



Welcome to <u>E-XFL.COM</u>

#### Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

#### **Applications of Embedded - FPGAs**

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

#### Details

| Product Status                 | Active                                                                       |
|--------------------------------|------------------------------------------------------------------------------|
| Number of LABs/CLBs            | -                                                                            |
| Number of Logic Elements/Cells | 300000                                                                       |
| Total RAM Bits                 | 21094400                                                                     |
| Number of I/O                  | 512                                                                          |
| Number of Gates                | -                                                                            |
| Voltage - Supply               | 0.97V ~ 1.08V                                                                |
| Mounting Type                  | Surface Mount                                                                |
| Operating Temperature          | -40°C ~ 100°C (TJ)                                                           |
| Package / Case                 | 1152-BBGA, FCBGA                                                             |
| Supplier Device Package        | 1152-FCBGA (35x35)                                                           |
| Purchase URL                   | https://www.e-xfl.com/product-detail/microchip-technology/mpf300tls-fcg1152i |
|                                |                                                                              |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong



| 7.9.4    | Design Dependence of T PUFT and T WRFT               | 67 |
|----------|------------------------------------------------------|----|
| 7.9.5    | Cold Reset to Fabric and I/Os (Low Speed) Functional | 67 |
| 7.9.6    | Warm Reset to Fabric and I/Os (Low Speed) Functional | 67 |
| 7.9.7    | Miscellaneous Initialization Parameters              | 67 |
| 7.9.8    | I/O Calibration                                      | 68 |
| 7.10 Ded | licated Pins                                         | 69 |
| 7.10.1   | JTAG Switching Characteristics                       | 69 |
| 7.10.2   | SPI Switching Characteristics                        | 69 |
| 7.10.3   | SmartDebug Probe Switching Characteristics           | 70 |
| 7.10.4   | DEVRST_N Switching Characteristics                   | 70 |
| 7.10.5   | FF_EXIT Switching Characteristics                    | 70 |
| 7.11 Use | r Crypto                                             | 71 |
| 7.11.1   | TeraFire 5200B Switching Characteristics             | 71 |
| 7.11.2   | TeraFire 5200B Throughput Characteristics            | 71 |



# 6.2.2.1 Power-Supply Ramp Times

The following table shows the allowable power-up ramp times. Times shown correspond to the ramp of the supply from 0 V to the minimum recommended voltage as specified in the section Recommended Operating Conditions (see page 6). All supplies must rise and fall monotonically.

| Table 10 | Power-S | upply R | amp Times |
|----------|---------|---------|-----------|
|----------|---------|---------|-----------|

| Parameter                                                | Symbol        | Min | Max | Unit |
|----------------------------------------------------------|---------------|-----|-----|------|
| FPGA core supply                                         | Vdd           | 0.2 | 50  | ms   |
| Transceiver core supply                                  | Vdda          | 0.2 | 50  | ms   |
| Must connect to 1.8 V supply                             | Vdd18         | 0.2 | 50  | ms   |
| Must connect to 2.5 V supply                             | VDD25         | 0.2 | 50  | ms   |
| Must connect to 2.5 V supply                             | VDDA25        | 0.2 | 50  | ms   |
| HSIO bank I/O power supplies                             | VDDI[0,1,6,7] | 0.2 | 50  | ms   |
| GPIO bank I/O power supplies                             | VDDI[2,4,5]   | 0.2 | 50  | ms   |
| Bank 3 dedicated I/O buffers (GPIO)                      | Vddi3         | 0.2 | 50  | ms   |
| GPIO bank auxiliary power supplies                       | VDDAUX[2,4,5] | 0.2 | 50  | ms   |
| Transceiver reference clock supply                       | Vdd_xcvr_clk  | 0.2 | 50  | ms   |
| Global $V_{\text{REF}}$ for transceiver reference clocks | XCVRvref      | 0.2 | 50  | ms   |

**Note:** For proper operation of programming recovery mode, if a VDD supply brownout occurs during programming, a minimum supply ramp down time for only the VDD supply is recommended to be 10 ms or longer by using a programmable regulator or on-board capacitors.

### 6.2.2.2 Hot Socketing

The following table lists the hot-socketing DC characteristics over recommended operating conditions.

#### Table 11 • Hot Socketing DC Characteristics over Recommended Operating Conditions

| Parameter                                                                            | Symbol     | Min | Тур | Max | Unit | Condition                               |
|--------------------------------------------------------------------------------------|------------|-----|-----|-----|------|-----------------------------------------|
| Current per transceiver Rx input pin (P or N single-ended) <sup>1, 2</sup>           | XCVRRX_HS  |     |     | ±4  | mA   | V <sub>DDA</sub> = 0 V                  |
| Current per transceiver Tx output pin (P or N single-ended) <sup>3</sup>             | XCVRTX_HS  |     |     | ±10 | mA   | V <sub>DDA</sub> = 0 V                  |
| Current per transceiver reference clock input pin (P or N single-ended) <sup>4</sup> | XCVRREF_HS |     |     | ±1  | mA   | Vdd_xcvr_clk = 0 V                      |
| Current per GPIO pin<br>(P or N single-ended)⁵                                       | Igpio_hs   |     |     | ±1  | mA   | V <sub>DDix</sub> = 0 V                 |
| Current per HSIO pin<br>(P or N single-ended)                                        |            |     |     |     |      | Hot socketing is not supported in HSIO. |

1. Assumes that the device is powered-down, all supplies are grounded, AC-coupled interface, and input pin pairs are driven by a CML driver at the maximum amplitude (1 V pk-pk) that is toggling at any rate with PRBS7 data.

- 2. Each P and N transceiver input has less than the specified maximum input current.
- 3. Each P and N transceiver output is connected to a 40  $\Omega$  resistor (50  $\Omega$  CML termination 20% tolerance) to the maximum allowed output voltage (V<sub>DDAmax</sub> + 0.3 V = 1.4 V) through an AC-coupling capacitor with all PolarFire device supplies grounded. This shows the current for a worst-case DC coupled interface. As an AC-coupled interface, the output signal will settle at ground and no hot socket current will be seen.
- 4. Vdd\_xcvr\_clk is powered down and the device is driven to -0.3 V < VIN < Vdd\_xcvr\_clk.
- 5. V<sub>DDIx</sub> is powered down and the device is driven to  $-0.3 V < V_{IN} < GPIO V_{DDImax}$ .



| Parameter                          | Description                       | Min (%) | Тур | Max (%) | Unit | Condition                                  |
|------------------------------------|-----------------------------------|---------|-----|---------|------|--------------------------------------------|
| Single-ended                       | Internal                          | -20     | 120 | 20      | Ω    | V <sub>DDI</sub> = 2.5 V/1.8 V/1.5 V/1.2 V |
| termination to Vss <sup>4, 5</sup> | parallel<br>termination<br>to Vss | -20     | 240 | 20      | Ω    | V <sub>DDI</sub> = 2.5 V/1.8 V/1.5 V/1.2 V |

1. Measured across P to N with 400 mV bias.

- 2. The venin impedance is calculated based on independent P and N as measured at 50% of  $V_{\text{DDI}}.$
- 3. For 50  $\Omega/75 \Omega/150 \Omega$  cases, nearest supported values of 40  $\Omega/60 \Omega/120 \Omega$  are used.

4. Measured at 50% of  $V_{DDI}$ .

5. Supported terminations vary with the IO type regardless of V\_DDI nominal voltage. Refer to Libero for available combinations.



# 7 AC Switching Characteristics

This section contains the AC switching characteristics of the PolarFire FPGA device.

# 7.1 I/O Standards Specifications

This section describes I/O delay measurement methodology, buffer speed, switching characteristics, digital latency, gearing training calibration, and maximum physical interface (PHY) rate for memory interface IP.

# 7.1.1 Input Delay Measurement Methodology Maximum PHY Rate for Memory Interface IP

The following table provides information about the methodology for input delay measurement.

| Standard  | Description  | VL1    | VH <sup>1</sup>    | Vid2 | VICM <sup>2</sup> | Vmeas <sup>3, 4</sup> | VREF <sup>1, 5</sup> | Unit |
|-----------|--------------|--------|--------------------|------|-------------------|-----------------------|----------------------|------|
| PCI       | PCIE 3.3 V   | 0      | VDDI               |      |                   | VDDI/2                |                      | V    |
| LVTTL33   | LVTTL 3.3 V  | 0      | VDDI               |      |                   | VDDI/2                |                      | V    |
| LVCMOS33  | LVCMOS 3.3 V | 0      | VDDI               |      |                   | VDDI/2                |                      | V    |
| LVCMOS25  | LVCMOS 2.5 V | 0      | VDDI               |      |                   | VDDI/2                |                      | V    |
| LVCMOS18  | LVCMOS 1.8 V | 0      | VDDI               |      |                   | VDDI/2                |                      | V    |
| LVCMOS15  | LVCMOS 1.5 V | 0      | VDDI               |      |                   | VDDI/2                |                      | V    |
| LVCMOS12  | LVCMOS 1.2 V | 0      | VDDI               |      |                   | VDDI/2                |                      | V    |
| SSTL25I   | SSTL 2.5 V   | Vref - | V <sub>REF</sub> + |      |                   | VREF                  | 1.25                 | V    |
|           | Class I      | 0.5    | 0.5                |      |                   |                       |                      |      |
| SSTL25II  | SSTL 2.5 V   | Vref - | VREF +             |      |                   | VREF                  | 1.25                 | V    |
|           | Class II     | 0.5    | 0.5                |      |                   |                       |                      |      |
| SSTL18I   | SSTL 1.8 V   | Vref - | VREF +             |      |                   | VREF                  | 0.90                 | V    |
|           | Class I      | 0.5    | 0.5                |      |                   |                       |                      |      |
| SSTL18II  | SSTL 1.8 V   | Vref - | VREF +             |      |                   | VREF                  | 0.90                 | V    |
|           | Class II     | 0.5    | 0.5                |      |                   |                       |                      |      |
| SSTL15I   | SSTL 1.5 V   | Vref - | VREF +             |      |                   | VREF                  | 0.75                 | V    |
|           | Class I      | .175   | .175               |      |                   |                       |                      |      |
| SSTL15II  | SSTL 1.5 V   | Vref - | VREF +             |      |                   | VREF                  | 0.75                 | V    |
|           | Class II     | .175   | .175               |      |                   |                       |                      |      |
| SSTL135I  | SSTL 1.35 V  | Vref - | VREF +             |      |                   | VREF                  | 0.675                | V    |
|           | Class I      | .16    | .16                |      |                   |                       |                      |      |
| SSTL135II | SSTL 1.35 V  | Vref - | VREF +             |      |                   | VREF                  | 0.675                | V    |
|           | Class II     | .16    | .16                |      |                   |                       |                      |      |
| HSTL15I   | HSTL 1.5 V   | Vref - | VREF +             |      |                   | VREF                  | 0.75                 | V    |
|           | Class I      | .5     | .5                 |      |                   |                       |                      |      |
| HSTL15II  | HSTL 1.5 V   | Vref - | VREF +             |      |                   | VREF                  | 0.75                 | V    |
|           | Class II     | .5     | .5                 |      |                   |                       |                      |      |
| HSTL135I  | HSTL 1.35 V  | Vref - | VREF + .           |      |                   | VREF                  | 0.675                | V    |
|           | Class I      | 0.45   | 45                 |      |                   |                       |                      |      |
| HSTL135II | HSTL 1.35 V  | Vref - | VREF +             |      |                   | VREF                  | 0.675                | V    |
|           | Class II     | .45    | .45                |      |                   |                       |                      |      |
| HSTL12    | HSTL 1.2 V   | Vref - | VREF +             |      |                   | VREF                  | 0.60                 | V    |
|           |              | .4     | .4                 |      |                   |                       |                      |      |

# Table 22 • Input Delay Measurement Methodology



| Standard  | Description  | VL1    | VH1    | VID <sup>2</sup> | VICM <sup>2</sup> | Vmeas <sup>3, 4</sup> | Vref <sup>1, 5</sup> | Unit |
|-----------|--------------|--------|--------|------------------|-------------------|-----------------------|----------------------|------|
| HSTL135II | Differential | VICM - | VICM + | 0.250            | 0.675             | 0                     |                      | V    |
|           | HSTL 1.35 V  | .125   | .125   |                  |                   |                       |                      |      |
|           | Class II     |        |        |                  |                   |                       |                      |      |
| HSTL12    | Differential | VICM - | VICM + | 0.250            | 0.600             | 0                     |                      | V    |
|           | HSTL 1.2 V   | .125   | .125   |                  |                   |                       |                      |      |
| HSUL18I   | Differential | VICM - | VICM + | 0.250            | 0.900             | 0                     |                      | V    |
|           | HSUL 1.8 V   | .125   | .125   |                  |                   |                       |                      |      |
|           | Class I      |        |        |                  |                   |                       |                      |      |
| HSUL18II  | Differential | VICM - | VICM + | 0.250            | 0.900             | 0                     |                      | V    |
|           | HSUL 1.8 V   | .125   | .125   |                  |                   |                       |                      |      |
|           | Class II     |        |        |                  |                   |                       |                      |      |
| HSUL12    | Differential | VICM - | VICM + | 0.250            | 0.600             | 0                     |                      | V    |
|           | HSUL 1.2 V   | .125   | .125   |                  |                   |                       |                      |      |
| POD12I    | Differential | VICM - | VICM + | 0.250            | 0.600             | 0                     |                      | V    |
|           | POD 1.2 V    | .125   | .125   |                  |                   |                       |                      |      |
|           | Class I      |        |        |                  |                   |                       |                      |      |
| POD12II   | Differential | VICM - | VICM + | 0.250            | 0.600             | 0                     |                      | V    |
|           | POD 1.2 V    | .125   | .125   |                  |                   |                       |                      |      |
|           | Class II     |        |        |                  |                   |                       |                      |      |
| MIPI25    | Mobile       | VICM - | VICM + | 0.250            | 0.200             | 0                     |                      | V    |
|           | Industry     | .125   | .125   |                  |                   |                       |                      |      |
|           | Processor    |        |        |                  |                   |                       |                      |      |
|           | Interface    |        |        |                  |                   |                       |                      |      |

- 1. Measurements are made at typical, minimum, and maximum  $V_{REF}$  values. Reported delays reflect worst-case of these measurements.  $V_{REF}$  values listed are typical. Input waveform switches between  $V_L$  and  $V_H$ . All rise and fall times must be 1 V/ns.
- 2. Differential receiver standards all use 250 mV V<sub>ID</sub> for timing. V<sub>CM</sub> is different between different standards.
- 3. Input voltage level from which measurement starts.
- 4. The value given is the differential input voltage.
- 5. This is an input voltage reference that bears no relation to the V<sub>REF</sub>/V<sub>MEAS</sub> parameters found in IBIS models or shown in Output Delay Measurement—Single-Ended Test Setup (see page 27).
- 6. Emulated bi-directional interface.

# 7.1.2 Output Delay Measurement Methodology

The following section provides information about the methodology for output delay measurement.

#### Table 23 • Output Delay Measurement Methodology

| Standard | Description                                   | Rref (Ω) | Cref (pF) | Vmeas (V) | Vref (V) |
|----------|-----------------------------------------------|----------|-----------|-----------|----------|
| PCI      | PCIE 3.3 V                                    | 25       | 10        | 1.65      |          |
| LVTTL33  | LVTTL 3.3 V                                   | 1M       | 0         | 1.65      |          |
| LVCMOS33 | LVCMOS 3.3 V                                  | 1M       | 0         | 1.65      |          |
| LVCMOS25 | LVCMOS 2.5 V                                  | 1M       | 0         | 1.25      |          |
| LVCMOS18 | LVCMOS 1.8 V                                  | 1M       | 0         | 0.90      |          |
| LVCMOS15 | LVCMOS 1.5 V                                  | 1M       | 0         | 0.75      |          |
| LVCMOS12 | LVCMOS 1.2 V                                  | 1M       | 0         | 0.60      |          |
| SSTL25I  | Stub-series terminated logic<br>2.5 V Class I | 50       | 0         | Vref      | 1.25     |
| SSTL25II | SSTL 2.5 V Class II                           | 50       | 0         | Vref      | 1.25     |



| Parameter                                  | Symbol | V <sub>DD</sub> =<br>1.0 V STD | V <sub>DD</sub> =<br>1.0 V –1 | V <sub>DD</sub> =<br>1.05 V STD | V <sub>DD</sub> =<br>1.05 V –1 | Unit | Condition     |
|--------------------------------------------|--------|--------------------------------|-------------------------------|---------------------------------|--------------------------------|------|---------------|
| Regional clock<br>duty cycle<br>distortion | Tdcdr  | 120                            | 120                           | 120                             | 120                            | ps   | At<br>250 MHz |

The following table provides clocking specifications from -40 °C to 100 °C.

### Table 36 • High-Speed I/O Clock Characteristics (-40 °C to 100 °C)

| Parameter                                          | Symbol         | VDD =<br>1.0 V STD | V <sub>DD</sub> = 1.0 V –1 | V <sub>DD</sub> =<br>1.05 V STD | V <sub>DD</sub> =<br>1.05 V –1 | Unit | Condition             |
|----------------------------------------------------|----------------|--------------------|----------------------------|---------------------------------|--------------------------------|------|-----------------------|
| High-speed<br>I/O clock<br>Fmax                    | Fмахв          | 1000               | 1250                       | 1000                            | 1250                           | MHz  | HSIO and GPIO         |
| High-speed                                         | <b>F</b> SKEWB | 30                 | 20                         | 30                              | 20                             | ps   | HSIO without bridging |
| I/O clock                                          | <b>F</b> SKEWB | 600                | 500                        | 600                             | 500                            | ps   | HSIO with bridging    |
| SKEW                                               | <b>F</b> SKEWB | 45                 | 35                         | 45                              | 35                             | ps   | GPIO without bridging |
|                                                    | <b>F</b> SKEWB | 75                 | 60                         | 75                              | 60                             | ps   | GPIO with bridging    |
| High-speed                                         | Tdcb           | 90                 | 90                         | 90                              | 90                             | ps   | HSIO without bridging |
| I/O clock<br>duty cycle<br>distortion <sup>2</sup> | Тосв           | 115                | 115                        | 115                             | 115                            | ps   | HSIO with bridging    |
|                                                    | Тосв           | 90                 | 90                         | 90                              | 90                             | ps   | GPIO without bridging |
|                                                    | Тосв           | 115                | 115                        | 115                             | 115                            | ps   | GPIO with bridging    |

- 1. F<sub>SKEWB</sub> is the worst-case clock-tree skew observable between sequential I/O elements. Clock-tree skew is significantly smaller at I/O registers close to each other and fed by the same or adjacent clock-tree branches. Use the Microsemi Timing Analyzer tool to evaluate clock skew specific to the design.
- 2. Parameters listed in this table correspond to the worst-case duty cycle distortion observable at the I/O flip flops. IBIS should be used to calculate any additional duty cycle distortion that might be caused by asymmetrical rise/fall times for any I/O standard.

# 7.2.2 PLL

The following table provides information about PLL.

### Table 37 • PLL Electrical Characteristics

| Parameter                                                            | Symbol   | Min | Тур | Max  | Unit |
|----------------------------------------------------------------------|----------|-----|-----|------|------|
| Input clock frequency<br>(integer mode)                              | Fini     | 1   |     | 1250 | MHz  |
| Input clock frequency<br>(fractional mode)                           | Finf     | 10  |     | 1250 | MHz  |
| Minimum reference or feedback pulse width <sup>1</sup>               | Finpulse | 200 |     |      | ps   |
| Frequency at the Frequency<br>Phase Detector (PFD)<br>(integer mode) | Fphdeti  | 1   |     | 312  | MHz  |
| Frequency at the PFD<br>(fractional mode)                            | Fphdetf  | 10  | 50  | 125  | MHz  |
| Allowable input duty cycle                                           | FINDUTY  | 25  |     | 75   | %    |



| Parameter                                                                            | Symbol     | Min                       | Тур       | Max                             | Unit          |
|--------------------------------------------------------------------------------------|------------|---------------------------|-----------|---------------------------------|---------------|
| Maximum input period clock<br>jitter (reference and<br>feedback clocks) <sup>2</sup> | Fmaxinj    |                           | 120       | 1000                            | ps            |
| PLL VCO frequency                                                                    | Fvco       | 800                       |           | 5000                            | MHz           |
| Loop bandwidth (Int) <sup>3</sup>                                                    | Fвw        | Fphdet/55                 | FPHDET/44 | Fphdet/30                       | MHz           |
| Loop bandwidth (FRAC) <sup>3</sup>                                                   | Fвw        | <b>Б</b> рндет <b>/91</b> | FPHDET/77 | Fphdet/56                       | MHz           |
| Static phase offset of the<br>PLL outputs⁴                                           | Тѕро       |                           |           | Max (±60 ps,<br>±0.5 degrees)   | ps            |
|                                                                                      | TOUTJITTER |                           |           |                                 | ps            |
| PLL output duty cycle precision                                                      | Τουτρυτγ   | 48                        |           | 54                              | %             |
| PLL lock time <sup>5</sup>                                                           | Тьоск      |                           |           | Max (6.0 μs,<br>625 PFD cycles) | μs            |
| PLL unlock time <sup>6</sup>                                                         | Tunlock    | 2                         |           | 8                               | PFD<br>cycles |
| PLL output frequency                                                                 | Fout       | 0.050                     |           | 1250                            | MHz           |
| Minimum reset pulse width                                                            | TMRPW      |                           |           |                                 | μs            |
| Maximum delay in the feedback path <sup>7</sup>                                      | Fmaxdfb    |                           |           | 1.5                             | PFD<br>cycles |
| Spread spectrum<br>modulation spread <sup>8</sup>                                    | Mod_Spread | 0.1                       |           | 3.1                             | %             |
| Spread spectrum<br>modulation frequency <sup>9</sup>                                 | Mod_Freq   | Fphdetf/(128x63)          | 32        | Fphdetf/(128)                   | KHz           |

1. Minimum time for high or low pulse width.

- 2. Maximum jitter the PLL can tolerate without losing lock.
- 3. Default bandwidth setting of BW\_PROP\_CTRL = "01" for Integer and Fraction modes leads to the typical estimated bandwidth. This bandwidth can be lowered by setting BW\_PROP\_CTRL = "00" and can be increased if BW\_PROP\_CTRL = "10" and will be at the highest value if BW\_PROP\_CTRL = "11".
- 4. Maximum (±3-Sigma) phase error between any two outputs with nominally aligned phases.
- Input clock cycle is REFDIV/FREF. For example, FREF = 25 MHz, REFDIV = 1, lock time = 10.0 (assumes LOCKCOUNTSEL setting = 4'd8 (256 cycles)).
- 6. Unlock occurs if two cycle slip within LOCKCOUNT/4 PFD cycles.
- 7. Maximum propagation delay of external feedback path in deskew mode.
- 8. Programmable capability for depth of down spread or center spread modulation.
- 9. Programmable modulation rate based on the modulation divider setting (1 to 63).

**Note**: In order to meet all data sheet specifications, the PLL must be programmed such that the PLL Loop Bandwidth < (0.0017 \* VCO Frequency) - 0.4863 MHz. The Libero PLL configuration tool will enforce this rule when creating PLL configurations.

# 7.2.3 DLL

The following table provides information about DLL.

### Table 38 • DLL Electrical Characteristics

| Parameter <sup>1</sup>          | Symbol  | Min | Тур | Max | Unit |
|---------------------------------|---------|-----|-----|-----|------|
| Input reference clock frequency | FINF    | 133 |     | 800 | MHz  |
| Input feedback clock frequency  | Finfdbf | 133 |     | 800 | MHz  |
| Primary output clock frequency  | FOUTPF  | 133 |     | 800 | MHz  |



| Parameter                 | Symbol  | Min | Тур | Max  | Unit |
|---------------------------|---------|-----|-----|------|------|
| Operating current (VDD18) | RCscvpp |     |     | 0.1  | μΑ   |
| Operating current (VDD)   | RCscvdd |     |     | 60.7 | μΑ   |



а 🕵 Міскоснір company

| Parameter                         | Symbol          | STD     | STD | STD      | -1      | -1  | -1       | Unit |
|-----------------------------------|-----------------|---------|-----|----------|---------|-----|----------|------|
|                                   |                 | Min     | Тур | Max      | Min     | Тур | Max      |      |
| Reference clock input             | FXCVRREFCLKMAX  | 20      |     | 156      | 20      |     | 156      | MHz  |
| rate <sup>1, 2, 3</sup>           | CASCADE         |         |     |          |         |     |          |      |
| Reference clock rate at           | FTXREFCLKPFD    | 20      |     | 156      | 20      |     | 156      | MHz  |
| the PFD⁴                          |                 |         |     |          |         |     |          |      |
| Reference clock rate              | FTXREFCLKPFD10G | 75      |     | 156      | 75      |     | 156      | MHz  |
| recommended at the                |                 |         |     |          |         |     |          |      |
| PFD for Tx rates 10 Gbps          |                 |         |     |          |         |     |          |      |
| and above <sup>₄</sup>            |                 |         |     |          |         |     |          |      |
| Tx reference clock                | FTXREFPN        |         |     | -110     |         |     | -110     | dBc  |
| phase noise                       |                 |         |     |          |         |     |          | /Hz  |
| requirements to meet              |                 |         |     |          |         |     |          |      |
| jitter specifications (156        |                 |         |     |          |         |     |          |      |
| MHz clock at reference            |                 |         |     |          |         |     |          |      |
| clock input) <sup>5</sup>         |                 |         |     |          |         |     |          |      |
| Phase noise at 10 KHz             | FTXREFPN        |         |     | -110     |         |     | -110     | dBc  |
|                                   |                 |         |     |          |         |     |          | /Hz  |
| Phase noise at 100 KHz            | FTXREFPN        |         |     | -115     |         |     | -115     | dBc  |
|                                   |                 |         |     |          |         |     |          | /Hz  |
| Phase noise at 1 MHz              | FTXREFPN        |         |     | -135     |         |     | -135     | dBc  |
|                                   |                 |         |     |          |         |     |          | /Hz  |
| Reference clock input             | Trefrise        |         | 200 | 500      |         | 200 | 500      | ps   |
| rise time (10%–90%)               |                 |         |     |          |         |     |          |      |
| Reference clock input             | TREFFALL        |         | 200 | 500      |         | 200 | 500      | ps   |
| fall time (90%–10%)               |                 |         |     |          |         |     |          |      |
| Reference clock duty              | TREFDUTY        | 40      |     | 60       | 40      |     | 60       | %    |
| cycle                             |                 |         |     |          |         |     |          |      |
| Spread spectrum                   | Mod_Spread      | 0.1     |     | 3.1      | 0.1     |     | 3.1      | %    |
| modulation spread <sup>6</sup>    |                 |         |     |          |         |     |          |      |
| Spread spectrum                   | Mod_Freq        | TxREF   | 32  | TxREF    | TxREF   | 32  | TxREF    | KHz  |
| modulation frequency <sup>7</sup> |                 | CLKPFD/ |     | CLKPFD/  | CLKPFD/ |     | CLKPFD/  |      |
|                                   |                 | (128)   |     | (128*63) | (128)   |     | (128*63) |      |

1. See the maximum reference clock rate allowed per input buffer standard.

2. The minimum value applies to this clock when used as an XCVR reference clock. It does not apply when used as a non-XCVR input buffer (DC input allowed).

- 3. Cascaded reference clock.
- 4. After reference clock input divider.
- 5. Required maximum phase noise is scaled based on actual  $F_{TxRefClkPFD}$  value by 20 × log10 (TxRefClkPFD /156 MHz). It is assumed that the reference clock divider of 4 is used for these calculations to always meet the maximum PFD frequency specification.
- 6. Programmable capability for depth of down-spread or center-spread modulation.
- 7. Programmable modulation rate based on the modulation divider setting (1 to 63).

# 7.4.3 Transceiver Reference Clock I/O Standards

The following table describes the differential I/O standards supported as transceiver reference clocks.



| Parameter                                | Symbol   | Min  | Тур | Max | Unit | Condition                     |
|------------------------------------------|----------|------|-----|-----|------|-------------------------------|
|                                          |          | 0.41 |     |     | UI   | >3.2–8.5 Gbps⁵                |
|                                          |          | 0.41 |     |     | UI   | >1.6 to 3.2 Gbps <sup>5</sup> |
|                                          |          | 0.41 |     |     | UI   | >0.8 to 1.6 Gbps <sup>5</sup> |
|                                          |          | 0.41 |     |     | UI   | 250 to 800 Mpbs <sup>5</sup>  |
| Total jitter tolerance with              | TIJTOLSE | 0.65 |     |     | UI   | 3.125 Gbps⁵                   |
| stressed eye                             |          | 0.65 |     |     | UI   | 6.25 Gbps <sup>6</sup>        |
|                                          |          | 0.7  |     |     | UI   | 10.3125 Gbps <sup>6</sup>     |
|                                          |          |      |     |     | UI   | 12.7 Gbps <sup>6, 10</sup>    |
| Sinusoidal jitter tolerance with         | TSJTOLSE | 0.1  |     |     | UI   | 3.125 Gbps⁵                   |
| stressed eye                             |          | 0.05 |     |     | UI   | 6.25 Gbps <sup>6</sup>        |
|                                          |          | 0.05 |     |     | UI   | 10.3125 Gbps <sup>6</sup>     |
|                                          |          |      |     |     | UI   | 12.7 Gbps <sup>6, 10</sup>    |
| CTLE DC gain (all stages, max settings)  |          |      |     | 10  | dB   |                               |
| CTLE AC gain (all stages, max settings)  |          |      |     | 16  | dB   |                               |
| DFE AC gain (per 5 stages, max settings) |          |      |     | 7.5 | dB   |                               |

1. Valid at 3.2 Gbps and below.

- 2. Data vs. Rx reference clock frequency.
- 3. Achieves compliance with PCIe electrical idle detection.
- 4. Achieves compliance with SATA OOB specification.
- 5. Rx jitter values based on bit error ratio (BER) of 10−12, AC coupled input with 400 mV V<sub>ID</sub>, all stages of Rx CTLE enabled, DFE disabled, 80 MHz sinusoidal jitter injected to Rx data.
- 6. Rx jitter values based on bit error ratio (BER) of 10−12, AC coupled input with 400 mV V<sub>ID</sub>, all stages of Rx CTLE enabled, DFE enabled, 80 MHz sinusoidal jitter injected to Rx data.
- 7. For PCIe: Low Threshold Setting = 1, High Threshold Setting = 2.
- 8. For SATA: Low Threshold Setting = 2, High Threshold Setting = 3.
- 9. Loss of signal detection is valid for input signals that transition at a density ≥1 Gbps for PRBS7 data or 6 Gbps for PRBS31 data.
- 10. For data rates greater than 10.3125 Gbps, VDDA must be set to 1.05 V mode. See supply tolerance in the section Recommended Operating Conditions (see page 6).

# 7.5 Transceiver Protocol Characteristics

The following section describes transceiver protocol characteristics.

### 7.5.1 PCI Express

The following tables describe the PCI express.

#### Table 54 • PCI Express Gen1

| Parameter                 | Data Rate | Min | Max  | Unit |
|---------------------------|-----------|-----|------|------|
| Total transmit jitter     | 2.5 Gbps  |     | 0.25 | UI   |
| Receiver jitter tolerance | 2.5 Gbps  | 0.4 |      | UI   |

Note: With add-in card, as specified in PCI Express CEM Rev 2.0.



#### Table 55 • PCI Express Gen2

| Parameter                 | Data Rate | Min | Max  | Unit |
|---------------------------|-----------|-----|------|------|
| Total transmit jitter     | 5.0 Gbps  |     | 0.35 | UI   |
| Receiver jitter tolerance | 5.0 Gbps  | 0.4 |      | UI   |

Note: With add-in card as specified in PCI Express CEM Rev 2.0.

# 7.5.2 Interlaken

The following table describes Interlaken.

#### Table 56 • Interlaken

| Parameter                 | Data Rate              | Min  | Max | Unit |
|---------------------------|------------------------|------|-----|------|
| Total transmit jitter     | 6.375 Gbps             |      | 0.3 | UI   |
|                           | 10.3125 Gbps           |      | 0.3 | UI   |
|                           | 12.7 Gbps <sup>1</sup> |      |     | UI   |
| Receiver jitter tolerance | 6.375 Gbps             | 0.6  |     | UI   |
|                           | 10.3125 Gbps           | 0.65 |     | UI   |
|                           | 12.7 Gbps <sup>1</sup> |      |     | UI   |

1. For data rates greater than 10.3125 Gbps, VDDA must be set to 1.05 V mode. See supply tolerance in the section Recommended Operating Conditions (see page 6).

# 7.5.3 10GbE (10GBASE-R, and 10GBASE-KR)

The following table describes 10GbE (10GBASE-R).

#### Table 57 • 10GbE (10GBASE-R)

| Parameter                 | Data Rate    | Min | Max  | Unit |
|---------------------------|--------------|-----|------|------|
| Total transmit jitter     | 10.3125 Gbps |     | 0.28 | UI   |
| Receiver jitter tolerance | 10.3125 Gbps | 0.7 |      | UI   |

The following table describes 10GbE (10GBASE-KR).

#### Table 58 • 10GbE (10GBASE-KR)

| Parameter                 | Data Rate    | Min | Max | Unit |
|---------------------------|--------------|-----|-----|------|
| Total transmit jitter     | 10.3125 Gbps |     |     | UI   |
| Receiver jitter tolerance | 10.3125 Gbps |     |     | UI   |

The following table describes 10GbE (XAUI).

#### Table 59 • 10GbE (XAUI)

| Parameter                        | Data Rate  | Min  | Max  | Unit |
|----------------------------------|------------|------|------|------|
| Total transmit jitter (near end) | 3.125 Gbps |      | 0.35 | UI   |
| Total transmit jitter (far end)  |            |      | 0.55 | UI   |
| Receiver jitter tolerance        | 3.125 Gbps | 0.65 |      | UI   |

The following table describes 10GbE (RXAUI).



| Parameter                 | Devices              | Тур   | Max   | Unit |
|---------------------------|----------------------|-------|-------|------|
| UFS UPERM digest run time | MPF100T, TL, TS, TLS |       |       | μs   |
|                           | MPF200T, TL, TS, TLS | 33.2  | 34.9  | μs   |
|                           | MPF300T, TL, TS, TLS | 33.2  | 34.9  | μs   |
|                           | MPF500T, TL, TS, TLS |       |       | μs   |
| Factory digest run time   | MPF100T, TL, TS, TLS |       |       | μs   |
|                           | MPF200T, TL, TS, TLS | 493.6 | 510.1 | μs   |
|                           | MPF300T, TL, TS, TLS | 493.6 | 510.1 | μs   |
|                           | MPF500T, TL, TS, TLS |       |       | μs   |

1. The entire sNVM is used as ROM.

2. Valid for user key 0 through 6.

**Note:** These times do not include the power-up to functional timing overhead when using digest checks on power-up.

# 7.6.6 Zeroization Time

The following tables describe zeroization time. A zeroization operation is counted as one programming cycle.

#### Table 77 • Zeroization Times for MPF100T, TL, TS, and TLS Devices

| Parameter                                                                     | Тур | Max | Unit | Conditions                    |
|-------------------------------------------------------------------------------|-----|-----|------|-------------------------------|
| Time to enter zeroization                                                     |     |     | ms   | Zip flag set                  |
| Time to destroy the fabric data <sup>1</sup>                                  |     |     | ms   | Data erased                   |
| Time to destroy data in non-volatile memory (like new) <sup>1, 2</sup>        |     |     | ms   | One iteration of scrubbing    |
| Time to destroy data in non-volatile memory (recoverable) $^{\rm 1,3}$        |     |     | ms   | One iteration of scrubbing    |
| Time to destroy data in non-volatile memory (non-recoverable) <sup>1, 4</sup> |     |     | ms   | One iteration of<br>scrubbing |
| Time to scrub the fabric data <sup>1</sup>                                    |     |     | S    | Full scrubbing                |
| Time to scrub the pNVM data (like new) <sup>1, 2</sup>                        |     |     | S    | Full scrubbing                |
| Time to scrub the pNVM data (recoverable) <sup>1, 3</sup>                     |     |     | S    | Full scrubbing                |
| Time to scrub the fabric data pNVM data (non-recoverable) <sup>1,4</sup>      |     |     | S    | Full scrubbing                |
| Time to verify <sup>5</sup>                                                   |     |     | S    |                               |

- 1. Total completion time after entering zeroization.
- 2. Like new mode—zeroizes user design security setting and sNVM content.
- 3. Recoverable mode—zeroizes user design security setting, sNVM and factory keys.
- 4. Non-recoverable mode—zeroizes user design security setting, sNVM and factory keys, and factory data required for programming.
- 5. Time to verify after scrubbing completes.

### Table 78 • Zeroization Times for MPF200T, TL, TS, and TLS Devices

| Parameter                                                              | Тур | Max | Unit | Conditions                 |
|------------------------------------------------------------------------|-----|-----|------|----------------------------|
| Time to enter zeroization                                              |     |     | ms   | Zip flag set               |
| Time to destroy the fabric data <sup>1</sup>                           |     |     | ms   | Data erased                |
| Time to destroy data in non-volatile memory (like new) <sup>1, 2</sup> |     |     | ms   | One iteration of scrubbing |



| Parameter                                                                           | Тур | Max | Unit | Conditions                 |
|-------------------------------------------------------------------------------------|-----|-----|------|----------------------------|
| Time to destroy data in non-volatile memory (non-recoverable) <sup>1, 4</sup>       |     |     | ms   | One iteration of scrubbing |
| Time to scrub the fabric data <sup>1</sup>                                          |     |     | S    | Full scrubbing             |
| Time to scrub the pNVM data (like new) <sup>1, 2</sup>                              |     |     | S    | Full scrubbing             |
| Time to scrub the pNVM data (recoverable) <sup>1,3</sup>                            |     |     | S    | Full scrubbing             |
| Time to scrub the fabric data pNVM data (non-recoverable) $^{\scriptscriptstyle 1}$ |     |     | S    | Full scrubbing             |
| Time to verify <sup>5</sup>                                                         |     |     | S    |                            |

1. Total completion time after entering zeroization.

- 2. Like new mode—zeroizes user design security setting and sNVM content.
- 3. Recoverable mode—zeroizes user design security setting, sNVM and factory keys.
- 4. Non-recoverable mode—zeroizes user design security setting, sNVM and factory keys, and factory data required for programming.
- 5. Time to verify after scrubbing completes.

### 7.6.7 Verify Time

The following tables describe verify time.

#### Table 81 • Standalone Fabric Verify Times

| Parameter                         | Devices              | Max             | Unit |
|-----------------------------------|----------------------|-----------------|------|
| Standalone verification over JTAG | MPF100T, TL, TS, TLS |                 | S    |
|                                   | MPF200T, TL, TS, TLS | 53 <sup>1</sup> | S    |
|                                   | MPF300T, TL, TS, TLS | 90 <sup>1</sup> | S    |
|                                   | MPF500T, TL, TS, TLS |                 | S    |
| Standalone verification over SPI  | MPF100T, TL, TS, TLS |                 | S    |
|                                   | MPF200T, TL, TS, TLS | 37 <sup>2</sup> | S    |
|                                   | MPF300T, TL, TS, TLS | 55²             | S    |
|                                   | MPF500T, TL, TS, TLS |                 | S    |

- 1. Programmer: FlashPro5, TCK 10 MHz; PC configuration: Intel i7 at 3.6 GHz, 32 GB RAM, Windows 10.
- 2. SmartFusion2 with MSS running at 100 MHz, MSS SPI 0 port running at 6.67 MHz. DirectC version
  - 4.1.

# Notes:

- Standalone verify is limited to 2,000 total device hours ove r the industrial –40 °C to 100 °C temperature.
- Use the digest system service, for verify device time more than 2,000 hours.
- Standalone verify checks the programming margin on both the P and N gates of the push-pull cell.
   Digest checks only the P side of the push-pull gate. However, the push-pull gates work in tandem. Digest check is recommended if users believe they will exceed the 2,000-hour verify time specification.

#### Table 82 • Verify Time by Programming Hardware

| Devices              | IAP | FlashPro4 | FlashPro5 | BP | Silicon Sculptor | Units |
|----------------------|-----|-----------|-----------|----|------------------|-------|
| MPF100T, TL, TS, TLS |     |           |           |    |                  |       |
| MPF200T, TL, TS, TLS | 9   | 67        | 53        |    |                  | S     |
| MPF300T, TL, TS, TLS | 14  | 95        | 90        |    |                  | S     |



| Devices              | IAP | FlashPro4 | Flash Pro 5 | BP | Silicon Sculptor | Units |
|----------------------|-----|-----------|-------------|----|------------------|-------|
| MPF500T, TL, TS, TLS |     |           |             |    |                  |       |

#### Notes:

- FlashPro4 4 MHz TCK.
- FlashPro5 10 MHz TCK.
- PC configuration: Intel i7 at 3.6 GHz, 32 GB RAM, Windows 10.

#### Table 83 • Verify System Services

| Parameter                            | Symbol                | ServiceID | Devices              | Тур  | Max | Unit |
|--------------------------------------|-----------------------|-----------|----------------------|------|-----|------|
| In application verify by index       | $T_{IAP\_Ver\_Index}$ | 44H       | MPF100T, TL, TS, TLS |      |     | S    |
|                                      |                       |           | MPF200T, TL, TS, TLS | 8.2  | 9   | S    |
|                                      |                       |           | MPF300T, TL, TS, TLS | 12.4 | 13  | S    |
|                                      |                       |           | MPF500T, TL, TS, TLS |      |     | S    |
| In application verify by SPI address | TIAP_Ver_Addr         | 45H       | MPF100T, TL, TS, TLS |      |     | S    |
|                                      |                       |           | MPF200T, TL, TS, TLS | 8.2  | 9   | S    |
|                                      |                       |           | MPF300T, TL, TS, TLS | 12.4 | 13  | S    |
|                                      |                       |           | MPF500T, TL, TS, TLS |      |     | S    |

### 7.6.8 Authentication Time

The following tables describe authentication system service time.

# Table 84 • Authentication Services

| Parameter                | Symbol    | ServiceID | Devices              | Тур | Max | Unit |
|--------------------------|-----------|-----------|----------------------|-----|-----|------|
| Bitstream Authentication | TBIT_AUTH | 22H       | MPF100T, TL, TS, TLS |     |     | S    |
|                          |           |           | MPF200T, TL, TS, TLS | 3.3 | 3.7 | S    |
|                          |           |           | MPF300T, TL, TS, TLS | 4.9 | 5.4 | S    |
|                          |           |           | MPF500T, TL, TS, TLS |     |     | S    |
| IAP Image Authentication | TIAP_AUTH | 23H       | MPF100T, TL, TS, TLS |     |     | S    |
|                          |           |           | MPF200T, TL, TS, TLS | 3.3 | 3.7 | S    |
|                          |           |           | MPF300T, TL, TS, TLS | 4.9 | 5.4 | S    |
|                          |           |           | MPF500T, TL, TS, TLS |     |     |      |

# 7.6.9 Secure NVM Performance

The following table describes secure NVM performance.

# Table 85 • sNVM Read/Write Characteristics

| Parameter                                            | Symbol    | Min  | Тур  | Max | Unit | Conditions         |
|------------------------------------------------------|-----------|------|------|-----|------|--------------------|
| Plain text programming                               |           | 7.0  | 7.2  | 7.9 | ms   |                    |
| Authenticated text programming                       |           | 7.2  | 7.4  | 9.4 | ms   |                    |
| Authenticated and encrypted text programming         |           | 7.2  | 7.4  | 9.4 | ms   |                    |
| Authentication R/W 1st access from power-up overhead | Tpuf_ovhd |      | 100  | 111 | ms   | From<br>Tfab_ready |
| Plain text read                                      |           | 7.67 | 7.79 | 8.2 | μs   |                    |





#### Figure 6 • Warm Reset Timing

# 7.9.3 Power-On Reset Voltages

# 7.9.3.1 Main Supplies

The start of power-up to functional time (T<sub>PUFT</sub>) is defined as the point at which the latest of the main supplies (VDD, VDD18, VDD25) reach the reference voltage levels specified in the following table. This starts the process of releasing the reset of the device and powering on the FPGA fabric and IOs.

#### Table 97 • POR Ref Voltages

| Supply | Power-On Reset Start Point (V) | Note                                        |
|--------|--------------------------------|---------------------------------------------|
| VDD    | 0.95                           | Applies to both 1.0 V and 1.05 V operation. |
| VDD18  | 1.71                           |                                             |
| VDD25  | 2.25                           |                                             |

### 7.9.3.2 I/O-Related Supplies

For the I/Os to become functional (for low speed, sub 400 MHz operation), the (per-bank) I/O supplies (VDDI, VDDAUX) must reach the trip point voltage levels specified in the following table and the main supplies above must also be powered on.

#### Table 98 • I/O-Related Supplies

| Supply | I/O Power-Up Start Point (V) |
|--------|------------------------------|
| VDDI   | 0.85                         |
| VDDAUX | 1.6                          |

There are no sequencing requirements for the power supplies. However, VDDI3 and must be valid at same time as the main supplies. The other IO supplies (VDDI, VDDAUX) have no effect on power-up of FPGA fabric (that is, the fabric still powers up even if the IO supplies of some IO banks remain powered off).



# 7.9.4 Design Dependence of T PUFT and T WRFT

Some phases of the device initialization are user design-dependent, as the device automatically initializes certain resources to user-specified configurations if those resources are used in the design. It is necessary to compute the overall power-up to functional time by referencing the following tables and adding the relevant phases, according to the design configuration. The following equation refers to timing parameters specified in the above timing diagrams. Please note T<sub>PCIE</sub>, T<sub>XCVR</sub>, T<sub>LSRAM</sub>, and T<sub>USRAM</sub> can be found in the PolarFire FPGA device power-up and resets user guide UG0725.

TPUFT = TFAB\_READY(cold) + max((TPCIE + TXCVR + TLSRAM + TUSRAM), TCALIB)

TWRFT = TFAB\_READY(warm) + max((TPCIE + TXCVR + TLSRAM + TUSRAM), TCALIB)

Note: TPCIE, TXCVR, TLSRAM, TUSRAM, and TCALIB are common to both cold and warm reset scenarios.

Auto-initialization of FPGA (if required) occurs in parallel with I/O calibration. The device may be considered fully functional only when the later of these two activities has finished, which may be either one, depending on the configuration, as may be calculated from the following tables. Note that I/O calibration may extend beyond  $T_{PUFT}$  (as I/O calibration process is independent of main device power-on and is instead dependent on I/O bank supply relative power-on time and ramp times). The previous timing diagram for power-on initialization shows the earliest that I/Os could be enabled, if the I/O power supplies are powered on before or at the same time as the main supplies.

# 7.9.5 Cold Reset to Fabric and I/Os (Low Speed) Functional

The following table specifies the minimum, typical, and maximum times from the power supplies reaching the above trip point levels until the FPGA fabric is operational and the FPGA IOs are functional for low-speed (sub 400 MHz) operation.

#### Table 99 • Cold Boot

| Power-On (Cold) Reset to Fabric and I/O Operational                       | Min  | Тур  | Max  | Unit |
|---------------------------------------------------------------------------|------|------|------|------|
| Time when input pins start working – $T_{\text{IN}\_\text{ACTIVE(cold)}}$ | 1.17 | 4.51 | 7.84 | ms   |
| Time when weak pull-ups are enabled – TPU_PD_ACTIVE(cold)                 | 1.17 | 4.51 | 7.84 | ms   |
| Time when fabric is operational – TFAB_READY(cold)                        | 1.20 | 4.54 | 7.87 | ms   |
| Time when output pins start driving – Tout_ACTIVE(cold)                   | 1.22 | 4.56 | 7.89 | ms   |

# 7.9.6 Warm Reset to Fabric and I/Os (Low Speed) Functional

The following table specifies the minimum, typical, and maximum times from the negation of the warm reset event until the FPGA fabric is operational and the FPGA IOs are functional for low-speed (sub 400 MHz) operation.

#### Table 100 • Warm Boot

| Warm Reset to Fabric and I/O Operational                                  | Min  | Тур  | Max  | Unit |
|---------------------------------------------------------------------------|------|------|------|------|
| Time when input pins start working – TIN_ACTIVE(warm)                     | 0.91 | 1.76 | 2.62 | ms   |
| Time when weak pull-ups/pull-downs are enabled – $T_{PU_PD_ACTIVE(warm)}$ | 0.91 | 1.76 | 2.62 | ms   |
| Time when fabric is operational – TFAB_READY(warm)                        | 0.94 | 1.79 | 2.65 | ms   |
| Time when output pins start driving – Tout_ACTIVE(warm)                   | 0.96 | 1.81 | 2.67 | ms   |

# 7.9.7 Miscellaneous Initialization Parameters

In the following table, T<sub>FAB\_READY</sub> refers to either T<sub>FAB\_READY(cold)</sub> or T<sub>FAB\_READY(warm)</sub> as specified in the previous tables, depending on whether the initialization is occurring as a result of a cold or warm reset, respectively.



#### Table 104 • Flash\*Freeze

| Parameter                                                                    | Symbol        | Min | Тур | Max | Unit | Condition |
|------------------------------------------------------------------------------|---------------|-----|-----|-----|------|-----------|
| The time from Flash*Freeze entry<br>command to the Flash*Freeze state        | Tff_entry     |     | 59  |     | μs   |           |
| The time from Flash*Freeze exit pin<br>assertion to fabric operational state | Tff_fabric_up |     | 133 |     | μs   |           |
| The time from Flash*Freeze exit pin<br>assertion to I/Os operational         | TFF_IO_ACTIVE |     | 143 |     | μs   |           |

# 7.10 Dedicated Pins

\_

The following section describes the dedicated pins.

# 7.10.1 JTAG Switching Characteristics

The following table describes characteristics of JTAG switching.

# Table 105 • JTAG Electrical Characteristics

| Symbol   | Description                 | Min  | Тур | Max  | Unit | Condition                 |
|----------|-----------------------------|------|-----|------|------|---------------------------|
| Tdisu    | TDI input setup time        | 0.0  |     |      | ns   |                           |
| TDIHD    | TDI input hold time         | 2.0  |     |      | ns   |                           |
| TTMSSU   | TMS input setup time        | 1.5  |     |      | ns   |                           |
| Ттмянd   | TMS input hold time         | 1.5  |     |      | ns   |                           |
| Fтск     | TCK frequency               |      |     | 25   | MHz  |                           |
| Ттскос   | TCK duty cycle              | 40   |     | 60   | %    |                           |
| Ττροςα   | TDO clock to Q out          |      |     | 8.4  | ns   | C <sub>LOAD</sub> = 40 pf |
| TRSTBCQ  | TRSTB clock to Q out        |      |     | 23.5 | ns   | C <sub>LOAD</sub> = 40 pf |
| TRSTBPW  | TRSTB min pulse width       | 50   |     |      | ns   |                           |
| TRSTBREM | TRSTB removal time          | 0.0  |     |      | ns   |                           |
| TRSTBREC | TRSTB recovery time         | 12.0 |     |      | ns   |                           |
| CINTDI   | TDI input pin capacitance   |      |     | 5.3  | pf   |                           |
| CINTMS   | TMS input pin capacitance   |      |     | 5.3  | pf   |                           |
| СІМтск   | TCK input pin capacitance   |      |     | 5.3  | pf   |                           |
| CINTRSTB | TRSTB input pin capacitance |      |     | 5.3  | pf   |                           |

# 7.10.2 SPI Switching Characteristics

The following tables describe characteristics of SPI switching.

#### Table 106 • SPI Master Mode (PolarFire Master) During Programming

| Parameter     | Symbol | Min | Тур | Max | Unit | Condition |
|---------------|--------|-----|-----|-----|------|-----------|
| SCK frequency | Fмsck  |     |     | 20  | MHz  |           |



1. With DPA counter measures.

#### Table 115 • HMAC

| Modes                       | Message Size (bits) | Athena TeraFire Crypto Core Clock-Cycles | CAL Delay In CPU Clock-Cycles |
|-----------------------------|---------------------|------------------------------------------|-------------------------------|
| HMAC-SHA-256 <sup>1</sup> , | 512                 | 7477                                     | 2361                          |
| 256-bit key                 | 64K                 | 88367                                    | 2099                          |
| HMAC-SHA-384 <sup>1</sup> , | 1024                | 13049                                    | 2257                          |
| 384-bit key                 | 64K                 | 106103                                   | 2153                          |

1. With DPA counter measures.

#### Table 116 • CMAC

| Modes                              | Message Size<br>(bits) | Athena TeraFire Crypto Core Clock-<br>Cycles | CAL Delay In CPU Clock-<br>Cycles |
|------------------------------------|------------------------|----------------------------------------------|-----------------------------------|
| AES-CMAC-2561                      | 128                    | 446                                          | 9058                              |
| (message is only<br>authenticated) | 64К                    | 45494                                        | 111053                            |

1. With DPA counter measures.

### Table 117 • KEY TREE

| Modes           | Message Size (bits) | Athena TeraFire Crypto Core Clock-Cycles | CAL Delay In CPU Clock-Cycles |
|-----------------|---------------------|------------------------------------------|-------------------------------|
| 128-bit nonce + |                     | 102457                                   | 2751                          |
| 8-bit optype    |                     |                                          |                               |
| 256-bit nonce + |                     | 103218                                   | 2089                          |
| 8-bit optype    |                     |                                          |                               |

#### Table 118 • SHA

| Modes                | Message Size (bits) | Athena TeraFire Crypto Core Clock-Cycles | CAL Delay In CPU Clock-Cycles |
|----------------------|---------------------|------------------------------------------|-------------------------------|
| SHA-1 <sup>1</sup>   | 512                 | 2386                                     | 1579                          |
|                      | 64K                 | 77576                                    | 990                           |
| SHA-2561             | 512                 | 2516                                     | 884                           |
|                      | 64K                 | 84752                                    | 938                           |
| SHA-3841             | 1024                | 4154                                     | 884                           |
|                      | 64K                 | 100222                                   | 938                           |
| SHA-512 <sup>1</sup> | 1024                | 4154                                     | 881                           |
|                      | 64K                 | 100222                                   | 935                           |

1. With DPA counter measures.

#### Table 119 • ECC

| Modes                          | Message Size<br>(bits) | Athena TeraFire Crypto Core Clock-<br>Cycles | CAL Delay In CPU Clock-<br>Cycles |
|--------------------------------|------------------------|----------------------------------------------|-----------------------------------|
| ECDSA SigGen,                  | 1024                   | 12528912                                     | 6944                              |
| P-384/SHA-384 <sup>1</sup>     | 8К                     | 12540448                                     | 5643                              |
| ECDSA SigGen,<br>P-384/SHA-384 | 1024                   | 5502928                                      | 6155                              |



| ECDSA SigVer,                      | 1024 | 6421841  | 5759 |  |
|------------------------------------|------|----------|------|--|
| P-384/SHA-384                      | 8K   | 6273510  | 5759 |  |
| Key Agreement (KAS), P-<br>384     |      | 5039125  | 6514 |  |
| Point Multiply, P-256 <sup>1</sup> |      | 5176923  | 4482 |  |
| Point Multiply, P-384 <sup>1</sup> |      | 12043199 | 5319 |  |
| Point Multiply, P-521 <sup>1</sup> |      | 26887187 | 6698 |  |
| Point Addition, P-384              |      | 3018067  | 5779 |  |
| KeyGen (PKG), P-384                |      | 12055368 | 6908 |  |
| Point Verification, P-384          |      | 5091     | 3049 |  |

#### 1. With DPA counter measures.

# Table 120 • IFC (RSA)

| Modes                                               | Message Size<br>(bits) | Athena TeraFire Crypto Core<br>Clock-Cycles | CAL Delay In CPU Clock-<br>Cycles |
|-----------------------------------------------------|------------------------|---------------------------------------------|-----------------------------------|
| Encrypt, RSA-2048, e=65537                          | 2048                   | 436972                                      | 8,972                             |
| Encrypt, RSA-3072, e=65537                          | 3072                   | 962162                                      | 12,583                            |
| Decrypt, RSA-2048 <sup>1</sup> , CRT                | 2048                   | 26862392                                    | 15900                             |
| Decrypt, RSA-3072 <sup>1</sup> , CRT                | 3072                   | 75153782                                    | 22015                             |
| Decrypt, RSA-4096, CRT                              | 4096                   | 89235615                                    | 23710                             |
| Decrypt, RSA-3072, CRT                              | 3072                   | 37880180                                    | 18638                             |
| SigGen, RSA-3072/SHA-384 <sup>1</sup> ,CRT, PKCS #1 | 1024                   | 75197644                                    | 20032                             |
| V 1 1.5                                             | 8K                     | 75213653                                    | 19303                             |
| SigGen, RSA-3072/SHA-384, PKCS #1, V                | 1024                   | 148090970                                   | 14642                             |
| 1.5                                                 | 8K                     | 148102576                                   | 13936                             |
| SigVer, RSA-3072/SHA-384, e = 65537,                | 1024                   | 970991                                      | 12000                             |
| PKCS #1 V 1.5                                       | 8K                     | 982011                                      | 11769                             |
| SigVer, RSA-2048/SHA-256, e = 65537,                | 1024                   | 443493                                      | 8436                              |
| PKCS #1 V 1.5                                       | 8K                     | 453007                                      | 8436                              |
| SigGen, RSA-3072/SHA-384, ANSI X9.31                | 1024                   | 147138254                                   | 13945                             |
|                                                     | 8K                     | 147155896                                   | 13523                             |
| SigVer, RSA-3072/SHA-384, e = 65537,                | 1024                   | 973269                                      | 11313                             |
| ANSI X9.31                                          | 8K                     | 983255                                      | 11146                             |

1. With DPA counter measures.

# Table 121 • FFC (DH)

| Modes                     | Message Size<br>(bits) | Athena TeraFire Crypto Core<br>Clock-Cycles | CAL Delay In CPU Clock-<br>Cycles |
|---------------------------|------------------------|---------------------------------------------|-----------------------------------|
| SigGen, DSA-3072/SHA-3841 | 1024                   | 27932907                                    | 13969                             |
|                           | 8K                     | 27942415                                    | 13501                             |
| SigGen, DSA-3072/SHA-384  | 1024                   | 12086356                                    | 13602                             |
| SigVer, DSA-3072/SHA-384  | 1024                   | 24597916                                    | 15662                             |
|                           | 8K                     | 24229420                                    | 15133                             |





Microsemi Headquarters

One Enterprise, Aliso Viejo, CA 92656 USA Within the USA: +1 (800) 713-4113 Outside the USA: +1 (949) 380-6100 Sales: +1 (949) 380-6136 Fax: +1 (949) 215-4996 Email: sales.support@microsemi.com www.microsemi.com

© 2018 Microsemi. All rights reserved. Microsemi and the Microsemi logo are trademarks of Microsemi Corporation. All other trademarks and service marks are the property of their respective owners. Microsemi makes no warranty, representation, or guarantee regarding the information contained herein or the suitability of its products and services for any particular purpose, nor does Microsemi assume any liability whatsoever arising out of the application or use of any product or circuit. The products sold by Microsemi have been subject to limited testing and should not be used in conjunction with mision-critical equipment or applications. Any performance specifications are believed to be reliable but are not verified, and Buyer must conduct and complete all performance and other testing of the products, alone and together with, or installed in, any end-products. Buyer shall not rely on any data and performance specifications or parameters provided by Microsemi. It is the Buyer's responsibility to indpendently determine suitability of any products and to test and verify the same. The information provided by Microsemi des not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other IP rights, whether with regard to such information itself or anything described by such information. Information provided in this document is provider by such information. Information provided in this document is providently to molecular any trow without notice.

Microsemi, a wholly owned subsidiary of Microchip Technology Inc. (Nasdaq: MCHP), offers a comprehensive portfolio of semiconductor and system solutions for aerospace & defense, communications, data center and industrial markets. Products include high-performance and radiation-hardened analog mixed-signal integrated circuits, FPGAS, SoCs and ASICs; power management products; timing and synchronization devices and precise time solutions; security technologies and scalable anti-tamper products; thermet solutions; discrete components; enterprise storage and communication solutions; security technologies and scalable anti-tamper products; thermet solutions; Power-over-Ethernet ICs and midspans; as well as custom design capabilities and services. Microsemi is headquartered in Aliso Viejo, California, and has approximately 4,800 employees globally. Learn more at www microsemi.com.

51700141