E·XFL

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Active
Number of LABs/CLBs	-
Number of Logic Elements/Cells	481000
Total RAM Bits	33792000
Number of I/O	584
Number of Gates	-
Voltage - Supply	0.97V ~ 1.08V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	1152-BBGA, FCBGA
Supplier Device Package	1152-FCBGA (35x35)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/mpf500tl-fcg1152i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

5 Silicon Status

There are three silicon status levels:

- Advanced—initial estimated information based on simulations
- Preliminary—information based on simulation and/or initial characterization
- Production—final production silicon data

The following table shows the status of the PolarFire FPGA device.

Table 2 • PolarFire FPGA Silicon Status

Device	Silicon Status
MPF100T, TL, TS, TLS	Preliminary
MPF200T, TL, TS, TLS	Preliminary
MPF300T, TL, TS, TLS	Preliminary
MPF500T, TL, TS, TLS	Preliminary

The maximum overshoot duration is specified as a high-time percentage over the lifetime of the device. A DC signal is equivalent to 100% of the duty-cycle.

The following table shows the maximum AC input voltage (V_{IN}) overshoot duration for HSIO.

AC (VIN) Overshoot Duration as % at TJ = 100 °C	Condition (V)
100	1.8
100	1.85
100	1.9
100	1.95
100	2
100	2.05
100	2.1
100	2.15
100	2.2
90	2.25
30	2.3
7.5	2.35
1.9	2.4

Table 6 • Maximum Overshoot During Transitions for HSIO

Note: Overshoot level is for VDDI at 1.8 V.

The following table shows the maximum AC input voltage (V_{IN}) undershoot duration for HSIO.

AC (V _I N) Undershoot Duration as % at T₁ = 100 °C	Condition (V)
100	-0.05
100	-0.1
100	-0.15
100	-0.2
100	-0.25
100	-0.3
100	-0.35
100	-0.4
44	-0.45
14	-0.5
4.8	-0.55
1.6	-0.6

Table 7 • Maximum Undershoot During Transitions for HSIO

The following table shows the maximum AC input voltage (V_{IN}) overshoot duration for GPIO.

VICM^{1,3} VICM^{1,3} VICM^{1,3} I/O Bank VICM_RANGE VID² Vid Vid Standard Туре Libero Setting Min (V) Typ (V) Max (V) Min (V) Typ (V) Max (V) HCSL256 GPIO Mid (default) 0.6 1.25 2.35 0.1 0.55 1.1 Low 0.05 0.35 0.8 0.1 0.55 1.1 HCSL18⁵ HSIO Mid (default) 0.6 1.0 1.65 0.1 0.55 1.1 Low 0.05 0.4 0.8 0.1 0.55 1.1 0.6 BUSLVDSE25 GPIO Mid (default) 1.25 2.35 0.05 0.1 VDDIn 0.05 0.8 0.05 0.4 0.1 VDDIn Low MLVDSE25 GPIO Mid (default) 2.4 0.6 1.25 2.35 0.05 0.35 0.05 0.05 0.35 Low 0.4 0.8 2.4 LVPECL33 GPIO Mid (default) 0.6 1.65 2.35 0.05 0.8 2.4 Low 0.05 0.4 0.8 0.05 0.8 2.4 LVPECLE33 0.6 0.05 0.8 GPIO Mid (default) 1.65 2.35 2.4 0.05 0.4 0.8 0.05 0.8 2.4 Low MIPI25 GPIO Mid (default) 0.6 1.25 2.35 0.05 0.2 0.3 0.2 Low 0.05 0.8 0.05 0.2 0.3

- 1. VICM is the input common mode.
- 2. V_{ID} is the input differential voltage.
- 3. VICM rules are as follows:
 - a. VICM must be less than $V_{DDI} 0.4 V$;
 - b. $V_{ICM} + V_{ID}/2$ must be $\langle V_{DDI} + 0.4 V$;
 - c. $V_{ICM} V_{ID}/2$ must be >VSS 0.3 V;
 - d. Any differential input with V_{ICM} ≤0.6 V requires the low common mode setting in Libero (VICM_RANGE=LOW).
- 4. VDDI = 1.8 V, VDDAUX = 2.5 V.
- 5. HSIO receiver only.
- 6. GPIO receiver only.

Table 15 • Differential DC Output Levels

I/O Standard	Bank Type	V _{осм} 1 Min (V)	Vосм Тур (V)	V _{осм} Max (V)	Vod² Min (V)	Vop² Typ (V)	Vod² Max (V)
LVDS33	GPIO		1.2		0.25	0.35	0.45
LVDS25	GPIO		1.2		0.25	0.35	0.45
LCMDS33	GPIO		0.6		0.25	0.35	0.45
LCMDS25	GPIO		0.6		0.25	0.35	0.45
RSDS33	GPIO		1.2		0.17	0.2	0.23
RSDS25	GPIO		1.2		0.17	0.2	0.23
MINILVDS33	GPIO		1.2		0.3	0.4	0.6
MINILVDS25	GPIO		1.2		0.3	0.4	0.6
SUBLVDS33	GPIO		0.9		0.1	0.15	0.3
SUBLVDS25	GPIO		0.9		0.1	0.15	0.3
PPDS33	GPIO		0.8		0.17	0.2	0.23
PPDS25	GPIO		0.8		0.17	0.2	0.23
SLVSE15 ³	GPIO, HSIO		0.2		0.12	0.135	0.15
BUSLVDSE25 ³	GPIO		1.25		0.24	0.262	0.272

I/O Standard	Bank Type	Vосм ¹ Min (V)	Vосм Тур (V)	V _{осм} Max (V)	Voo² Min (V)	Vo⊳² Typ (V)	Vod² Max (V)
MLVDSE25 ³	GPIO		1.25		0.396	0.442	0.453
LVPECLE33 ³	GPIO		1.65		0.664	0.722	0.755
MIPIE25 ³	GPIO		0.25		0.1	0.22	0.3

1. VOCM is the output common mode voltage.

2. Vod is the output differential voltage.

3. Emulated output only.

6.3.3 Complementary Differential DC Input and Output Levels

The following tables list the complementary differential DC I/O levels.

Table 16 • Complementary Differential DC Input Levels

I/O Standard	Vooi Min (V)	V _{DDI} Typ (V)	Vodi Max (V)	V _{ісм^{1,3} Min (V)}	V _{ICM^{1,3} Тур (V)}	V _{ICM^{1,3} Max (V)}	Vı⊳² Min (V)	Vı⊳ Max (V)
SSTL25I	2.375	2.5	2.625	1.164	1.250	1.339	0.1	
SSTL25II	2.375	2.5	2.625	1.164	1.250	1.339	0.1	
SSTL18I	1.71	1.8	1.89	0.838	0.900	0.964	0.1	
SSTL18II	1.71	1.8	1.89	0.838	0.900	0.964	0.1	
SSTL15I	1.425	1.5	1.575	0.698	0.750	0.803	0.1	
SSTL15II	1.425	1.5	1.575	0.698	0.750	0.803	0.1	
SSTL135I	1.283	1.35	1.418	0.629	0.675	0.723	0.1	
SSTL135II	1.283	1.35	1.418	0.629	0.675	0.723	0.1	
HSTL15I	1.425	1.5	1.575	0.698	0.750	0.803	0.1	
HSTL15II	1.425	1.5	1.575	0.698	0.750	0.803	0.1	
HSTL135I	1.283	1.35	1.418	0.629	0.675	0.723	0.1	
HSTL135II	1.283	1.35	1.418	0.629	0.675	0.723	0.1	
HSTL12I	1.14	1.2	1.26	0.559	0.600	0.643	0.1	
HSUL18I	1.71	1.8	1.89	0.838	0.900	0.964	0.1	
HSUL18II	1.71	1.8	1.89	0.838	0.900	0.964	0.1	
HSUL12I	1.14	1.2	1.26	0.559	0.600	0.643	0.1	
POD12I	1.14	1.2	1.26	0.787	0.840	0.895	0.1	
POD12II	1.14	1.2	1.26	0.787	0.840	0.895	0.1	

1. $V_{\mbox{\scriptsize ICM}}$ is the input common mode voltage.

2. V_{ID} is the input differential voltage.

3. VICM rules are as follows:

- a. VICM must be less than VDDI -0.4V;
- b. $V_{ICM} + V_{ID}/2$ must be $\langle V_{DDI} + 0.4 V$;
- c. $V_{ICM} V_{ID}/2$ must be >VSS 0.3 V.

Parameter	Description	Min (%)	Тур	Max (%)	Unit	Condition
Single-ended termination to Vss ^{4, 5}	Internal	-20	120	20	Ω	V _{DDI} = 2.5 V/1.8 V/1.5 V/1.2 V
	parallel termination to Vss	-20	240	20	Ω	V _{DDI} = 2.5 V/1.8 V/1.5 V/1.2 V

1. Measured across P to N with 400 mV bias.

- 2. The venin impedance is calculated based on independent P and N as measured at 50% of $V_{\text{DDI}}.$
- 3. For 50 $\Omega/75 \Omega/150 \Omega$ cases, nearest supported values of 40 $\Omega/60 \Omega/120 \Omega$ are used.

4. Measured at 50% of V_{DDI} .

5. Supported terminations vary with the IO type regardless of V_DDI nominal voltage. Refer to Libero for available combinations.

PolarFire

а 🐼 Міскоснір company

Standard	Description	٧L1	VH1	VID ²	VICM ²	Vmeas ^{3, 4}	VREF ^{1, 5}	Un
HSUL18I	HSUL 1.8 V Class I	V _{REF} – 0.54	V _{REF} + 0.54			VREF	0.90	V
HSUL18II	HSUL 1.8 V Class II	V _{REF} –	V _{REF} + 0 54			Vref	0.90	V
HSUL12	HSUL 1.2 V	V _{REF} –	V _{REF} +			Vref	0.60	V
		.22	.22					
POD12I	Pseudo open drain (POD) logic 1.2 V Class I	Vref – .15	V _{REF} + .15			Vref	0.84	V
POD12II	POD 1.2 V Class II	V _{REF} – .15	V _{REF} + .15			Vref	0.84	V
LVDS33	Low-voltage differential signaling (LVDS) 3.3 V	V _{ICM} – .125	V _{ICM} + .125	0.250	1.250	0		V
LVDS25	LVDS 2.5 V	Vісм – .125	V _{ICM} + .125	0.250	1.250	0		V
LVDS18	LVDS 1.8 V	V _{ICM} – .125	V _{ICM} + .125	0.250	0.900	0		V
RSDS33	RSDS 3.3 V	V _{ICM} – .125	V _{ICM} + .125	0.250	1.250	0		V
RSDS25	RSDS 2.5 V	V _{ICM} – .125	V _{ICM} + .125	0.250	1.250	0		V
RSDS18	RSDS 1.8 V	Vісм – .125	V _{ICM} + .125	0.250	1.250	0		V
MINILVDS33	Mini-LVDS 3.3 V	V _{ICM} – .125	V _{ICM} + .125	0.250	1.250	0		V
MINILVDS25	Mini-LVDS 2.5 V	V _{ICM} – .125	V _{ICM} + .125	0.250	1.250	0		V
MINILVDS18	Mini-LVDS 1.8 V	V _{ICM} – .125	V _{ICM} + .125	0.250	1.250	0		V
SUBLVDS33	Sub-LVDS 3.3 V	V _{ICM} – .125	V _{ICM} + .125	0.250	0.900	0		V
SUBLVDS25	Sub-LVDS 2.5 V	V _{ICM} – .125	V _{ICM} + .125	0.250	0.900	0		V
SUBLVDS18	Sub-LVDS 1.8 V	Vісм – .125	V _{ICM} + .125	0.250	0.900	0		V
PPDS33	Point-to-point differential signaling 3.3 V	V _{ICM} – .125	V _{ICM} + .125	0.250	0.800	0		V
PPDS25	PPDS 2.5 V	Vісм – .125	V _{ICM} + .125	0.250	0.800	0		V
PPDS18	PPDS 1.8 V	Vісм – .125	V _{ICM} + .125	0.250	0.800	0		V
SLVS33	Scalable low- voltage signaling	V _{ICM} – .125	V _{ICM} + .125	0.250	0.200	0		V

PolarFire

Standard	Description	Rref (Ω)	Cref (pF)	Vmeas (V)	Vref (V)
SSTL18I	SSTL 1.8 V Class I	50	0	VREF	0.9
SSTL18II	SSTL 1.8 V Class II	50	0	VREF	0.9
SSTL15I	SSTL 1.5 V Class I	50	0	VREF	0.75
SSTL15II	SSTL 1.5 V Class II	50	0	VREF	0.75
SSTL135I	SSTL 1.35 V Class I	50	0	VREF	0.675
SSTL135II	SSTL 1.35 V Class II	50	0	VREF	0.675
HSTL15I	High-speed transceiver logic (HSTL) 1.5 V Class I	50	0	Vref	0.75
HSTL15II	HSTL 1.5 V Class II	50	0	VREF	0.75
HSTL135I	HSTL 1.35 V Class I	50	0	VREF	0.675
HSTL135II	HSTL 1.35 V Class II	50	0	VREF	0.675
HSTL12	HSTL 1.2 V	50	0	VREF	0.6
HSUL18I	High-speed unterminated logic 1.8 V Class I	50	0	Vref	0.9
HSUL18II	HSUL 1.8 V Class II	50	0	VREF	0.9
HSUL12	HSUL 1.2 V	50	0	VREF	0.6
POD12I	Pseudo open drain (POD) logic 1.2 V Class I	50	0	Vref	0.84
POD12II	POD 1.2 V Class II	50	0	VREF	0.84
LVDS33	LVDS 3.3 V	100	0	01	0
LVDS25	LVDS 2.5 V	100	0	01	0
LVDS18	LVDS 1.8 V	100	0	01	0
RSDS33	Reduced swing differential signaling 3.3 V	100	0	01	0
RSDS25	RSDS 2.5 V	100	0	01	0
RSDS18	RSDS 1.8 V	100	0	01	0
MINILVDS33	Mini-LVDS 3.3 V	100	0	01	0
MINILVDS25	Mini-LVDS 2.5 V	100	0	01	0
SUBLVDS33	Sub-LVDS 3.3 V	100	0	01	0
SUBLVDS25	Sub-LVDS 2.5 V	100	0	01	0
PPDS33	Point-to-point differential signaling 3.3 V	100	0	01	0
PPDS25	PPDS 2.5 V	100	0	01	0
BUSLVDSE25	Bus LVDS	100	0	01	0
MLVDSE25	Multipoint LVDS 2.5 V	100	0	01	0
LVPECLE33	Low-voltage positive emitter-coupled logic	100	0	01	0
MIPIE25	Mobile industry processor interface 2.5 V	100	0	01	0

1. The value given is the differential output voltage.

Figure 2 • Output Delay Measurement—Differential Test Setup

7.1.3 Input Buffer Speed

The following tables provide information about input buffer speed.

Table 24 • HSIO Maximum Input Buffer Speed

Standard	STD	-1	Unit
LVDS18	1250	1250	Mbps
RSDS18	800	800	Mbps
MINILVDS18	800	800	Mbps
SUBLVDS18	800	800	Mbps
PPDS18	800	800	Mbps
SLVS18	800	800	Mbps
SSTL18I	800	1066	Mbps
SSTL18II	800	1066	Mbps
SSTL15I	1066	1333	Mbps
SSTL15II	1066	1333	Mbps
SSTL135I	1066	1333	Mbps
SSTL135II	1066	1333	Mbps

PolarFire

Standard	STD	-1	Unit
HSTL15I	900	1100	Mbps
HSTL15II	900	1100	Mbps
HSTL135I	1066	1066	Mbps
HSTL135II	1066	1066	Mbps
HSUL18I	400	400	Mbps
HSUL18II	400	400	Mbps
HSUL12	1066	1333	Mbps
HSTL12	1066	1266	Mbps
POD12I	1333	1600	Mbps
POD12II	1333	1600	Mbps
LVCMOS18 (12 mA)	500	500	Mbps
LVCMOS15 (10 mA)	500	500	Mbps
LVCMOS12 (8 mA)	300	300	Mbps

1. Performance is achieved with $V_{\text{ID}} \ge 200 \text{ mV}$.

Table 25 • GPIO Maximum Input Buffer Speed

Standard	STD	-1	Unit
LVDS25/LVDS33/LCMDS25/LCMDS33	1250	1600	Mbps
RSDS25/RSDS33	800	800	Mbps
MINILVDS25/MINILVDS33	800	800	Mbps
SUBLVDS25/SUBLVDS33	800	800	Mbps
PPDS25/PPDS33	800	800	Mbps
SLVS25/SLVS33	800	800	Mbps
SLVSE15	800	800	Mbps
HCSL25/HCSL33	800	800	Mbps
BUSLVDSE25	800	800	Mbps
MLVDSE25	800	800	Mbps
LVPECL33	800	800	Mbps
SSTL25I	800	800	Mbps
SSTL25II	800	800	Mbps
SSTL18I	800	800	Mbps
SSTL18II	800	800	Mbps
SSTL15I	800	1066	Mbps
SSTL15II	800	1066	Mbps
HSTL15I	800	900	Mbps
HSTL15II	800	900	Mbps
HSUL18I	400	400	Mbps
HSUL18II	400	400	Mbps
PCI	500	500	Mbps
LVTTL33 (20 mA)	500	500	Mbps
LVCMOS33 (20 mA)	500	500	Mbps
LVCMOS25 (16 mA)	500	500	Mbps

Parameter	Symbol	V _{DD} = 1.0 V STD	V _{DD} = 1.0 V –1	V _{DD} = 1.05 V STD	V _{DD} = 1.05 V –1	Unit	Condition
Regional clock duty cycle distortion	Tdcdr	120	120	120	120	ps	At 250 MHz

The following table provides clocking specifications from -40 °C to 100 °C.

Table 36 • High-Speed I/O Clock Characteristics (-40 °C to 100 °C)

Parameter	Symbol	VDD = 1.0 V STD	V _{DD} = 1.0 V –1	V _{DD} = 1.05 V STD	V _{DD} = 1.05 V –1	Unit	Condition
High-speed I/O clock Fmax	Fмахв	1000	1250	1000	1250	MHz	HSIO and GPIO
High-speed I/O clock skew ¹	F SKEWB	30	20	30	20	ps	HSIO without bridging
	F SKEWB	600	500	600	500	ps	HSIO with bridging
	F SKEWB	45	35	45	35	ps	GPIO without bridging
	F SKEWB	75	60	75	60	ps	GPIO with bridging
High-speed	Tdcb	90	90	90	90	ps	HSIO without bridging
I/O clock	Тосв	115	115	115	115	ps	HSIO with bridging
distortion ²	Тосв	90	90	90	90	ps	GPIO without bridging
	Тосв	115	115	115	115	ps	GPIO with bridging

- 1. F_{SKEWB} is the worst-case clock-tree skew observable between sequential I/O elements. Clock-tree skew is significantly smaller at I/O registers close to each other and fed by the same or adjacent clock-tree branches. Use the Microsemi Timing Analyzer tool to evaluate clock skew specific to the design.
- 2. Parameters listed in this table correspond to the worst-case duty cycle distortion observable at the I/O flip flops. IBIS should be used to calculate any additional duty cycle distortion that might be caused by asymmetrical rise/fall times for any I/O standard.

7.2.2 PLL

The following table provides information about PLL.

Table 37 • PLL Electrical Characteristics

Parameter	Symbol	Min	Тур	Max	Unit
Input clock frequency (integer mode)	Fini	1		1250	MHz
Input clock frequency (fractional mode)	Finf	10		1250	MHz
Minimum reference or feedback pulse width ¹	Finpulse	200			ps
Frequency at the Frequency Phase Detector (PFD) (integer mode)	Fphdeti	1		312	MHz
Frequency at the PFD (fractional mode)	Fphdetf	10	50	125	MHz
Allowable input duty cycle	FINDUTY	25		75	%

Parameter	Symbol	Min	Тур	Max	Unit
Operating current (VDD18)	RCscvpp			0.1	μΑ
Operating current (VDD)	RCscvdd			60.7	μΑ

7.3 Fabric Specifications

The following section describes specifications for the fabric.

7.3.1 Math Blocks

The following tables describe math block performance.

Table 41 • Math Block Performance Extended Commercial Range (0 °C to 100 °C)

Parameter	Symbol	Modes	V _{DD} = 1.0 V – STD	V _{DD} = 1.0 V - 1	V _{DD} = 1.05 V – STD	V _{DD} = 1.05 V - 1	Unit
Maximum F _{MAX} operating frequency - - -	Fмах	18 × 18 multiplication	370	470	440	500	MHz
	18 × 18 multiplication summed with 48-bit input	370	470	440	500	MHz	
	18 × 19 multiplier pre-adder ROM mode	365	465	435	500	MHz	
		Two 9 × 9 multiplication	370	470	440	500	MHz
	9 × 9 dot product (DOTP)	370	470	440	500	MHz	
		Complex 18 × 19 multiplication	360	455	430	500	MHz

Table 42 • Math Block Performance Industrial Range (-40 °C to 100 °C)

Parameter	Symbol	Modes	VDD = 1.0 V - STD	V _{DD} = 1.0 V – 1	V _{DD} = 1.05 V – STD	V _{DD} = 1.05 V – 1	Unit
Maximum operating	Fmax	18 × 18 multiplication	365	465	435	500	MHz
frequency .	18 × 18 multiplication summed with 48-bit input	365	465	435	500	MHz	
	18 × 19 multiplier pre-adder ROM mode	355	460	430	500	MHz	
	Two 9 × 9 multiplication	365	465	435	500	MHz	
	9 × 9 DOTP	365	465	435	500	MHz	
		Complex 18 × 19 multiplication	350	450	425	500	MHz

7.3.2 SRAM Blocks

The following tables describe the LSRAM blocks' performance.

Parameter	V _{DD} = 1.0 V – STD	V _{DD} = 1.0 V - 1	V _{DD} = 1.05 V – STD	V _{DD} = 1.05 V - 1	Unit	Condition
Operating frequency	343	428	343	428	MHz	Two-port, all supported widths, pipelined, simple-write, and write- feed-through
-	309	428	309	428	MHz	Two-port, all supported widths, non-pipelined, simple-write, and write-feed-through
-	343	428	343	428	MHz	Dual-port, all supported widths, pipelined, simple-write, and write- feed-through
-	309	428	309	428	MHz	Dual-port, all supported widths, non-pipelined, simple-write, and write-feed-through
-	343	428	343	428	MHz	Two-port pipelined ECC mode, pipelined, simple-write, and write- feed-through
-	279	295	279	295	MHz	Two-port non-pipelined ECC mode, pipelined, simple-write, and write-feed-through
-	343	428	343	428	MHz	Two-port pipelined ECC mode, non-pipelined, simple-write, and write-feed-through
-	196	285	196	285	MHz	Two-port non-pipelined ECC mode, non-pipelined, simple- write, and write-feed-through
-	274	285	274	285	MHz	Two-port, all supported widths, pipelined, and read-before-write
-	274	285	274	285	MHz	Two-port, all supported widths, non-pipelined, and read-before- write
-	274	285	274	285	MHz	Dual-port, all supported widths, pipelined, and read-before-write
-	274	285	274	285	MHz	Dual-port, all supported widths, non-pipelined, and read-before- write
-	274	285	274	285	MHz	Two-port pipelined ECC mode, pipelined, and read-before-write
-	274	285	274	285	MHz	Two-port non-pipelined ECC mode, pipelined, and read-before- write
-	274	285	274	285	MHz	Two-port pipelined ECC mode, non-pipelined, and read-before- write
	193	285	193	285	MHz	Two-port non-pipelined ECC mode, non-pipelined, and read- before-write

Table 48 • Transceiver Differential Reference Clock I/O Standards

I/O Standard	Comment
LVDS25	For DC input levels, se e table Differential DC Input and Output Levels.
HCSL25 (for PCIe)	

Note: The transceiver reference clock differential receiver supports V_{CM} common mode.

7.4.4 Transceiver Interface Performance

The following table describes the single-ended I/O standards supported as transceiver reference clocks.

Table 49 • Transceiver Single-Ended Reference Clock I/O Standards

I/O Standard	Comment
LVCMOS25	For DC input levels, see table DC Input and Output Levels.

7.4.5 Transmitter Performance

The following tables describe performance of the transmitter.

Table 50 • Transceiver Reference Clock Input Termination

Parameter	Symbol	Min	Тур	Max	Unit
Single-ended termination	RefTerm		50		Ω
Single-ended termination	RefTerm		75		Ω
Single-ended termination	RefTerm		150		Ω
Differential termination	RefDiffTerm		115 ¹		Ω
Power-up termination			>50K		Ω

1. Measured at VCM= 1.2 V and VID= 350 mV.

Note: All pull-ups are disabled at power-up to allow hot plug capability.

Table 51 • PolarFire Transceiver User Interface Clocks

Parameter	Modes ¹	STD Min	STD Max	–1 Min	-1 Max	Unit
Transceiver TX_CLK	8-bit, max data rate = 1.6 Gbps		200		200	MHz
range (non-	10-bit, max data rate = 1.6 Gbps		160		160	MHz
with global or regional	16-bit, max data rate = 4.8 Gbps		300		300	MHz
fabric clocks)	20-bit, max data rate = 6.0 Gbps		300		300	MHz
	32-bit, max data rate =		325		325	MHz
	10.3125 Gbps (–STD) / 12.7 Gbps (–1)1					
	40-bit, max data rate =		260		320	MHz
	10.3125 Gbps (–STD) / 12.7 Gbps (–1)1					
	64-bit, max data rate =		165		160	MHz
	10.3125 Gbps (–STD) / 12.7 Gbps (–1)1					
	80-bit, max data rate =		130		130	MHz
	10.3125 Gbps(–STD) / 12.7 Gbps (–1)1					
	Fabric pipe mode 32-bit, max data rate = 6.0 Gbps		150		150	MHz
	8-bit, max data rate = 1.6 Gbps		200		200	MHz

Table 75 • FPGA Programming Cycles Lifetime Factor

Programming T	Programming Cycles	LF
–40 °C to 100 °C	500	1
–40 °C to 85 °C	1000	0.8
–40 °C to 55 °C	2000	0.6

Notes:

- The maximum number of device digest cycles is 100K.
- Digests are operational only over the -40 °C to 100 °C temperature range.
- After a program cycle, an additional N digests cycles are allowed with the resultant retention characteristics for the total operating and storage temperature shown.
- Retention is specified for total device storage and operating temperature.
- All temperatures are junction temperatures (T_J).
- Example 1—500 digests cycles are performed between programming cycles. N = 500. The operating conditions are -40 °C to 85 °C TJ. 501 programming cycles have occurred. The retention under these operating conditions is 20 × LF = 20 × .8 = 16 years.
- Example 2—one programming cycle has occurred, N = 1500 digest cycles have occurred. Temperature range is -40 °C to 100 °C. The resultant retention is 10 × LF or 10 years over the industrial temperature range.

7.6.5 Digest Time

The following table describes digest time.

Table 76 • Digest Times

Parameter	Devices	Тур	Max	Unit
Setup time	All	2		μs
Fabric digest run time	MPF100T, TL, TS, TLS			ms
	MPF200T, TL, TS, TLS	1005	1072	ms
	MPF300T, TL, TS, TLS	1503.9	1582	ms
	MPF500T, TL, TS, TLS			ms
UFS CC digest run time	MPF100T, TL, TS, TLS			μs
	MPF200T, TL, TS, TLS	33.2	35	μs
	MPF300T, TL, TS, TLS	33.2	35	μs
	MPF500T, TL, TS, TLS			μs
sNVM digest run time ¹	MPF100T, TL, TS, TLS			ms
	MPF200T, TL, TS, TLS	4.4	4.8	ms
	MPF300T, TL, TS, TLS	4.4	4.8	ms
	MPF500T, TL, TS, TLS			ms
UFS UL digest run time	MPF100T, TL, TS, TLS			μs
	MPF200T, TL, TS, TLS	46.6	48.8	μs
	MPF300T, TL, TS, TLS	46.6	48.8	μs
	MPF500T, TL, TS, TLS			μs
User key digest run time ²	MPF100T, TL, TS, TLS			μs
	MPF200T, TL, TS, TLS	525.4	543.3	μs
	MPF300T, TL, TS, TLS	525.4	543.3	μs
	MPF500T, TL, TS, TLS			μs

Parameter	Devices	Тур	Max	Unit
UFS UPERM digest run time	MPF100T, TL, TS, TLS			μs
	MPF200T, TL, TS, TLS	33.2	34.9	μs
	MPF300T, TL, TS, TLS	33.2	34.9	μs
	MPF500T, TL, TS, TLS			μs
Factory digest run time	MPF100T, TL, TS, TLS			μs
	MPF200T, TL, TS, TLS	493.6	510.1	μs
	MPF300T, TL, TS, TLS	493.6	510.1	μs
	MPF500T, TL, TS, TLS			μs

1. The entire sNVM is used as ROM.

2. Valid for user key 0 through 6.

Note: These times do not include the power-up to functional timing overhead when using digest checks on power-up.

7.6.6 Zeroization Time

The following tables describe zeroization time. A zeroization operation is counted as one programming cycle.

Table 77 • Zeroization Times for MPF100T, TL, TS, and TLS Devices

Parameter	Тур	Max	Unit	Conditions
Time to enter zeroization			ms	Zip flag set
Time to destroy the fabric data ¹			ms	Data erased
Time to destroy data in non-volatile memory (like new) ^{1, 2}			ms	One iteration of scrubbing
Time to destroy data in non-volatile memory (recoverable) $^{\rm 1,3}$			ms	One iteration of scrubbing
Time to destroy data in non-volatile memory (non-recoverable) ^{1, 4}			ms	One iteration of scrubbing
Time to scrub the fabric data ¹			S	Full scrubbing
Time to scrub the pNVM data (like new) ^{1, 2}			S	Full scrubbing
Time to scrub the pNVM data (recoverable) ^{1,3}			S	Full scrubbing
Time to scrub the fabric data pNVM data (non-recoverable) ^{1,4}			S	Full scrubbing
Time to verify ⁵			S	

- 1. Total completion time after entering zeroization.
- 2. Like new mode—zeroizes user design security setting and sNVM content.
- 3. Recoverable mode—zeroizes user design security setting, sNVM and factory keys.
- 4. Non-recoverable mode—zeroizes user design security setting, sNVM and factory keys, and factory data required for programming.
- 5. Time to verify after scrubbing completes.

Table 78 • Zeroization Times for MPF200T, TL, TS, and TLS Devices

Parameter	Тур	Max	Unit	Conditions
Time to enter zeroization			ms	Zip flag set
Time to destroy the fabric data ¹			ms	Data erased
Time to destroy data in non-volatile memory (like new) 1,2			ms	One iteration of scrubbing

Parameter	Тур	Max	Unit	Conditions
Time to destroy data in non-volatile memory (recoverable) ^{1, 3}			ms	One iteration of scrubbing
Time to destroy data in non-volatile memory (non-recoverable) ^{1, 4}			ms	One iteration of scrubbing
Time to scrub the fabric data ¹			S	Full scrubbing
Time to scrub the pNVM data (like new) ^{1, 2}			S	Full scrubbing
Time to scrub the pNVM data (recoverable) ^{1, 3}			S	Full scrubbing
Time to scrub the fabric data PNVM data (non-recoverable) 1,4			S	Full scrubbing
Time to verify⁵			S	

1. Total completion time after interning zeroization.

- 2. Like new mode—zeroizes user design security setting and sNVM content.
- 3. Recoverable mode—zeroizes user design security setting, sNVM and factory keys.
- 4. Non-recoverable mode—zeroizes user design security setting, sNVM and factory keys, and factory data required for programming.
- 5. Time to verify after scrubbing completes.

Table 79 • Zeroization Times for MPF300T, TL, TS, and TLS Devices

Parameter	Тур	Max	Unit	Conditions
Time to enter zeroization			ms	Zip flag set
Time to destroy the fabric data ¹			ms	Data erased
Time to destroy data in non-volatile memory (like new) ^{1, 2}			ms	One iteration of scrubbing
Time to destroy data in non-volatile memory (recoverable) ^{1, 3}			ms	One iteration of scrubbing
Time to destroy data in non-volatile memory (non- recoverable) ^{1, 4}			ms	One iteration of scrubbing
Time to scrub the fabric data ¹			S	Full scrubbing
Time to scrub the pNVM data (like new) ^{1, 2}			S	Full scrubbing
Time to scrub the pNVM data (recoverable) ^{1, 3}			S	Full scrubbing
Time to scrub the fabric data pNVM data (non-recoverable) 1,4			S	Full scrubbing
Time to verify⁵			S	

- 1. Total completion time after interning zeroization.
- 2. Like new mode—zeroizes user design security setting and sNVM content.
- 3. Recoverable mode—zeroizes user design security setting, sNVM and factory keys.
- 4. Non-recoverable mode—zeroizes user design security setting, sNVM and factory keys, and factory data required for programming.
- 5. Time to verify after scrubbing completes.

_

Table 80 • Zeroization Times for MPF500T, TL, TS, and TLS Devices

Parameter	Тур	Max	Unit	Conditions
Time to enter zeroization			ms	Zip flag set
Time to destroy the fabric data ¹			ms	Data erased
Time to destroy data in non-volatile memory (like new) ^{1, 2}			ms	One iteration of scrubbing
Time to destroy data in non-volatile memory (recoverable) $^{\rm 1,3}$			ms	One iteration of scrubbing

Figure 5 • Cold Reset Timing

Notes:

- The previous diagram showsthe case where VDDI/VDDAUX of I/O banks are powered either before
 or sufficiently soon after VDD/VDD18/VDD25 that the I/O bank enable time is measured from the
 assertion time of VDD/VDD18/VDD25 (that is, the PUFT specification). If VDDI/VDDAUX of I/O banks
 are powered sufficiently after VDD/VDD18/VDD25, then the I/O bank enable time is measured from
 the assertion of VDDI/VDDAUX and is not specified by the PUFT specification. In this case, I/O
 operation is indicated by the assertion of BANK_i_VDDI_STATUS, rather than being measured
 relative to FABRIC_POR_N negation.
- AUTOCALIB_DONE assertion indicates the completion of calibration for any I/O banks specified by the user for auto-calibration. AUTOCALIB_DONE asserts independently of DEVICE_INIT_DONE. It may assert before or after DEVICE_INIT_DONE and is determined by the following:
 - How long after VDD/VDD18/VDD25 that VDDI/VDDAUX are powered on. Note that if any of the user-specified I/O banks are not powered on within the auto-calibration timeout window, then AUTOCALIB DONE doesn't assert until after this timeout.
 - The specified ramp times of VDDI of each I/O bank designated for auto-calibration.
 - How much auto-initialization is to be performed for the PCIe, SERDES transceivers, and fabric LSRAMs.
- If any of the I/O banks specified for auto-calibration do not have their VDDI/VDDAUX powered on within the auto-calibration timeout window, then it will be approximately auto-calibrated whenever VDDI/VDDAUX is subsequently powered on. To obtain an accurate calibration however, on such IO banks, it is necessary to initiate a re-calibration (using CALIB_START from fabric).
- AVM_ACTIVE only asserts if avionics mode is being used. It is asserted when the later of DEVICE_INIT_DONE or AUTOCALIB_DONE assert.

7.9.2 Warm Reset Initialization Sequence

The following warm reset timing diagram shows the initialization sequencing of the device when either DEVRST_N or TAMPER_RESET_DEVICE signals are asserted.

7.9.4 Design Dependence of T PUFT and T WRFT

Some phases of the device initialization are user design-dependent, as the device automatically initializes certain resources to user-specified configurations if those resources are used in the design. It is necessary to compute the overall power-up to functional time by referencing the following tables and adding the relevant phases, according to the design configuration. The following equation refers to timing parameters specified in the above timing diagrams. Please note T_{PCIE}, T_{XCVR}, T_{LSRAM}, and T_{USRAM} can be found in the PolarFire FPGA device power-up and resets user guide UG0725.

TPUFT = TFAB_READY(cold) + max((TPCIE + TXCVR + TLSRAM + TUSRAM), TCALIB)

TWRFT = TFAB_READY(warm) + max((TPCIE + TXCVR + TLSRAM + TUSRAM), TCALIB)

Note: TPCIE, TXCVR, TLSRAM, TUSRAM, and TCALIB are common to both cold and warm reset scenarios.

Auto-initialization of FPGA (if required) occurs in parallel with I/O calibration. The device may be considered fully functional only when the later of these two activities has finished, which may be either one, depending on the configuration, as may be calculated from the following tables. Note that I/O calibration may extend beyond T_{PUFT} (as I/O calibration process is independent of main device power-on and is instead dependent on I/O bank supply relative power-on time and ramp times). The previous timing diagram for power-on initialization shows the earliest that I/Os could be enabled, if the I/O power supplies are powered on before or at the same time as the main supplies.

7.9.5 Cold Reset to Fabric and I/Os (Low Speed) Functional

The following table specifies the minimum, typical, and maximum times from the power supplies reaching the above trip point levels until the FPGA fabric is operational and the FPGA IOs are functional for low-speed (sub 400 MHz) operation.

Table 99 • Cold Boot

Power-On (Cold) Reset to Fabric and I/O Operational	Min	Тур	Max	Unit
Time when input pins start working – $T_{\text{IN}_\text{ACTIVE(cold)}}$	1.17	4.51	7.84	ms
Time when weak pull-ups are enabled – TPU_PD_ACTIVE(cold)	1.17	4.51	7.84	ms
Time when fabric is operational – TFAB_READY(cold)	1.20	4.54	7.87	ms
Time when output pins start driving – Tout_ACTIVE(cold)	1.22	4.56	7.89	ms

7.9.6 Warm Reset to Fabric and I/Os (Low Speed) Functional

The following table specifies the minimum, typical, and maximum times from the negation of the warm reset event until the FPGA fabric is operational and the FPGA IOs are functional for low-speed (sub 400 MHz) operation.

Table 100 • Warm Boot

Warm Reset to Fabric and I/O Operational	Min	Тур	Max	Unit
Time when input pins start working – TIN_ACTIVE(warm)	0.91	1.76	2.62	ms
Time when weak pull-ups/pull-downs are enabled – $T_{PU_PD_ACTIVE(warm)}$	0.91	1.76	2.62	ms
Time when fabric is operational – TFAB_READY(warm)	0.94	1.79	2.65	ms
Time when output pins start driving – Tout_ACTIVE(warm)	0.96	1.81	2.67	ms

7.9.7 Miscellaneous Initialization Parameters

In the following table, T_{FAB_READY} refers to either T_{FAB_READY(cold)} or T_{FAB_READY(warm)} as specified in the previous tables, depending on whether the initialization is occurring as a result of a cold or warm reset, respectively.

🔨 Міскоснір	company
-------------	---------

SigVer, DSA-2048/SHA-256	1024	9810527	10884
	8К	9597000	10719
Key Agreement (KAS), DH-3072 (p=3072, security=256)		4920705	9338
Key Agreement (KAS), DH-3072 (p=3072, security=256) ¹		78914533	9083

1. With DPA counter measures.

Table 122 • NRBG

Modes	Message Size (bits)	Athena TeraFire Crypto Core Clock-Cycles	CAL Delay In CPU Clock-Cycles
Instantiate: strength, s=256, 384-bit nonce, 384-bit personalization string		18221	2841
Reseed: no additional input, s=256		13585	1180
Reseed: 384-bit additional input, s=256		15922	1342
Generate: (no additional input), prediction resistance enabled, s= 256	128	15262	1755
	8K	27169	8223
Generate: (no additional input), prediction resistance disabled, s= 256	128	2138	1167
	8K	14045	8223
Generate: (384-bit additional input), prediction resistance enabled, s= 256	128	21299	1944
	8K	33206	8949
Generate: (384-bit additional input), prediction resistance disabled, s= 256	128	11657	1894
	8K	23564	8950
Un-instantiate		761	666

1. With DPA counter measures.