/	CLKPFD/		CLKPFD/	
		(128)		(128*63)	(128)		(128*63)	

1. See the maximum reference clock rate allowed per input buffer standard.

2. The minimum value applies to this clock when used as an XCVR reference clock. It does not apply when used as a non-XCVR input buffer (DC input allowed).

- 3. Cascaded reference clock.
- 4. After reference clock input divider.
- Required maximum phase noise is scaled based on actual F_{TxRefClkPFD} value by 20 × log10 (TxRefClkPFD /156 MHz). It is assumed that the reference clock divider of 4 is used for these calculations to always meet the maximum PFD frequency specification.
- 6. Programmable capability for depth of down-spread or center-spread modulation.
- 7. Programmable modulation rate based on the modulation divider setting (1 to 63).

7.4.3 Transceiver Reference Clock I/O Standards

The following table describes the differential I/O standards supported as transceiver reference clocks.

Table 60 • 10GbE (RXAUI)

	Data Rate	Min	Max	Unit
Total transmit jitter	6.25 Gbps			UI
Receiver jitter tolerance	6.25 Gbps			UI

7.5.4 1GbE (1000BASE-T)

The following table describes 1GbE (1000BASE-T).

Table 61 • 1GbE (1000BASE-T)

	Data Rate	Min	Max	Unit
Total transmit jitter	1.25 Gbps			UI
Receiver jitter tolerance	1.25 Gbps			UI

The following table describes 1GbE (1000BASE-X).

Table 62 • 1GbE (1000BASE-X)

	Data Rate	Min	Max	Unit
Total transmit jitter	1.25 Gbps			UI
Receiver jitter tolerance	1.25 Gbps			UI

7.5.5 SGMII and QSGMII

The following table describes SGMII.

Table 63 • SGMII

Parameter	Data Rate	Min	Max	Unit
Total transmit jitter	1.25 Gbps		0.24	UI
Receiver jitter tolerance	1.25 Gbps	0.749		UI

The following table describes QSGMII.

Table 64 • QSGMII

Parameter	Data Rate	Min	Max	Unit
Total transmit jitter	5.0 Gbps		0.3	UI
Receiver jitter tolerance	5.0 Gbps	0.65		UI

7.5.6 SDI

The following table describes SDI.

Table 65 • SDI

Parameter	Data Rate	Min	Max	Unit
Total transmit jitter				UI
Receiver jitter tolerance				UI

				-
Parameter	Тур	Max	Unit	Conditions
Time to destroy data in non-volatile memory (recoverable) ^{1, 3}			ms	One iteration of scrubbing
Time to destroy data in non-volatile memory (non-recoverable) ^{1, 4}			ms	One iteration of scrubbing
Time to scrub the fabric data ¹			S	Full scrubbing
Time to scrub the pNVM data (like new) ^{1, 2}			S	Full scrubbing
Time to scrub the pNVM data (recoverable) ^{1,3}			S	Full scrubbing
Time to scrub the fabric data PNVM data (non-recoverable) ^{1, 4}			S	Full scrubbing
Time to verify ⁵			S	

1. Total completion time after interning zeroization.

- 2. Like new mode—zeroizes user design security setting and sNVM content.
- 3. Recoverable mode—zeroizes user design security setting, sNVM and factory keys.
- 4. Non-recoverable mode—zeroizes user design security setting, sNVM and factory keys, and factory data required for programming.
- 5. Time to verify after scrubbing completes.

Table 79 • Zeroization Times for MPF300T, TL, TS, and TLS Devices

Parameter	Тур	Max	Unit	Conditions
Time to enter zeroization			ms	Zip flag set
Time to destroy the fabric data ¹			ms	Data erased
Time to destroy data in non-volatile memory (like new) ^{1, 2}			ms	One iteration of scrubbing
Time to destroy data in non-volatile memory (recoverable) ^{1, 3}			ms	One iteration of scrubbing
Time to destroy data in non-volatile memory (non- recoverable) ^{1, 4}			ms	One iteration of scrubbing
Time to scrub the fabric data ¹			S	Full scrubbing
Time to scrub the pNVM data (like new) ^{1,2}			S	Full scrubbing
Time to scrub the pNVM data (recoverable) ^{1,3}			S	Full scrubbing
Time to scrub the fabric data pNVM data (non-recoverable) 1,4			S	Full scrubbing
Time to verify ⁵			S	

- 1. Total completion time after interning zeroization.
- 2. Like new mode—zeroizes user design security setting and sNVM content.
- 3. Recoverable mode—zeroizes user design security setting, sNVM and factory keys.
- 4. Non-recoverable mode—zeroizes user design security setting, sNVM and factory keys, and factory data required for programming.
- 5. Time to verify after scrubbing completes.

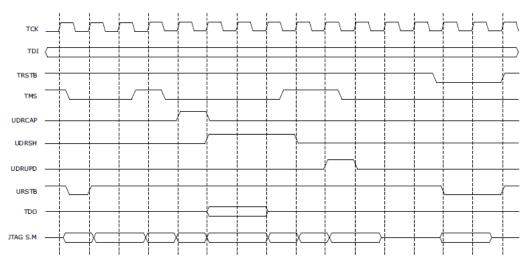

_

Table 80 • Zeroization Times for MPF500T, TL, TS, and TLS Devices

Parameter	Тур	Max	Unit	Conditions
Time to enter zeroization			ms	Zip flag set
Time to destroy the fabric data ¹			ms	Data erased
Time to destroy data in non-volatile memory (like new) ^{1, 2}			ms	One iteration of scrubbing
Time to destroy data in non-volatile memory (recoverable) $^{\rm 1,3}$			ms	One iteration of scrubbing

7.8.2 UJTAG_SEC Switching Characteristics

The following table describes characteristics of UJTAG_SEC switching.

Table 89 • UJTAG Security Performance Characteristics

Parameter	Symbol	Min	Тур	Max	Unit	Condition
TCK frequency	Fтск				MHz	

7.8.3 USPI Switching Characteristics

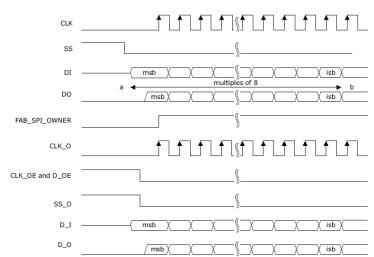

The following section describes characteristics of USPI switching.

Table 90 • SPI Macro Interface Timing Characteristics

Parameter	Symbol	V _{DDI} = 3.3 V Max	V _{DDI} = 2.5 V Max	V _{DDI} = 1.8 V Max	V _{DDI} = 1.5 V Max	V _{DDI} = 1.2 V Max	Unit
Propagation	TPD_MOSI	0.8	1	1.2	1.4	1.6	ns
delay from the fabric to	TPD_MISO	3.5	3.75	4	4.25	4.5	ns
pins ¹	TPD_SS	3.5	3.75	4	4.25	4.5	ns
	TPD_SCK	3.5	3.75	4	4.25	4.5	ns
	TPD_MOSI_OE	3.5	3.75	4	4.25	4.5	ns
	TPD_SS_OE	3.5	3.75	4	4.25	4.5	ns
	TPD_SCK_OE	3.5	3.75	4	4.25	4.5	ns

1. Assumes CL of the relevant I/O standard as described in the input and output delay measurement tables.

Figure 4 • USPI Switching Characteristics

7.8.4 Tamper Detectors

The following section describes tamper detectors.

Table 91 • ADC Conversion Rate

Parameter	Description	Min	Тур¹	Max
TCONV1	Time from enable changing from zero to non-zero value to first conversion completes. Minimum value applies when POWEROFF = 0.	420 μs		470 μs
Τζοννν	Time between subsequent channel conversions.		480 µs	
TSETUP	Data channel and output to valid asserted. Data is held until next conversion completes, that is >480 $\mu s.$	0 ns		
Tvalid ²	Width of the valid pulse.	1.625 μs		2 µs
Trate	Time from start of first set of conversions to the start of the next set. Can be considered as the conversion rate. Is set by the conversion rate parameter.	480 µs	Rate × 32 μs	8128 μs

1. Min, typ, and max refer to variation due to functional configuration and the raw TVS value. The actual internal correction time will vary based on the raw TVS value.

2. The pulse width varies depending on the time taken to complete the internal calibration multiplication, this can be up to 375 ns.

Note: Once the TVS block is active, the enable signal is sampled 25 ns before the falling edge of valid. The next enabled channel in the sequence 0-1-2-3 is started; that is, if channel 0 has just completed and only channels 0 and 3 are enabled, the next channel will be 3. When all the enabled channels in the sequence 0-1-2-3 are completed, the TVS waits for the conversion rate timer to expire. The enable signal may be changed at any time if it changes to 4'b0000 while valid is asserted (and 25 ns before valid is deasserted), then no further conversions will be started.

Table 92 • Temperature and Voltage Sensor Electrical Characteristics

Parameter	Min	Тур	Max	Unit	Condition
Temperature sensing range	-40		125	°C	
Temperature sensing accuracy	-10		10	°C	

Parameter	Symbol	Тур	Max	Unit
Time from negation of RESPONSE to all I/Os re-enabled	Tclr_io_disable	28	38	μs
Time from triggering the response to security locked	TLOCKDOWN			ns
Time from negation of RESPONSE to earlier security unlock condition	Tclr_lockdown			ns
Time from triggering the response to device enters RESET	Ttr_RESET	11.7	14	μs
Time from triggering the response to start of zeroization	Ttr_ZEROLISE	7.4	8.2	ms

7.8.5 System Controller Suspend Switching Characteristics

The following table describes the characteristics of system controller suspend switching.

Table 95 • System Controller Suspend Entry and Exit Characteristics

Parameter	Symbol	Definition	Тур	Max	Unit
Time from TRSTb falling edge to SUSPEND_EN signal assertion	Tsuspend_Tr ^{1, 2}	Suspend entry time from TRST_N assertion	42	44	ns
Time from TRSTb rising edge to ACTIVE signal assertion	$T_{suspend}$ exit	Suspend exit time from TRST_N negation	361	372	ns

1. ACTIVE indicates that the system controller is inactive or active regardless of the state of SUSPEND_EN.

2. ACTIVE signal must never be asserted with SUSPEND_EN is asserted.

7.8.6 Dynamic Reconfiguration Interface

The following table provides interface timing information for the DRI, which is an embedded APB slave interface within the FPGA fabric that does not use FPGA resources.

Table 96 • Dynamic Reconfiguration Interface Timing Characteristics

Parameter	Symbol	Max	Unit
PCLK frequency	FPD_PCLK	200	MHz

7.9 Power-Up to Functional Timing

Microsemi non-volatile FPGA technology offers the fastest boot-time of any mid-range FPGA in the market. The following tables describes both cold-boot (from power-on) and warm-boot (assertion of DEVRST_N pin or assertion of reset from the tamper macro) timing. The power-up diagrams assume all power supplies to the device are stable.

7.9.1 Power-On (Cold) Reset Initialization Sequence

The following cold reset timing diagram shows the initialization sequencing of the device.

Table 101 • Cold and Warm Boot

Parameter	Symbol	Min	Тур	Max	Unit	Condition
The time from T _{FAB_READY} to ready to program through JTAG/SPI-Slave		0	0	0	ms	
The time from T _{FAB_READY} to auto-update start			TPUF_OVHD ¹	$T_{PUF_OVHD^1}$	ms	
The time from T _{FAB_READY} to programming recovery start			TPUF_OVHD ¹	$T_{\text{PUF}_\text{OVHD}^1}$	ms	
The time from T _{FAB_READY} to the tamper flags being available	TTAMPER_READY	0	0	0	ms	
The time from T _{FAB_READY} to the Athena Crypto co-processor being available (for S devices only)	Tcrypto_ready	0	0	0	ms	

1. Programming depends on the PUF to power up. Refer to TPUF_OVHD at section Secure NVM Performance (see page 58).

7.9.8 I/O Calibration

The following tables specify the initial I/O calibration time for the fastest and slowest supported VDDI ramp times of 0.2 ms to 50 ms, respectively. This only applies to I/O banks specified by the user to be auto-calibrated.

Table 102 • I/O Initial Calibration Time (TCALIB)

Ramp Time	Min (ms)	Max (ms)	Condition
0.2 ms	0.98	2.63	Applies to HSIO and GPIO banks
50 ms	41.62	62.19	Applies to HSIO and GPIO banks

Notes:

- The user may specify any VDDI ramp time in the range specified above. The nominal initial calibration time is given by the specified VDDI ramp time plus 2 ms.
- In order for IO calibration to start, VDDI and VDDAUX of the I/O bank must be higher than the trip point levels specified in I/O-Related Supplies (see page 66).

Table 103 • I/O Fast Recalibration Time (TRECALIB)

I/O Type	Min (ms)	Typ (ms)	Max (ms)	Condition
GPIO bank	0.16	0.20	0.24	GPIO configured for 3.3 V operation
HSIO bank	0.20	0.25	0.30	HSIO configured for 1.8 V operation

Note: In order to obtain fast re-calibration, the user must assert the relevant clock request signal from the FPGA fabric to the I/O bank controller.

The following table describes the time to enter Flash*Freeze Mode and to exit Flash*Freeze mode.

Table 107 • SPI Master Mode (PolarFire Master) During Device Initialization

Parameter	Symbol	Min	Тур	Max	Unit	Condition
SCK frequency	Fмsck			40	MHz	

Table 108 • SPI Slave Mode (PolarFire Slave)

Parameter	Symbol	Min	Тур	Max	Unit	Condition
SCK frequency	Fssck			80	MHz	

7.10.3 SmartDebug Probe Switching Characteristics

The following table describes characteristics of SmartDebug probe switching.

Table 109 • SmartDebug Probe Performance Characteristics

Parameter	Symbol	VDD = 1.0 V STD	V _{DD} = 1.0 V – 1	VDD = 1.05 V STD	V _{DD} = 1.05 V - 1	Unit
Maximum frequency of probe signal	Fmax	100	100	100	100	MHz
Minimum delay of probe signal	T_{Min_delay}	13	12	13	12	ns
Maximum delay of probe signal	T_{Max_delay}	13	12	13	12	ns

7.10.4 DEVRST_N Switching Characteristics

_

The following table describes characteristics of DEVRST_N switching.

Table 110 • DEVRST_N Electrical Characteristics

Parameter	Symbol	Min	Тур	Max	Unit	Condition
DEVRST_N ramp rate	DRRAMP		10		μs	It must be a normal clean digital signal, with typical rise and fall times
DEVRST_N assert time	DRassert	1			μs	The minimum time for DEVRST_N assertion to be recognized
DEVRST_N de-assert time	DRdeassert	2.75			ms	The minimum time DEVRST_N needs to be de-asserted before assertion

7.10.5 FF_EXIT Switching Characteristics

The following table describes characteristics of FF_EXIT switching.

Table 111 • FF_EXIT Electrical Characteristics

Parameter	Symbol	Min	Тур	Max	Unit	Condition
FF_EXIT_N ramp rate	FFRAMP		10		μs	
Minimum FF_EXIT_N assert time	FFassert	1			μs	The minimum time for FF_EXIT_N to be recognized
Minimum FF_EXIT_N de- assert time	FF DEASSERT	170			μs	The minimum time FF_EXIT_N needs to be de-asserted before assertion