

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Active
Number of LABs/CLBs	-
Number of Logic Elements/Cells	300000
Total RAM Bits	21094400
Number of I/O	300
Number of Gates	-
Voltage - Supply	0.97V ~ 1.08V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	536-LFBGA, CSPBGA
Supplier Device Package	536-CSPBGA (16x16)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/mpf300tls-fcsg536i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1 Revision History

The revision history describes the changes that were implemented in the document. The changes are listed by revision, starting with the most current publication.

1.1 Revision 1.3

Revision 1.3 was published in June 2018. The following is a summary of changes.

- The System Services section was updated. For more information, see System Services (see page 59).
- The Non-Volatile Characteristics section was updated. For more information, see Non-Volatile Characteristics (see page 51).
- The Fabric Macros section was updated. For more information, see Fabric Macros (see page 60).
- The Transceiver Switching Characteristics section was updated. For more information, see Transceiver Switching Characteristics (see page 42).

1.2 Revision 1.2

Revision 1.2 was published in June 2018. The following is a summary of changes.

• The datasheet has moved to preliminary status. Every table has been updated.

1.3 Revision 1.1

Revision 1.1 was published in August 2017. The following is a summary of changes.

- LVDS specifications changed to 1.25G. For more information, see HSIO Maximum Input Buffer Speed and HSIO Maximum Output Buffer Speed.
- LVDS18, LVDS25/LVDS33, and LVDS25 specifications changed to 800 Mbps. For more information, see I/O Standards Specifications.
- A note was added indicting a zeroization cycle counts as a programming cycle. For more information, see Non-Volatile Characteristics.
- A note was added defining power down conditions for programming recovery conditions. For more information, see Power-Supply Ramp Times.

1.4 Revision 1.0

Revision 1.0 was the first publication of this document.

5 Silicon Status

There are three silicon status levels:

- Advanced—initial estimated information based on simulations
- Preliminary—information based on simulation and/or initial characterization
- Production—final production silicon data

The following table shows the status of the PolarFire FPGA device.

Table 2 • PolarFire FPGA Silicon Status

Device	Silicon Status
MPF100T, TL, TS, TLS	Preliminary
MPF200T, TL, TS, TLS	Preliminary
MPF300T, TL, TS, TLS	Preliminary
MPF500T, TL, TS, TLS	Preliminary

$\overline{2}$	MICROCHIP	company

Parameter	Symbol	Min	Тур	Max	Unit
Transceiver TX and RX lanes supply at 1.05 V mode	Vdda	1.02	1.05	1.08	V
(when any lane rate is greater than 10.3125 Gbps) ¹					
Programming and HSIO receiver supply	Vdd18	1.71	1.80	1.89	V
FPGA core and FPGA PLL high-voltage supply	VDD25	2.425	2.50	2.575	V
Transceiver PLL high-voltage supply	VDDA25	2.425	2.50	2.575	V
Transceiver reference clock supply –3.3 V nominal	Vdd_xcvr_clk	3.135	3.3	3.465	V
Transceiver reference clock supply –2.5 V nominal	Vdd_xcvr_clk	2.375	2.5	2.625	V
Global VREF for transceiver reference clocks ³	XCVRvref	Ground		Vdd_xcvr_clk	V
HSIO DC I/O supply. Allowed nominal options: 1.2 V,	VDDIx	1.14	Various	1.89	V
1.35 V, 1.5 V, and 1.8 V ⁴					
GPIO DC I/O supply. Allowed nominal options: 1.2 V,	VDDIx	1.14	Various	3.465	V
1.5 V, 1.8 V, 2.5 V, and 3.3 V ^{2,4}					
Dedicated I/O DC supply for JTAG and SPI (GPIO Bank	VDDI3	1.71	Various	3.465	V
3). Allowed nominal options: 1.8 V, 2.5 V, and 3.3 V					
GPIO auxiliary supply for I/O bank x with V_{DDIx} = 3.3 V	VDDAUXx	3.135	3.3	3.465	V
nominal ^{2,4}					
GPIO auxiliary supply for I/O bank x with V_{DDIx} = 2.5 V	VDDAUXx	2.375	2.5	2.625	V
nominal or lower ^{2,4}					
Extended commercial temperature range	T	0		100	°C
Industrial temperature range	Τι	-40		100	°C
Extended commercial programming temperature	Tprg	0		100	°C
range					
Industrial programming temperature range	Tprg	-40		100	°C

1. V_{DD} and V_{DDA} can independently operate at 1.0 V or 1.05 V nominal. These supplies are not dynamically adjustable.

For GPIO buffers where I/O bank is designated as bank number, if VDDIX is 2.5 V nominal or 3.3 V nominal, VDDAUXX must be connected to the VDDIX supply for that bank. If VDDIX for a given GPIO bank is <2.5 V nominal, VDDAUXX per I/O bank must be powered at 2.5 V nominal.

3. XCVR_{VREF} globally sets the reference voltage of the transceiver's single-ended reference clock input buffers. It is typically near V_{DD_XCVR_CLK}/2 V but is allowed in the specified range.

4. The power supplies for a given I/O bank x are shown as VDDIx and VDDAUXx.

6.2.1 DC Characteristics over Recommended Operating Conditions

The following table lists the DC characteristics over recommended operating conditions.

Parameter	Symbol	Min	Max	Unit	Condition
Input pin capacitance ¹	C _{IN} (dedicated GPIO)		5.6	pf	
	CIN (GPIO)		5.6	pf	
	CIN (HSIO)		2.8	pf	
Input or output leakage current per pin	I∟ (GPIO)		10	μΑ	I/O disabled, high – Z
	I∟ (HSIO)		10	μΑ	I/O disabled, high – Z
Input rise time (10%–90% of V_{DDix}) ^{2, 3, 4}	Trise	0.66	2.64	ns	V _{DDIx} = 3.3 V
Input rise time (10%–90% of V_{DDix}) ^{2, 3, 4}	_	0.50	2.00	ns	$V_{DDIx} = 2.5 V$
Input rise time (10%–90% of V_{DDix}) ^{2, 3, 4}	_	0.36	1.44	ns	V _{DDix} = 1.8 V
Input rise time (10%–90% of V_{DDix}) ^{2, 3, 4}		0.30	1.20	ns	V _{DDIx} = 1.5 V
Input rise time (10%–90% of V_{DDix}) ^{2, 3, 4}	_	0.24	0.96	ns	V _{DDIx} = 1.2 V
Input fall time (90%–10% of V_{DDIx}) ^{2, 3, 4}	TFALL	0.66	2.64	ns	V _{DDix} = 3.3 V
Input fall time (90%–10% of V_{DDIx}) ^{2, 3, 4}		0.50	2.00	ns	$V_{DDIx} = 2.5 V$
Input fall time (90%–10% of V_{DDIx}) ^{2, 3, 4}	_	0.36	1.44	ns	V _{DDIx} = 1.8 V
Input fall time (90%–10% of V_{DDIx}) ^{2, 3, 4}	_	0.30	1.20	ns	V _{DDix} = 1.5 V
Input fall time (90%–10% of V_{DDIx}) ^{2, 3, 4}		0.24	0.96	ns	V _{DDIx} = 1.2 V
Pad pull-up when $V_{IN} = 0^5$	Ipu	137	220	μΑ	V _{DDIx} = 3.3 V
Pad pull-up when $V_{IN} = 0^5$	_	102	166	μΑ	V _{DDIx} = 2.5 V
Pad pull-up when $V_{IN} = 0$	_	68	115	μΑ	V _{DDIx} = 1.8 V
Pad pull-up when $V_{IN} = 0$		51	88	μΑ	V _{DDIx} = 1.5 V
Pad pull-up when $V_{IN} = 0^6$	_	29	73	μΑ	V _{DDix} = 1.35 V
Pad pull-up when $V_{IN} = 0$	_	16	46	μΑ	V _{DDix} = 1.2 V
Pad pull-down when V_{IN} = 3.3 V ⁵	IPD	65	187	μΑ	V _{DDix} = 3.3 V
Pad pull-down when V_{IN} = 2.5 V ⁵	_	63	160	μΑ	V _{DDix} = 2.5 V
Pad pull-down when V_{IN} = 1.8 V	_	60	117	μΑ	V _{DDix} = 1.8 V
Pad pull-down when V_{IN} = 1.5 V	_	57	95	μΑ	V _{DDix} = 1.5 V
Pad pull-down when V_{IN} = 1.35 V	_	52	86	μΑ	V _{DDix} = 1.35 V
Pad pull-down when $V_{IN} = 1.2 V$	_	47	79	μA	V _{DDIx} = 1.2 V

Table 5 • DC Characteristics over Recommended Operating Conditions

1. Represents the die input capacitance at the pad not the package.

- 2. Voltage ramp must be monotonic.
- 3. Numbers based on rail-to-rail input signal swing and minimum 1 V/ns and maximum 4 V/ns. These are to be used for input delay measurement consistency.
- 4. I/O signal standards with smaller than rail-to-rail input swings can use a nominal value of 200 ps 20%–80% of swing and maximum value of 500 ps 20%–80% of swing.
- 5. GPIO only.

6.2.2 Maximum Allowed Overshoot and Undershoot

During transitions, input signals may overshoot and undershoot the voltage shown in the following table. Input currents must be limited to less than 100 mA per latch-up specifications.

AC (Vin) Overshoot Duration as % at Ti = 100 °C	Condition (V)
100	3.8
100	3.85
100	3.9
100	3.95
70	4
50	4.05
33	4.1
22	4.15
14	4.2
9.8	4.25
6.5	4.3
4.4	4.35
3	4.4
2	4.45
1.4	4.5
0.9	4.55
0.6	4.6

Table 8 • Maximum Overshoot During Transitions for GPIO

Note: Overshoot level is for VDDI at 3.3 V.

The following table shows the maximum AC input voltage (V_{IN}) undershoot duration for GPIO.

AC (VIN) Undershoot Duration as % at TJ = 100 °C	Condition (V)
100	-0.5
100	-0.55
100	-0.6
100	-0.65
100	-0.7
100	-0.75
100	-0.8
100	-0.85
100	-0.9
100	-0.95
100	-1
100	-1.05
100	-1.1
100	-1.15
100	-1.2
69	-1.25
45	-1.3

Table 9 • Maximum Undershoot During Transitions for GPIO

6.2.2.1 Power-Supply Ramp Times

The following table shows the allowable power-up ramp times. Times shown correspond to the ramp of the supply from 0 V to the minimum recommended voltage as specified in the section Recommended Operating Conditions (see page 6). All supplies must rise and fall monotonically.

Table 10	Power-S	upply R	amp Times
----------	---------	---------	-----------

Parameter	Symbol	Min	Max	Unit
FPGA core supply	Vdd	0.2	50	ms
Transceiver core supply	Vdda	0.2	50	ms
Must connect to 1.8 V supply	Vdd18	0.2	50	ms
Must connect to 2.5 V supply	VDD25	0.2	50	ms
Must connect to 2.5 V supply	VDDA25	0.2	50	ms
HSIO bank I/O power supplies	VDDI[0,1,6,7]	0.2	50	ms
GPIO bank I/O power supplies	VDDI[2,4,5]	0.2	50	ms
Bank 3 dedicated I/O buffers (GPIO)	Vddi3	0.2	50	ms
GPIO bank auxiliary power supplies	VDDAUX[2,4,5]	0.2	50	ms
Transceiver reference clock supply	Vdd_xcvr_clk	0.2	50	ms
Global V_{REF} for transceiver reference clocks	XCVRvref	0.2	50	ms

Note: For proper operation of programming recovery mode, if a VDD supply brownout occurs during programming, a minimum supply ramp down time for only the VDD supply is recommended to be 10 ms or longer by using a programmable regulator or on-board capacitors.

6.2.2.2 Hot Socketing

The following table lists the hot-socketing DC characteristics over recommended operating conditions.

Table 11 • Hot Socketing DC Characteristics over Recommended Operating Conditions

Parameter	Symbol	Min	Тур	Max	Unit	Condition
Current per transceiver Rx input pin (P or N single-ended) ^{1, 2}	XCVRRX_HS			±4	mA	V _{DDA} = 0 V
Current per transceiver Tx output pin (P or N single-ended) ³	XCVRTX_HS			±10	mA	V _{DDA} = 0 V
Current per transceiver reference clock input pin (P or N single-ended) ⁴	XCVRREF_HS			±1	mA	Vdd_xcvr_clk = 0 V
Current per GPIO pin (P or N single-ended)⁵	Igpio_hs			±1	mA	V _{DDix} = 0 V
Current per HSIO pin (P or N single-ended)						Hot socketing is not supported in HSIO.

1. Assumes that the device is powered-down, all supplies are grounded, AC-coupled interface, and input pin pairs are driven by a CML driver at the maximum amplitude (1 V pk-pk) that is toggling at any rate with PRBS7 data.

- 2. Each P and N transceiver input has less than the specified maximum input current.
- 3. Each P and N transceiver output is connected to a 40 Ω resistor (50 Ω CML termination 20% tolerance) to the maximum allowed output voltage (V_{DDAmax} + 0.3 V = 1.4 V) through an AC-coupling capacitor with all PolarFire device supplies grounded. This shows the current for a worst-case DC coupled interface. As an AC-coupled interface, the output signal will settle at ground and no hot socket current will be seen.
- 4. Vdd_xcvr_clk is powered down and the device is driven to -0.3 V < VIN < Vdd_xcvr_clk.
- 5. V_{DDIx} is powered down and the device is driven to $-0.3 V < V_{IN} < GPIO V_{DDImax}$.

I/O Stondard	Vodi Mir ()()	VDDI	VDDI	Vol	Vol	Vон	Vон	lol ^{2,6}	юн ^{2,6}
Standard	iviin (v)	Typ (v)	iviax (v)	win (v)	iviax (v)	win (v)	iviax (v)	ma	ma
HSTL135I ⁴	1.283	1.35	1.418		0.2	0.8		Vol/50	(Vddi — Vон)
					×	×			/50
					Vddi	Vddi			
HSTL135II ^₄	1.283	1.35	1.418		0.2	0.8		Vol/25	(Vddi — Vон)
					×	×			/25
					Vddi	VDDI			
HSTL12I ^₄	1.14	1.2	1.26		0.1	0.9		Vol/50	(Vddi — Vон)
					×	×			/50
					Vddi	VDDI			
HSTL12II ⁴	1.14	1.2	1.26		0.1	0.9		Vol/25	(Vddi — Vон)
					×	×			/25
					Vddi	Vddi			
HSUL18I ⁴	1.71	1.8	1.89		0.1	0.9		Vol/55	(Vddi — Vон)
					×	×			/55
					Vddi	VDDI			
HSUL18II ⁴	1.71	1.8	1.89		0.1	0.9		Vol/25	(V _{DDI} — V _{OH})
					×	×			/25
					Vddi	Vddi			
HSUL12I ⁴	1.14	1.2	1.26		0.1	0.9		Vol/40	(V _{DDI} — V _{OH})
					×	×			/40
					Vddi	Vddi			
POD1214,5	1.14	1.2	1.26		0.5			Vol/48	(Vddi — Vон)
					×				/48
					Vddi				
POD12II ^{4,5}	1.14	1.2	1.26		0.5			Vol/34	(V _{DDI} — V _{OH})
					×				/34
					VDDI				

- 1. Drive strengths per PCI specification V/I curves.
- 2. Refer to UG0686: PolarFire FPGA User I/O User Guide for details on supported drive strengths.
- 3. For external stub-series resistance. This resistance is on-die for GPIO.
- 4. IoL/IOH units for impedance standards in amps (not mA).
- 5. VOH_MAX based on external pull-up termination (pseudo-open drain).
- 6. The total DC sink/source current of all IOs within a lane is limited as follows:
 - a. HSIO lane: 120 mA per 12 IO buffers.
 - b. GPIO lane: 160 mA per 12 IO buffers.

Note: 3.3 V and 2.5 V are only supported in GPIO banks.

6.3.2 Differential DC Input and Output Levels

The follow tables list the differential DC I/O levels.

I/O Standard	Bank Type	VICM_RANGE Libero Setting	V _{ICM^{1,3} Min (V)}	Vісм ^{1,3} Тур (V)	V _{ICM^{1,3} Max (V)}	Vı⊳² Min (V)	Vı⊳ Typ (V)	Vı⊳ Max (V)
LVDS33	GPIO	Mid (default)	0.6	1.25	2.35	0.1	0.35	0.6
		Low	0.05	0.4	0.8	0.1	0.35	0.6
LVDS25	GPIO	Mid (default)	0.6	1.25	2.35	0.1	0.35	0.6
		Low	0.05	0.4	0.8	0.1	0.35	0.6
LVDS18 ⁴	GPIO	Mid (default)	0.6	1.25	1.65	0.1	0.35	0.6

Table 14 • Differential DC Input Levels

I/O Standard	Bank Type	Vосм ¹ Min (V)	Vосм Тур (V)	V _{осм} Max (V)	Voo² Min (V)	Vo⊳² Typ (V)	Vod² Max (V)
MLVDSE25 ³	GPIO		1.25		0.396	0.442	0.453
LVPECLE33 ³	GPIO		1.65		0.664	0.722	0.755
MIPIE25 ³	GPIO		0.25		0.1	0.22	0.3

1. VOCM is the output common mode voltage.

2. Vod is the output differential voltage.

3. Emulated output only.

6.3.3 Complementary Differential DC Input and Output Levels

The following tables list the complementary differential DC I/O levels.

Table 16 • Complementary Differential DC Input Levels

I/O Standard	Vooi Min (V)	V _{DDI} Typ (V)	Vodi Max (V)	V _{ісм^{1,3} Min (V)}	V _{ICM^{1,3} Тур (V)}	V _{ICM^{1,3} Max (V)}	Vı⊳² Min (V)	Vı⊳ Max (V)
SSTL25I	2.375	2.5	2.625	1.164	1.250	1.339	0.1	
SSTL25II	2.375	2.5	2.625	1.164	1.250	1.339	0.1	
SSTL18I	1.71	1.8	1.89	0.838	0.900	0.964	0.1	
SSTL18II	1.71	1.8	1.89	0.838	0.900	0.964	0.1	
SSTL15I	1.425	1.5	1.575	0.698	0.750	0.803	0.1	
SSTL15II	1.425	1.5	1.575	0.698	0.750	0.803	0.1	
SSTL135I	1.283	1.35	1.418	0.629	0.675	0.723	0.1	
SSTL135II	1.283	1.35	1.418	0.629	0.675	0.723	0.1	
HSTL15I	1.425	1.5	1.575	0.698	0.750	0.803	0.1	
HSTL15II	1.425	1.5	1.575	0.698	0.750	0.803	0.1	
HSTL135I	1.283	1.35	1.418	0.629	0.675	0.723	0.1	
HSTL135II	1.283	1.35	1.418	0.629	0.675	0.723	0.1	
HSTL12I	1.14	1.2	1.26	0.559	0.600	0.643	0.1	
HSUL18I	1.71	1.8	1.89	0.838	0.900	0.964	0.1	
HSUL18II	1.71	1.8	1.89	0.838	0.900	0.964	0.1	
HSUL12I	1.14	1.2	1.26	0.559	0.600	0.643	0.1	
POD12I	1.14	1.2	1.26	0.787	0.840	0.895	0.1	
POD12II	1.14	1.2	1.26	0.787	0.840	0.895	0.1	

1. $V_{\mbox{\scriptsize ICM}}$ is the input common mode voltage.

2. V_{ID} is the input differential voltage.

3. VICM rules are as follows:

- a. VICM must be less than VDDI -0.4V;
- b. $V_{ICM} + V_{ID}/2$ must be $\langle V_{DDI} + 0.4 V$;
- c. $V_{ICM} V_{ID}/2$ must be >VSS 0.3 V.

Min (%)	Тур	Max (%)	Unit	Condition
-20	60	20	Ω	V _{DDI} = 1.2 V
-20	120	20	Ω	V _{DDI} = 1.2 V

Note: Thevenin impedance is calculated based on independent P and N as measured at 50% of V_{DDI}. For 50 $\Omega/75 \Omega/150 \Omega$ cases, nearest supported values of 40 $\Omega/60 \Omega/120 \Omega$ are used.

Table 19 • Single-Ended Termination to VDDI (Internal Parallel Termination to VDDI)

Min (%)	Тур	Max (%)	Unit	Condition
-20	34	20	Ω	V _{DDI} = 1.2 V
-20	40	20	Ω	V _{DDI} = 1.2 V
-20	48	20	Ω	V _{DDI} = 1.2 V
-20	60	20	Ω	V _{DDI} = 1.2 V
-20	80	20	Ω	V _{DDI} = 1.2 V
-20	120	20	Ω	V _{DDI} = 1.2 V
-20	240	20	Ω	V _{DDI} = 1.2 V

Note: Measured at 80% of VDDI.

Table 20 • Single-Ended Termination to VSS (Internal Parallel Termination to VSS)

Min (%)	Тур	Max (%)	Unit	Condition
-20	120	20	Ω	V _{DDI} = 1.8 V/1.5 V
-20	240	20	Ω	V _{DDI} = 1.8 V/1.5 V
-20	120	20	Ω	V _{DDI} = 1.2 V
-20	240	20	Ω	V _{DDI} = 1.2 V

Note: Measured at 50% of V_{DDI}.

6.3.5 GPIO On-Die Termination

The following table lists the on-die termination calibration accuracy specifications for GPIO bank.

Table 21 • On-Die Termination Calibration Accuracy Specifications for GPIO Bank

Parameter	Description	Min (%)	Тур	Max (%)	Unit	Condition
Differential	Internal	-20	100	20	Ω	VICM < 0.8 V
termination ¹	differential	-20	100	40	Ω	0.6 V < V _{ICM} < 1.65 V
	termination	-20	100	80	Ω	1.4 V < VICM
Single-ended	Internal	-40	50	20	Ω	V _{DDI} = 1.8 V/1.5 V
thevenin termination ^{2, 3}	parallel	-40	75	20	Ω	V _{DDI} = 1.8 V
	termination	-40	150	20	Ω	V _{DDI} = 1.8 V
		-20	20	20	Ω	V _{DDI} = 1.5 V
		-20	30	20	Ω	V _{DDI} = 1.5 V
		-20	40	20	Ω	V _{DDI} = 1.5 V
		-20	60	20	Ω	V _{DDI} = 1.5 V
		-20	120	20	Ω	V _{DDI} = 1.5 V

Standard	STD	-1	Unit
LVCMOS12 (8 mA)	250	300	Mbps

Table 27 • GPIO Maximum Output Buffer Speed

Standard	STD	-1	Unit
LVDS25/LCMDS25	1250	1250	Mbps
LVDS33/LCMDS33	1250	1600	Mbps
RSDS25	800	800	Mbps
MINILVDS25	800	800	Mbps
SUBLVDS25	800	800	Mbps
PPDS25	800	800	Mbps
SLVSE15	500	500	Mbps
BUSLVDSE25	500	500	Mbps
MLVDSE25	500	500	Mbps
LVPECLE33	500	500	Mbps
SSTL25I	800	800	Mbps
SSTL25II	800	800	Mbps
SSTL25I (differential)	800	800	Mbps
SSTL25II (differential)	800	800	Mbps
SSTL18I	800	800	Mbps
SSTL18II	800	800	Mbps
SSTL18I (differential)	800	800	Mbps
SSTL18II (differential)	800	800	Mbps
SSTL15I	800	1066	Mbps
SSTL15II	800	1066	Mbps
SSTL15I (differential)	800	1066	Mbps
SSTL15II (differential)	800	1066	Mbps
HSTL15I	900	900	Mbps
HSTL15II	900	900	Mbps
HSTL15I (differential)	900	900	Mbps
HSTL15II (differential)	900	900	Mbps
HSUL18I	400	400	Mbps
HSUL18II	400	400	Mbps
HSUL18I (differential)	400	400	Mbps
HSUL18II (differential)	400	400	Mbps
PCI	500	500	Mbps
LVTTL33 (20 mA)	500	500	Mbps
LVCMOS33 (20 mA)	500	500	Mbps
LVCMOS25 (16 mA)	500	500	Mbps
LVCMOS18 (12 mA)	500	500	Mbps
LVCMOS15 (10 mA)	500	500	Mbps
LVCMOS12 (8 mA)	250	300	Mbps
MIPIE25	500	500	Mbps

а 🕵 Міскоснір company

Parameter	Symbol	STD	STD	STD	-1	-1	-1	Unit
		Min	Тур	Max	Min	Тур	Max	
Reference clock input	FXCVRREFCLKMAX	20		156	20		156	MHz
rate ^{1, 2, 3}	CASCADE							
Reference clock rate at	FTXREFCLKPFD	20		156	20		156	MHz
the PFD⁴								
Reference clock rate	FTXREFCLKPFD10G	75		156	75		156	MHz
recommended at the								
PFD for Tx rates 10 Gbps								
and above ^₄								
Tx reference clock	FTXREFPN			-110			-110	dBc
phase noise								/Hz
requirements to meet								
jitter specifications (156								
MHz clock at reference								
clock input) ⁵								
Phase noise at 10 KHz	FTXREFPN			-110			-110	dBc
								/Hz
Phase noise at 100 KHz	FTXREFPN			-115			-115	dBc
								/Hz
Phase noise at 1 MHz	FTXREFPN			-135			-135	dBc
								/Hz
Reference clock input	Trefrise		200	500		200	500	ps
rise time (10%–90%)								
Reference clock input	TREFFALL		200	500		200	500	ps
fall time (90%–10%)								
Reference clock duty	TREFDUTY	40		60	40		60	%
cycle								
Spread spectrum	Mod_Spread	0.1		3.1	0.1		3.1	%
modulation spread ⁶								
Spread spectrum	Mod_Freq	TxREF	32	TxREF	TxREF	32	TxREF	KHz
modulation frequency ⁷		CLKPFD/		CLKPFD/	CLKPFD/		CLKPFD/	
		(128)		(128*63)	(128)		(128*63)	

1. See the maximum reference clock rate allowed per input buffer standard.

2. The minimum value applies to this clock when used as an XCVR reference clock. It does not apply when used as a non-XCVR input buffer (DC input allowed).

- 3. Cascaded reference clock.
- 4. After reference clock input divider.
- 5. Required maximum phase noise is scaled based on actual $F_{TxRefClkPFD}$ value by 20 × log10 (TxRefClkPFD /156 MHz). It is assumed that the reference clock divider of 4 is used for these calculations to always meet the maximum PFD frequency specification.
- 6. Programmable capability for depth of down-spread or center-spread modulation.
- 7. Programmable modulation rate based on the modulation divider setting (1 to 63).

7.4.3 Transceiver Reference Clock I/O Standards

The following table describes the differential I/O standards supported as transceiver reference clocks.

Parameter	Symbol	Min	Тур	Max	Unit	Condition
		0.41			UI	>3.2–8.5 Gbps⁵
		0.41			UI	>1.6 to 3.2 Gbps ⁵
		0.41			UI	>0.8 to 1.6 Gbps ⁵
		0.41			UI	250 to 800 Mpbs ⁵
Total jitter tolerance with	TIJTOLSE	0.65			UI	3.125 Gbps⁵
stressed eye		0.65			UI	6.25 Gbps ⁶
		0.7			UI	10.3125 Gbps ⁶
					UI	12.7 Gbps ^{6, 10}
Sinusoidal jitter tolerance with	TSJTOLSE	0.1			UI	3.125 Gbps⁵
stressed eye		0.05			UI	6.25 Gbps ⁶
		0.05			UI	10.3125 Gbps ⁶
					UI	12.7 Gbps ^{6, 10}
CTLE DC gain (all stages, max settings)				10	dB	
CTLE AC gain (all stages, max settings)				16	dB	
DFE AC gain (per 5 stages, max settings)				7.5	dB	

1. Valid at 3.2 Gbps and below.

- 2. Data vs. Rx reference clock frequency.
- 3. Achieves compliance with PCIe electrical idle detection.
- 4. Achieves compliance with SATA OOB specification.
- 5. Rx jitter values based on bit error ratio (BER) of 10−12, AC coupled input with 400 mV V_{ID}, all stages of Rx CTLE enabled, DFE disabled, 80 MHz sinusoidal jitter injected to Rx data.
- 6. Rx jitter values based on bit error ratio (BER) of 10−12, AC coupled input with 400 mV V_{ID}, all stages of Rx CTLE enabled, DFE enabled, 80 MHz sinusoidal jitter injected to Rx data.
- 7. For PCIe: Low Threshold Setting = 1, High Threshold Setting = 2.
- 8. For SATA: Low Threshold Setting = 2, High Threshold Setting = 3.
- 9. Loss of signal detection is valid for input signals that transition at a density ≥1 Gbps for PRBS7 data or 6 Gbps for PRBS31 data.
- 10. For data rates greater than 10.3125 Gbps, VDDA must be set to 1.05 V mode. See supply tolerance in the section Recommended Operating Conditions (see page 6).

7.5 Transceiver Protocol Characteristics

The following section describes transceiver protocol characteristics.

7.5.1 PCI Express

The following tables describe the PCI express.

Table 54 • PCI Express Gen1

Parameter	Data Rate	Min	Max	Unit
Total transmit jitter	2.5 Gbps		0.25	UI
Receiver jitter tolerance	2.5 Gbps	0.4		UI

Note: With add-in card, as specified in PCI Express CEM Rev 2.0.

Table 75 • FPGA Programming Cycles Lifetime Factor

Programming T	Programming Cycles	LF
–40 °C to 100 °C	500	1
–40 °C to 85 °C	1000	0.8
–40 °C to 55 °C	2000	0.6

Notes:

- The maximum number of device digest cycles is 100K.
- Digests are operational only over the -40 °C to 100 °C temperature range.
- After a program cycle, an additional N digests cycles are allowed with the resultant retention characteristics for the total operating and storage temperature shown.
- Retention is specified for total device storage and operating temperature.
- All temperatures are junction temperatures (T_J).
- Example 1—500 digests cycles are performed between programming cycles. N = 500. The operating conditions are -40 °C to 85 °C TJ. 501 programming cycles have occurred. The retention under these operating conditions is 20 × LF = 20 × .8 = 16 years.
- Example 2—one programming cycle has occurred, N = 1500 digest cycles have occurred. Temperature range is -40 °C to 100 °C. The resultant retention is 10 × LF or 10 years over the industrial temperature range.

7.6.5 Digest Time

The following table describes digest time.

Table 76 • Digest Times

Parameter	Devices	Тур	Max	Unit
Setup time	All	2		μs
Fabric digest run time	MPF100T, TL, TS, TLS			ms
	MPF200T, TL, TS, TLS	1005	1072	ms
	MPF300T, TL, TS, TLS	1503.9	1582	ms
	MPF500T, TL, TS, TLS			ms
UFS CC digest run time	MPF100T, TL, TS, TLS			μs
	MPF200T, TL, TS, TLS	33.2	35	μs
	MPF300T, TL, TS, TLS	33.2	35	μs
	MPF500T, TL, TS, TLS			μs
sNVM digest run time ¹	MPF100T, TL, TS, TLS			ms
	MPF200T, TL, TS, TLS	4.4	4.8	ms
	MPF300T, TL, TS, TLS	4.4	4.8	ms
	MPF500T, TL, TS, TLS			ms
UFS UL digest run time	MPF100T, TL, TS, TLS			μs
	MPF200T, TL, TS, TLS	46.6	48.8	μs
	MPF300T, TL, TS, TLS	46.6	48.8	μs
	MPF500T, TL, TS, TLS			μs
User key digest run time ²	MPF100T, TL, TS, TLS			μs
	MPF200T, TL, TS, TLS	525.4	543.3	μs
	MPF300T, TL, TS, TLS	525.4	543.3	μs
	MPF500T, TL, TS, TLS			μs

Parameter	Тур	Max	Unit	Conditions
Time to destroy data in non-volatile memory (recoverable) ^{1, 3}			ms	One iteration of scrubbing
Time to destroy data in non-volatile memory (non-recoverable) ^{1, 4}			ms	One iteration of scrubbing
Time to scrub the fabric data ¹			S	Full scrubbing
Time to scrub the pNVM data (like new) ^{1, 2}			S	Full scrubbing
Time to scrub the pNVM data (recoverable) ^{1, 3}			S	Full scrubbing
Time to scrub the fabric data PNVM data (non-recoverable) 1,4			S	Full scrubbing
Time to verify⁵			S	

1. Total completion time after interning zeroization.

- 2. Like new mode—zeroizes user design security setting and sNVM content.
- 3. Recoverable mode—zeroizes user design security setting, sNVM and factory keys.
- 4. Non-recoverable mode—zeroizes user design security setting, sNVM and factory keys, and factory data required for programming.
- 5. Time to verify after scrubbing completes.

Table 79 • Zeroization Times for MPF300T, TL, TS, and TLS Devices

Parameter	Тур	Max	Unit	Conditions
Time to enter zeroization			ms	Zip flag set
Time to destroy the fabric data ¹			ms	Data erased
Time to destroy data in non-volatile memory (like new) ^{1, 2}			ms	One iteration of scrubbing
Time to destroy data in non-volatile memory (recoverable) ^{1, 3}			ms	One iteration of scrubbing
Time to destroy data in non-volatile memory (non- recoverable) ^{1, 4}			ms	One iteration of scrubbing
Time to scrub the fabric data ¹			S	Full scrubbing
Time to scrub the pNVM data (like new) ^{1, 2}			S	Full scrubbing
Time to scrub the pNVM data (recoverable) ^{1, 3}			S	Full scrubbing
Time to scrub the fabric data pNVM data (non-recoverable) 1,4			S	Full scrubbing
Time to verify⁵			S	

- 1. Total completion time after interning zeroization.
- 2. Like new mode—zeroizes user design security setting and sNVM content.
- 3. Recoverable mode—zeroizes user design security setting, sNVM and factory keys.
- 4. Non-recoverable mode—zeroizes user design security setting, sNVM and factory keys, and factory data required for programming.
- 5. Time to verify after scrubbing completes.

_

Table 80 • Zeroization Times for MPF500T, TL, TS, and TLS Devices

Parameter	Тур	Max	Unit	Conditions
Time to enter zeroization			ms	Zip flag set
Time to destroy the fabric data ¹			ms	Data erased
Time to destroy data in non-volatile memory (like new) ^{1, 2}			ms	One iteration of scrubbing
Time to destroy data in non-volatile memory (recoverable) $^{\rm 1,3}$			ms	One iteration of scrubbing

Parameter	Тур	Max	Unit	Conditions
Time to destroy data in non-volatile memory (non-recoverable) ^{1, 4}			ms	One iteration of scrubbing
Time to scrub the fabric data ¹			S	Full scrubbing
Time to scrub the pNVM data (like new) ^{1, 2}			S	Full scrubbing
Time to scrub the pNVM data (recoverable) ^{1,3}			S	Full scrubbing
Time to scrub the fabric data pNVM data (non-recoverable) $^{\scriptscriptstyle 1}$			S	Full scrubbing
Time to verify ⁵			S	

1. Total completion time after entering zeroization.

- 2. Like new mode—zeroizes user design security setting and sNVM content.
- 3. Recoverable mode—zeroizes user design security setting, sNVM and factory keys.
- 4. Non-recoverable mode—zeroizes user design security setting, sNVM and factory keys, and factory data required for programming.
- 5. Time to verify after scrubbing completes.

7.6.7 Verify Time

The following tables describe verify time.

Table 81 • Standalone Fabric Verify Times

Parameter	Devices	Max	Unit
Standalone verification over JTAG	MPF100T, TL, TS, TLS		S
	MPF200T, TL, TS, TLS	53 ¹	S
	MPF300T, TL, TS, TLS	90 ¹	S
	MPF500T, TL, TS, TLS		S
Standalone verification over SPI	MPF100T, TL, TS, TLS		S
	MPF200T, TL, TS, TLS	37 ²	S
	MPF300T, TL, TS, TLS	55²	S
	MPF500T, TL, TS, TLS		S

- 1. Programmer: FlashPro5, TCK 10 MHz; PC configuration: Intel i7 at 3.6 GHz, 32 GB RAM, Windows 10.
- 2. SmartFusion2 with MSS running at 100 MHz, MSS SPI 0 port running at 6.67 MHz. DirectC version
 - 4.1.

Notes:

- Standalone verify is limited to 2,000 total device hours ove r the industrial –40 °C to 100 °C temperature.
- Use the digest system service, for verify device time more than 2,000 hours.
- Standalone verify checks the programming margin on both the P and N gates of the push-pull cell.
 Digest checks only the P side of the push-pull gate. However, the push-pull gates work in tandem. Digest check is recommended if users believe they will exceed the 2,000-hour verify time specification.

Table 82 • Verify Time by Programming Hardware

Devices	IAP	FlashPro4	FlashPro5	BP	Silicon Sculptor	Units
MPF100T, TL, TS, TLS						
MPF200T, TL, TS, TLS	9	67	53			S
MPF300T, TL, TS, TLS	14	95	90			S

7.9.4 Design Dependence of T PUFT and T WRFT

Some phases of the device initialization are user design-dependent, as the device automatically initializes certain resources to user-specified configurations if those resources are used in the design. It is necessary to compute the overall power-up to functional time by referencing the following tables and adding the relevant phases, according to the design configuration. The following equation refers to timing parameters specified in the above timing diagrams. Please note T_{PCIE}, T_{XCVR}, T_{LSRAM}, and T_{USRAM} can be found in the PolarFire FPGA device power-up and resets user guide UG0725.

TPUFT = TFAB_READY(cold) + max((TPCIE + TXCVR + TLSRAM + TUSRAM), TCALIB)

TWRFT = TFAB_READY(warm) + max((TPCIE + TXCVR + TLSRAM + TUSRAM), TCALIB)

Note: TPCIE, TXCVR, TLSRAM, TUSRAM, and TCALIB are common to both cold and warm reset scenarios.

Auto-initialization of FPGA (if required) occurs in parallel with I/O calibration. The device may be considered fully functional only when the later of these two activities has finished, which may be either one, depending on the configuration, as may be calculated from the following tables. Note that I/O calibration may extend beyond T_{PUFT} (as I/O calibration process is independent of main device power-on and is instead dependent on I/O bank supply relative power-on time and ramp times). The previous timing diagram for power-on initialization shows the earliest that I/Os could be enabled, if the I/O power supplies are powered on before or at the same time as the main supplies.

7.9.5 Cold Reset to Fabric and I/Os (Low Speed) Functional

The following table specifies the minimum, typical, and maximum times from the power supplies reaching the above trip point levels until the FPGA fabric is operational and the FPGA IOs are functional for low-speed (sub 400 MHz) operation.

Table 99 • Cold Boot

Power-On (Cold) Reset to Fabric and I/O Operational	Min	Тур	Max	Unit
Time when input pins start working – $T_{\text{IN}_\text{ACTIVE(cold)}}$	1.17	4.51	7.84	ms
Time when weak pull-ups are enabled – TPU_PD_ACTIVE(cold)	1.17	4.51	7.84	ms
Time when fabric is operational – TFAB_READY(cold)	1.20	4.54	7.87	ms
Time when output pins start driving – Tout_ACTIVE(cold)	1.22	4.56	7.89	ms

7.9.6 Warm Reset to Fabric and I/Os (Low Speed) Functional

The following table specifies the minimum, typical, and maximum times from the negation of the warm reset event until the FPGA fabric is operational and the FPGA IOs are functional for low-speed (sub 400 MHz) operation.

Table 100 • Warm Boot

Warm Reset to Fabric and I/O Operational		Тур	Max	Unit
Time when input pins start working – TIN_ACTIVE(warm)	0.91	1.76	2.62	ms
Time when weak pull-ups/pull-downs are enabled – $T_{PU_PD_ACTIVE(warm)}$	0.91	1.76	2.62	ms
Time when fabric is operational – TFAB_READY(warm)	0.94	1.79	2.65	ms
Time when output pins start driving – Tout_ACTIVE(warm)	0.96	1.81	2.67	ms

7.9.7 Miscellaneous Initialization Parameters

In the following table, T_{FAB_READY} refers to either T_{FAB_READY(cold)} or T_{FAB_READY(warm)} as specified in the previous tables, depending on whether the initialization is occurring as a result of a cold or warm reset, respectively.

Table 107 • SPI Master Mode (PolarFire Master) During Device Initialization

Parameter	Symbol	Min	Тур	Max	Unit	Condition
SCK frequency	Fмsck			40	MHz	

Table 108 • SPI Slave Mode (PolarFire Slave)

Parameter	Symbol	Min	Тур	Max	Unit	Condition
SCK frequency	Fssck			80	MHz	

7.10.3 SmartDebug Probe Switching Characteristics

The following table describes characteristics of SmartDebug probe switching.

Table 109 • SmartDebug Probe Performance Characteristics

Parameter	Symbol	V _{DD} = 1.0 V STD	V _{DD} = 1.0 V - 1	Vod = 1.05 V STD	V _{DD} = 1.05 V – 1	Unit
Maximum frequency of probe signal	Fmax	100	100	100	100	MHz
Minimum delay of probe signal	T_{Min_delay}	13	12	13	12	ns
Maximum delay of probe signal	T _{Max_delay}	13	12	13	12	ns

7.10.4 DEVRST_N Switching Characteristics

_

The following table describes characteristics of DEVRST_N switching.

Table 110 • DEVRST_N Electrical Characteristics

Parameter	Symbol	Min	Тур	Max	Unit	Condition
DEVRST_N ramp rate	DRRAMP		10		μs	It must be a normal clean digital signal, with typical rise and fall times
DEVRST_N assert time	DRASSERT	1			μs	The minimum time for DEVRST_N assertion to be recognized
DEVRST_N de-assert time	DRdeassert	2.75			ms	The minimum time DEVRST_N needs to be de-asserted before assertion

7.10.5 FF_EXIT Switching Characteristics

The following table describes characteristics of FF_EXIT switching.

Table 111 • FF_EXIT Electrical Characteristics

Parameter	Symbol	Min	Тур	Max	Unit	Condition
FF_EXIT_N ramp rate	FFRAMP		10		μs	
Minimum FF_EXIT_N assert time	FFassert	1			μs	The minimum time for FF_EXIT_N to be recognized
Minimum FF_EXIT_N de- assert time	FF deassert	170			μs	The minimum time FF_EXIT_N needs to be de-asserted before assertion

7.11 User Crypto

The following section describes user crypto.

7.11.1 TeraFire 5200B Switching Characteristics

The following table describes TeraFire 5200B switching characteristics.

Table 112 • TeraFire F5200B Switching Characteristics

Parameter	Symbol	VDD = 1.0 V STD	VDD = 1.0 V - 1	VDD = 1.05 V STD	VDD = 1.05 V - 1	Unit	Condition
Operating frequency	Fмах	189		189		MHz	–40 °C to 100 °C

7.11.2 TeraFire 5200B Throughput Characteristics

The following tables for each algorithm describe the TeraFire 5200B throughput characteristics.

Note: Throughput cycle count collected with Athena TeraFire Core and RISCV running at 100 MHz.

Modes	Message Size (bits)	Athena TeraFire Crypto Core Clock-Cycles	CAL Delay In CPU Clock-Cycles
AES-ECB-128 encrypt ¹	128	515	1095
	64K	50157	933
AES-ECB-128 decrypt ¹	128	557	1760
	64K	48385	1524
AES-ECB-256 encrypt ¹	128	531	1203
	64K	58349	1203
AES-ECB-256 decrypt ¹	128	589	1676
	64K	56673	1671
AES-CBC-256 encrypt ¹	128	576	1169
	64K	52547	1169
AES-CBC-256 decrypt ¹	128	585	1744
	64K	48565	1652
AES-GCM-128 encrypt ¹ ,	128	1925	2740
128-bit tag, (full message encrypted/authenticated)	64К	60070	2158
AES-GCM-256 encrypt ¹ ,	128	1973	2268
128-bit tag, (full message encrypted/authenticated)	64K	60102	2151

Table 113 • AES

1. With DPA counter measures.

Table 114 • GMAC

Modes	Message Size (bits)	Athena TeraFire Crypto Core Clock- Cycles	CAL Delay In CPU Clock- Cycles
AES-GCM-256 ¹ , 128-bit tag,	128	1863	2211
(message is only authenticated)	64К	49707	2128

ECDSA SigVer,	1024	6421841	5759	
P-384/SHA-384	8K	6273510	5759	
Key Agreement (KAS), P- 384		5039125	6514	
Point Multiply, P-256 ¹		5176923	4482	
Point Multiply, P-384 ¹		12043199	5319	
Point Multiply, P-521 ¹		26887187	6698	
Point Addition, P-384		3018067	5779	
KeyGen (PKG), P-384		12055368	6908	
Point Verification, P-384		5091	3049	

1. With DPA counter measures.

Table 120 • IFC (RSA)

Modes	Message Size (bits)	Athena TeraFire Crypto Core Clock-Cycles	CAL Delay In CPU Clock- Cycles
Encrypt, RSA-2048, e=65537	2048	436972	8,972
Encrypt, RSA-3072, e=65537	3072	962162	12,583
Decrypt, RSA-2048 ¹ , CRT	2048	26862392	15900
Decrypt, RSA-3072 ¹ , CRT	3072	75153782	22015
Decrypt, RSA-4096, CRT	4096	89235615	23710
Decrypt, RSA-3072, CRT	3072	37880180	18638
SigGen, RSA-3072/SHA-384 ¹ ,CRT, PKCS #1	1024	75197644	20032
V 1 1.5	8K	75213653	19303
SigGen, RSA-3072/SHA-384, PKCS #1, V	1024	148090970	14642
1.5	8K	148102576	13936
SigVer, RSA-3072/SHA-384, e = 65537,	1024	970991	12000
PKCS #1 V 1.5	8K	982011	11769
SigVer, RSA-2048/SHA-256, e = 65537,	1024	443493	8436
PKCS #1 V 1.5	8K	453007	8436
SigGen, RSA-3072/SHA-384, ANSI X9.31	1024	147138254	13945
	8K	147155896	13523
SigVer, RSA-3072/SHA-384, e = 65537,	1024	973269	11313
ANSI X9.31	8K	983255	11146

1. With DPA counter measures.

Table 121 • FFC (DH)

Modes	Message Size (bits)	Athena TeraFire Crypto Core Clock-Cycles	CAL Delay In CPU Clock- Cycles
SigGen, DSA-3072/SHA-3841	1024	27932907	13969
	8K	27942415	13501
SigGen, DSA-3072/SHA-384	1024	12086356	13602
SigVer, DSA-3072/SHA-384	1024	24597916	15662
	8K	24229420	15133

🔨 Міскоснір	company
-------------	---------

SigVer, DSA-2048/SHA-256	1024	9810527	10884
	8К	9597000	10719
Key Agreement (KAS), DH-3072 (p=3072, security=256)		4920705	9338
Key Agreement (KAS), DH-3072 (p=3072, security=256) ¹		78914533	9083

1. With DPA counter measures.

Table 122 • NRBG

Modes	Message Size (bits)	Athena TeraFire Crypto Core Clock-Cycles	CAL Delay In CPU Clock-Cycles
Instantiate: strength, s=256, 384-bit nonce, 384-bit personalization string		18221	2841
Reseed: no additional input, s=256		13585	1180
Reseed: 384-bit additional input, s=256		15922	1342
Generate: (no additional input), prediction	128	15262	1755
resistance enabled, s= 256	8K	27169	8223
Generate: (no additional input), prediction	128	2138	1167
resistance disabled, s= 256	8K	14045	8223
Generate: (384-bit additional input), prediction	128	21299	1944
resistance enabled, s= 256	8K	33206	8949
Generate: (384-bit additional input), prediction	128	11657	1894
resistance disabled, s= 256	8K	23564	8950
Un-instantiate		761	666

1. With DPA counter measures.