Welcome to **E-XFL.COM** What is "Embedded - Microcontrollers"? "Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications. Applications of "<u>Embedded - Microcontrollers</u>" | Details | | |----------------------------|--| | Product Status | Not For New Designs | | Core Processor | R8C | | Core Size | 16-Bit | | Speed | 20MHz | | Connectivity | SIO, UART/USART | | Peripherals | LED, POR, Voltage Detect, WDT | | Number of I/O | 22 | | Program Memory Size | 12KB (12K x 8) | | Program Memory Type | FLASH | | EEPROM Size | - | | RAM Size | 768 x 8 | | Voltage - Supply (Vcc/Vdd) | 2.7V ~ 5.5V | | Data Converters | A/D 12x10b | | Oscillator Type | Internal | | Operating Temperature | -20°C ~ 85°C (TA) | | Mounting Type | Surface Mount | | Package / Case | 32-LQFP | | Supplier Device Package | 32-LQFP (7x7) | | Purchase URL | https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f21113fp-u0 | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong #### Notice - 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website. - Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others. - 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. - 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information. - 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. - 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein. - 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc. - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots. - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; safety equipment; and medical equipment not specifically designed for life support. - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life. - 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges. - 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you. - 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations. - 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics - 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries. - (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries. - (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics. # R8C/11 Group SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER REJ03B0034-0160 Rev.1.60 Jan 27, 2006 ### 1. Overview This MCU is built using the high-performance silicon gate CMOS process using a R8C/Tiny Series CPU core and is packaged in a 32-pin plastic molded LQFP. This MCU operates using sophisticated instructions featuring a high level of instruction efficiency. With 1M bytes of address space, it is capable of executing instructions at high speed. ### 1.1 Applications Electric household appliance, office equipment, housing equipment (sensor, security), general industrial equipment, audio, etc. R8C/11 Group 1. Overview ### 1.2 Performance Overview Table 1.1. lists the performance outline of this MCU. **Table 1.1 Performance outline** | | Item | Performance | |-----------------|-------------------------------------|---| | CPU | Number of basic instructions | 89 instructions | | | Minimum instruction execution time | 50 ns (f(XIN) = 20 MHz, VCC = 3.0 to 5.5 V) | | | | 100 ns $(f(XIN) = 10 \text{ MHz}, VCC = 2.7 \text{ to } 5.5 \text{ V})$ | | | Operating mode | Single-chip | | | Address space | 1M bytes | | | Memory capacity | See Table 1.2. | | | Port | Input/Output: 22 (including LED drive port), Input: 2 | | | LED drive port | I/O port: 8 | | | Timer | Timer X: 8 bits x 1 channel, Timer Y: 8 bits x 1 channel, | | | | Timer Z: 8 bits x 1 channel | | | | (Each timer equipped with 8-bit prescaler) | | | | Timer C: 16 bits x 1 channel | | | | (Circuits of input capture and output compare) | | - | Serial Interface | •1 channel | | | Conai mionaco | Clock synchronous, UART | | | | •1 channel | | | | UART | | | A/D converter | 10-bit A/D converter: 1 circuit, 12 channels | | | Watchdog timer | 15 bits x 1 (with prescaler) | | | Interrupt | Internal: 11 factors, External: 5 factors, | | | пистарі | Software: 4 factors, Priority level: 7 levels | | - | Clock generation circuit | 2 circuits | | | Clock generation circuit | Main clock generation circuit (Equipped with a built-in | | | | feedback resistor) | | | | On-chip oscillator (high speed, low speed) | | | | On High-speed on-chip oscillator the frequency adjust- | | | | ment function is usable. | | | Oscillation stop detection function | Main clock oscillation stop detection function | | | Voltage detection circuit | Included | | | Power on reset circuit | Included | | Electrical | Supply voltage | Vcc = 3.0 to 5.5 V (f(XIN) = 20 MHz) | | characteristics | , | VCC = 2.7 to 5.5 V (f(XIN) = 10 MHz) | | | Power consumption | Typ. 9 mA ($VCC = 5.0 \text{ V}$, ($f(XIN) = 20 \text{ MHz}$) | | | · | Typ. 5 mA ($VCC = 3.0 \text{ V}$, ($f(XIN) = 10 \text{ MHz}$) | | | | Typ. 35 μA (Vcc = 3.0 V, Wait mode, Peripheral clock off) | | | | Typ. 0.7 μA (Vcc = 3.0 V, Stop mode) | | Flash memory | Program/erase supply voltage | VCC = 2.7 to 5.5 V | | · + | Program/erase endurance | 100 times | | | pient temperature | -20 to 85 °C | | - | | -40 to 85 °C (D-version) | | Package | | 32-pin plastic mold LQFP | R8C/11 Group 1. Overview ### 1.4 Product Information Table 1.2 lists the product information. **Table 1.2 Product Information** As of January 2006 | Type No. | ROM capacity | RAM capacity | Package type | Remarks | |-------------|--------------|--------------|--------------|----------------------| | R5F21112FP | 8K bytes | 512 bytes | PLQP0032GB-A | Flash memory version | | R5F21113FP | 12K bytes | 768 bytes | PLQP0032GB-A | | | R5F21114FP | 16K bytes | 1K bytes | PLQP0032GB-A | | | R5F21112DFP | 8K bytes | 512 bytes | PLQP0032GB-A | D version | | R5F21113DFP | 12K bytes | 768 bytes | PLQP0032GB-A | | | R5F21114DFP | 16K bytes | 1K bytes | PLQP0032GB-A | | Figure 1.2 Type No., Memory Size, and Package R8C/11 Group 1. Overview ### 1.6 Pin Description Table 1.3 shows the pin description Table 1.3 Pin description | Signal name | Pin name | I/O type | Function | |---------------------|-------------------|----------|---| | Power supply | Vcc, | Į | Apply 2.7 V to 5.5 V to the Vcc pin. Apply 0 V to the | | input | Vss | | Vss pin. | | IVcc | IVcc | 0 | This pin is to stabilize internal power supply. | | | | | Connect this pin to Vss via a capacitor (0.1 μ F). | | | | | Do not connect to Vcc. | | Analog power | AVcc, AVss | I | Power supply input pins for A/D converter. Connect the | | supply input | | | AVcc pin to Vcc. Connect the AVss pin to Vss. Connect a | | | | | capacitor between pins AVcc and AVss. | | Reset input | RESET | I | Input "L" on this pin resets the MCU. | | CNVss | CNVss | I | Connect this pin to Vss via a resistor. | | MODE | MODE | I | Connect this pin to Vcc via a resistor. | | Main clock input | XIN | 1 | These pins are provided for the main clock generating circuit I/O. Connect a ceramic resonator or a crys- | | Main clock output | YOUT | 0 | tal oscillator between the XIN and XOUT pins. To use | | I Wall Clock output | 7001 | | an externally derived clock, input it to the XIN pin and | | | | | leave the XOUT pin open. | | INT interrupt input | INTo to INT3 | I | INT interrupt input pins. | | Key input interrupt | | 1 | Key input interrupt pins. | | Timer X | CNTR ₀ | I/O | Timer X I/O pin | | | CNTR ₀ | 0 | Timer X output pin | | Timer Y | CNTR ₁ | I/O | Timer Y I/O pin | | Timer Z | TZOUT | 0 | Timer Z output pin | | Timer C | TCIN | I | Timer C input pin | | | CMP00 to CMP02, | 0 | Timer C output pins | | | CMP10 to CMP12 | | | | Serial interface | CLK ₀ | I/O | Transfer clock I/O pin. | | | RxD0, RxD1 | I | Serial data input pins. | | | TxD0, TxD10, | 0 | Serial data output pins. | | | TxD11 | | · | | Reference voltage | VREF | I | Reference voltage input pin for A/D converter. Con- | | input | | | nect the VREF pin to Vcc. | | A/D converter | ANo to AN11 | I | Analog input pins for A/D converter | | I/O port | P00 to P07, | I/O | These are 8-bit CMOS I/O ports. Each port has an I/O | | | P10 to P17, | | select direction register, allowing each pin in that port | | | P30 to P33, P37, | | to be directed for input or output individually. | | | P45 | | Any port set to input can select whether to use a pull- | | | | | up resistor or not by program. | | | | | P10 to P17 also function as LED drive ports. | | Input port | P46, P47 | 1 | Port for input-only | ## 2. Central Processing Unit (CPU) Figure 2.1 shows the CPU registers. The CPU has 13 registers. Of these, R0, R1, R2, R3, A0, A1 and FB comprise a register bank. Two sets of register banks are provided. Figure 2.1 CPU Register ### 2.1 Data Registers (R0, R1, R2 and R3) R0 is a 16-bit register for transfer, arithmetic and logic operations. The same applies to R1 to R3. The R0 can be split into high-order bit (R0H) and low-order bit (R0L) to be used separately as 8-bit data registers. The same applies to R1H and R1L as R0H and R0L. R2 can be combined with R0 to be used as a 32-bit data register (R2R0). The same applies to R3R1 as R2R0. # 4. Special Function Register (SFR) SFR(Special Function Register) is the control register of peripheral functions. Tables 4.1 to 4.4 list the SFR information Table 4.1 SFR Information(1)⁽¹⁾ | Address | Register | Symbol | After reset | |--------------------|--|------------|--------------------------| | 000016 | , | | | | 000116 | | | | | 000216 | | | | | 000316 | | | | | 000416 | Processor mode register 0 | PM0 | 0016 | | 000516 | Processor mode register 1 | PM1 | 0016 | | 000616 | System clock control register 0 | CM0 | 011010002 | | 000716
000816 | System clock control register 1 High-speed on-chip oscillator control register 0 | CM1
HR0 | 001000002
0016 | | 000916 | Address match interrupt enable register | AIER | XXXXXXX002 | | 000A16 | Protect register | PRCR | 00XXX0002 | | 000B16 | High-speed on-chip oscillator control register 1 | HR1 | 4016 | | 000C16 | Oscillation stop detection register | OCD | 000001002 | | 000D16 | Watchdog timer reset register | WDTR | XX16 | | 000E16 | Watchdog timer start register | WDTS | XX16 | | 000F16 | Watchdog timer control register | WDC | 000111112 | | 001016 | Address match interrupt register 0 | RMAD0 | 0016 | | 001116
001216 | | | 0016 | | 001216 | | | X016 | | 001416 | Address match interrupt register 1 | RMAD1 | 0016 | | 001516 | | 1000 | 0016 | | 001616 | | | X016 | | 001716 | | | | | 001816 | (2) | | | | 001916 | Voltage detection register 1 ⁽²⁾ | VCR1 | 000010002 | | 001A ₁₆ | Voltage detection register 2 ⁽²⁾ | VCR2 | 0016 ⁽³⁾ | | 001B ₁₆ | | | 100000002 ⁽⁴⁾ | | 001D16 | | | | | 001D16 | | | | | 001E ₁₆ | INTO input filter select register | INT0F | XXXXX0002 | | 001F16 | Voltage detection interrupt register ⁽²⁾ | D4INT | 0016 ⁽³⁾ | | | | | 010000012 ⁽⁴⁾ | | 002016 | | | | | 002116 | | | | | 002216 | | | | | 002316 | | | | | 002516 | | | | | 002616 | | | | | 002716 | | | | | 002816 | | | | | 002916 | | | | | 002A16 | | | | | 002B ₁₆ | | | | | 002C16 | | | | | 002E16 | | | | | 002F16 | | | | | 003016 | | | | | 003116 | | | | | 003216 | | | | | 003316 | | | | | 003416 | | | | | 003516
003616 | | | | | 003616 | | | | | 003716 | | | | | 003916 | | | | | 003A16 | | | | | 003B ₁₆ | | | | | 003C16 | | | | | 003D16 | | | | | 003E16 | | | | | 003F16 | | | | X : Undefined NOTES: ^{1.} Blank spaces are reserved. No access is allowed. ^{2.} Software reset or the watchdog timer reset does not affect this register. 3. Owing to Reset input. 4. In the case of RESET pin = H retaining. Table 4.2 SFR Information(2)⁽¹⁾ | I GOIO | +.2 Of it information(2). | | | |--------------------|--|---------|------------------------| | Address | Register | Symbol | After reset | | 004016 | <u> </u> | , | | | 004116 | | | | | 004216 | | | | | 004216 | | | | | | | | | | 004416 | | | | | 004516 | | | | | 004616 | | | | | 004716 | | | | | 004816 | | | | | 004916 | | | | | 004A16 | | | | | 004B ₁₆ | | | | | 004C16 | | | | | 004D16 | Key input interrupt control register | KUPIC | XXXXX0002 | | 004E16 | | | | | | AD conversion interrupt control register | ADIC | XXXXX0002 | | 004F16 | | 0145410 | V/V/V/V/000- | | 005016 | Compare 1 interrupt control register | CMP1IC | XXXXX0002 | | 005116 | UART0 transmit interrupt control register | S0TIC | XXXXX0002 | | 005216 | UART0 receive interrupt control register | S0RIC | XXXXX0002 | | 005316 | UART1 transmit interrupt control register | S1TIC | XXXXX0002 | | 005416 | UART1 receive interrupt control register | S1RIC | XXXXX0002 | | 005516 | INT2 interrupt control register | INT2IC | XXXXX0002 | | 005616 | Timer X interrupt control register | TXIC | XXXXX0002 | | 005716 | Timer Y interrupt control register | TYIC | XXXXX0002
XXXXX0002 | | 005716 | Timer I interrupt control register Timer Z interrupt control register | TZIC | XXXXX0002
XXXXX0002 | | | | | | | 005916 | INT1 interrupt control register | INT1IC | XXXXX0002 | | 005A16 | INT3 interrupt control register | INT3IC | XXXXX0002 | | 005B ₁₆ | Timer C interrupt control register | TCIC | XXXXX0002 | | 005C16 | Compare 0 interrupt control register | CMP0IC | XXXXX0002 | | 005D16 | INTO interrupt control register | INT0IC | XX00X0002 | | 005E16 | The international regions. | | 7,7,1007,10002 | | 005F16 | | | | | 006016 | | | | | | | | | | 006116 | | | | | 006216 | | | | | 006316 | | | | | 006416 | | | | | 006516 | | | | | 006616 | | | | | 006716 | | | | | 006816 | | | | | 006916 | | | | | 006A16 | | | | | | | | | | 006B16 | | | | | 006C16 | | | | | 006D16 | | | | | 006E16 | | | | | 006F16 | | | | | 007016 | | | | | 007116 | | | | | 007216 | | | | | 007316 | | | | | 007316 | | | | | | | | | | 007516 | | | | | 007616 | | | | | 007716 | | | | | 007816 | | | | | 007916 | | | | | 007A16 | | | | | 007B ₁₆ | | | | | 007C16 | | | | | 007C16 | | | | | | | | | | 007E16 | | | | | 007F16 | | | | | | | | | X : Undefined NOTES: 1. Blank spaces are reserved. No access is allowed. Table 4.3 SFR Information(3)⁽¹⁾ | Address | Register | Symbol | After reset | |--|---|--------|---------------------| | 008016 | Timer Y, Z mode register | TYZMR | 0016 | | 008116 | Prescaler Y register | PREY | FF16 | | 008216 | Timer Y secondary register | TYSC | FF16 | | 008316 | Timer Y primary register | TYPR | FF16 | | 008416 | Timer Y, Z waveform output control register | PUM | 0016 | | 008516 | Prescaler Z register | PREZ | FF16 | | 008616 | Timer Z secondary register | TZSC | FF16 | | 008716 | Timer Z primary register | TZPR | FF16 | | 008816 | 1 , 0 | | | | 008916 | | | | | 008A16 | Timer Y, Z output control register | TYZOC | 0016 | | 008B16 | Timer X mode register | TXMR | 0016 | | 008D16 | Prescaler X register | PREX | FF16 | | 008C16 | Timer X register | TX | FF16 | | \vdash | Timer count source set register | TCSS | 0016 | | 008E16 | Timer count source set register | 1000 | 0010 | | 008F16 | There are O are with the second | TO | 0040 | | 009016 | Timer C register | TC | 0016 | | 009116 | | | 0016 | | 009216 | | | | | 009316 | | 1 | | | 009416 | | | | | 009516 | | | | | 009616 | External input enable register | INTEN | 0016 | | 009716 | | | | | 009816 | Key input enable register | KIEN | 0016 | | 009916 | | | | | 009A16 | Timer C control register 0 | TCC0 | 0016 | | 009B ₁₆ | Timer C control register 1 | TCC1 | 0016 | | 009C16 | Capture, compare 0 register | TM0 | 0016 | | 009D16 | | | 0016 ⁽²⁾ | | 009E16 | Compare 1 register | TM1 | FF16 | | 009E16 | Osmparo i registor | 11011 | FF16 | | 00A016 | UART0 transmit/receive mode register | U0MR | 0016 | | 00A116 | UARTO bit rate register | U0BRG | XX16 | | 00A216 | UART0 transmit buffer register | U0TB | XX16 | | 00A316 | OAK TO transmit burier register | UUIB | XX16
XX16 | | 00A416 | UART0 transmit/receive control register 0 | U0C0 | 000010002 | | 00A516 | UART0 transmit/receive control register 1 | U0C1 | 000010002 | | 00A516 | UARTO receive buffer register | UORB | XX16 | | 00A016
00A716 | OAR TO Teceive buller register | UUKB | XX16 | | | LIADT1 transmit/ressit/s made register | U1MR | 0016 | | 00A816 | UART1 transmit/receive mode register | | | | 00A916 | UART1 bit rate register | U1BRG | XX16 | | 00AA16 | UART1 transmit buffer register | U1TB | XX16 | | 00AB16 | | 11100 | XX16 | | 00AC16 | <u> </u> | U1C0 | 000010002 | | 00AD16 | UART1 transmit/receive control register 1 | U1C1 | 000000102 | | 00AE16 | UART1 receive buffer register | U1RB | XX16 | | 00AF16 | | | XX16 | | 00B016 | UART transmit/receive control register 2 | UCON | 0016 | | 00B116 | | | | | 00B216 | | | | | 00B316 | | | | | 00B416 | | | | | 00B516 | | | T | | | | | | | 00B616 | | | | | 00B616
00B716 | | | | | | | | | | 00B716
00B816 | | | | | 00B716
00B816
00B916 | | | | | 00B716
00B816
00B916
00BA16 | | | | | 00B716
00B816
00B916
00BA16
00BB16 | | | | | 00B716
00B816
00B916
00BA16
00BB16
00BC16 | | | | | 00B716
00B816
00B916
00BA16
00BB16
00BC16 | | | | | 00B716
00B816
00B916
00BA16
00BB16
00BC16 | | | | ^{X : Undefined NOTES: 1. Blank spaces are reserved. No access is allowed. 2. When output compare mode (the TCC13 bit in the TCC1 register = 1) is selected, the value after reset is set to "FFFF16".} Table 4.4 SFR Information(4)⁽¹⁾ | Address | Register | Symbol | After reset | |--------------------|--|-------------|-------------------| | 00C016 | AD register | AD | XX16 | | 00C116 | | | XX16 | | 00C216 | | | | | 00C316 | | | | | 00C416 | | | | | 00C516 | | | | | 00C616 | | | | | 00C716
00C816 | | | | | 00C816 | | | | | 00C916 | | | | | 00CB16 | | | | | 00CC16 | | | | | 00CD16 | | | | | 00CE16 | | | | | 00CF16 | | | | | 00D016 | | | | | 00D116 | | | | | 00D216 | | | | | 00D316 | | | | | 00D416 | AD control register 2 | ADCON2 | 0016 | | 00D516 | | | | | 00D616 | AD control register 0 | ADCON0 | 00000XXX2 | | 00D716 | AD control register 1 | ADCON1 | 0016 | | 00D816 | | | | | 00D916 | | | | | 00DA16
00DB16 | | | | | 00DB16 | | | | | 00DC16 | | | | | 00DE16 | | | | | 00DF16 | | | | | 00E016 | Port P0 register | P0 | XX16 | | 00E116 | Port P1 register | P1 | XX16 | | 00E216 | Port P0 direction register | PD0 | 0016 | | 00E316 | Port P1 direction register | PD1 | 0016 | | 00E416 | | | | | 00E516 | Port P3 register | P3 | XX16 | | 00E616 | | | | | 00E716 | Port P3 direction register | PD3 | 0016 | | 00E816 | Port P4 register | P4 | XX16 | | 00E916 | | DD 4 | 00.15 | | 00EA16 | Port P4 direction register | PD4 | 0016 | | 00EB16
00EC16 | | | | | 00EC16 | | | | | 00ED16 | | | | | 00EE16 | | | | | 00F016 | | | | | 00F116 | | | | | 00F216 | | | | | 00F316 | | | | | 00F416 | | | | | 00F516 | | | | | 00F616 | | | | | 00F716 | | | | | 00F816 | | | | | 00F916 | | | | | 03FA16 | | | | | 00FB16 | Pull up control register 0 | PUR0 | 00XX00002 | | 00FC16 | Pull-up control register 0 | | | | 00FD16
00FE16 | Pull-up control register 1 Port P1 drive capacity control register | PUR1
DRR | XXXXXX0X2
0016 | | 00FE16 | Timer C output control register | TCOUT | 0016 | | | Timor & carpar control regioner | 10001 | | | \approx | | | $\hat{\gamma}$ | | 01B316 | Flash memory control register 4 | FMR4 | 010000002 | | 01B416 | , | | | | 01B516 | Flash memory control register 1 | FMR1 | 0100XX0X2 | | 01B616 | , , | | | | 01B7 ₁₆ | Flash memory control register 0 | FMR0 | 000000012 | | X · Undefi | | - | | X: Undefined NOTES: 1. Blank columns, 010016 to 01B216 and 01B816 to 02FF16 are all reserved. No access is allowed. R8C/11 Group 5. Electrical Characteristics **Table 5.4 Flash Memory Version Electrical Characteristics** | Symbol | Parameter | Measuring condition | Standard | | | | |-----------|---|------------------------------|----------|------|-----|-------| | Cymbol | Faiametei | ivieasuring condition | Min. | Тур. | Max | Unit | | - | Program/erase endurance | | 100 | _ | _ | times | | - | Byte program time | | | 50 | 400 | μs | | _ | Block erase time | | | 0.4 | 9 | S | | td(SR-ES) | Time delay from suspend request until erase suspend | | _ | | 8 | ms | | _ | Erase Suspend Request Interval | | 10 | _ | _ | ms | | _ | Program, Erase voltage | | 2.7 | | 5.5 | V | | _ | Read voltage | | 2.7 | | 5.5 | V | | _ | Program, Erase temperature | | 0 | | 60 | °C | | _ | Data hold time ⁽²⁾ | Ambient
temperature=55 °C | 20 | | | year | #### NOTES: - 1. Referenced to Vcc1=AVcc=2.7 to 5.5V at Topr = 0 to 60 °C unless otherwise specified. - 2. The data hold time includes time that the power supply is off or the clock is not supplied. **Table 5.5 Voltage Detection Circuit Electrical Characteristics** | Symbol | Parameter | Measuring condition | | Standard | | 11.3 | |---------|---|---------------------|------|----------|------|------| | Cymbol | radinotoi | Weddaning condition | Min. | Тур. | Max. | Unit | | Vdet | Voltage detection level | | 3.3 | 3.8 | 4.3 | ٧ | | _ | Voltage detection interrupt request generating time ⁽²⁾ | | _ | 40 | _ | μs | | _ | Voltage detection circuit self consumption current | VC27=1, VCC=5.0V | _ | 600 | _ | nA | | td(E-A) | Waiting time till voltage detection circuit operation starts ⁽³⁾ | | _ | _ | 20 | μs | | Vccmin | Minimum value of microcomputer operation voltage | | 2.7 | _ | _ | ٧ | #### NOTES: - 1. The measuring condition is Vcc=AVcc=2.7V to 5.5V and Topr= -40°C to 85 °C. - 2. This shows the time until the voltage detection interrupt request is generated since the voltage passes Vdet. - 3. This shows the required time until the voltage detection circuit operates when setting to "1" again after setting the VC27 bit in the VCR2 register to "0". Figure 5.2 Time delay from Suspend Request until Erase Suspend R8C/11 Group 5. Electrical Characteristics Table 5.6 Reset Circuit Electrical Characteristics (When Using Hardware Reset 2^(1, 3)) | Symbol | Parameter | Measuring condition | | Standard | | | |--------------------|---|--|------|----------|------|------| | 7, | . a.a.notor | g condition | Min. | Тур. | Max. | Unit | | Vpor2 | Power-on reset valid voltage | -20°C ≤ Topr < 85°C | _ | _ | Vdet | V | | tw(Vpor2-
Vdet) | Supply voltage rising time when power-on reset is canceled ⁽²⁾ | $-20^{\circ}\text{C} \le \text{Topr} < 85^{\circ}\text{C}, \text{ tw(por2)} \ge 0\text{s}^{(4)}$ | _ | _ | 100 | ms | #### NOTES: - 1. The voltage detection circuit which is embedded in a microcomputer is a factor to generate the hardware reset 2. Refer to 5.1.2 Hardware Reset 2 of Hardware Manual for details. - 2. This condition is not applicable when using with Vcc ≥ 1.0V. - 3. When turning power on after the external power has been held below the valid voltage (Vpor1) for greater than 10 seconds, refer to Table 5.7 Reset Circuit Electrical Characteristics (When Not Using Hardware Reset 2). - 4. tw(por2) is time to hold the external power below effective voltage (Vpor2). Table 5.7 Reset Circuit Electrical Characteristics (When Not Using Hardware Reset 2) | Symbol | Parameter | Measuring condition Standard | | | I I a is | | |--------------------|--|--|------|------|----------|------| | Cymbol | ramotor | Wodeding condition | Min. | Тур. | Max. | Unit | | Vpor1 | Power-on reset valid voltage | -20°C ≤ Topr < 85°C | _ | _ | 0.1 | V | | tW(Vpor1-
Vdet) | Supply voltage rising time when power-on reset is canceled | $0^{\circ}\text{C} \leq \text{Topr} \leq 85^{\circ}\text{C}, \text{ tw(por1)} \geq 10\text{s}^{(2)}$ | _ | _ | 100 | ms | | tW(Vpor1-
Vdet) | Supply voltage rising time when power-on reset is canceled | -20°C ≤ Topr < 0°C, tw(por1) ≥ 30 s ⁽²⁾ | _ | _ | 100 | ms | | tW(Vpor1-
Vdet) | Supply voltage rising time when power-on reset is canceled | -20°C ≤ Topr < 0°C, tw(por1) ≥ 10s ⁽²⁾ | _ | _ | 1 | ms | | tW(Vpor1-
Vdet) | Supply voltage rising time when power-on reset is canceled | $0^{\circ}\text{C} \leq \text{Topr} \leq 85^{\circ}\text{C}, \text{ tw(por1)} \geq 1\text{s}^{(2)}$ | _ | _ | 0.5 | ms | #### NOTES - 1. When not using hardware reset 2, use with Vcc ≥ 2.7V. - 2. tw(por1) is time to hold the external power below effective voltage (Vpor1). Figure 5.3 Reset Circuit Electrical Characteristics Table 5.11 Electrical Characteristics (2) [Vcc=5V] | Symbol | Para | meter | Measuring condition | | Standard | | | Llmit | |--------|--|----------------|------------------------------------|--|----------|---------|------|-------| | C) | T die | | | | Min. | Тур. | Max. | Unit | | | | | High-speed mode | XIN=20 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on=125 kHz No division | _ | 9 | 15 | mA | | | | | | XIN=16 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on=125 kHz No division | _ | 8 | 14 | mA | | | | | | X _{IN} =10 MHz (square wave)
High-speed on-chip oscillator off
Low-speed on-chip oscillator on=125 kHz
No division | _ | 5 | _ | mA | | | | | Medium-speed mode | XIN=20 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on=125 kHz Division by 8 | _ | 4 | _ | mA | | Icc | Power supply current | | | X _{IN} =16 MHz (square wave)
High-speed on-chip oscillator off
Low-speed on-chip oscillator on=125 kHz
Division by 8 | _ | 3 | _ | mA | | | (Vcc=3.3 to 5.5V) In single-chip mode, the output pins are open and other pins are Vss | High-
on-ch | | X _{IN} =10 MHz (square wave)
High-speed on-chip oscillator off
Low-speed on-chip oscillator on=125 kHz
Division by 8 | _ | 2 | _ | mA | | | | | High-speed on-chip oscillator mode | Main clock off
High-speed on-chip oscillator on=8 MHz
Low-speed on-chip oscillator on=125 kHz
No division | _ | 4 | 8 | mA | | | | | | Main clock off
High-speed on-chip oscillator on=8 MHz
Low-speed on-chip oscillator on=125 kHz
Division by 8 | _ | 1.5 | _ | mA | | | | | Low-speed on-chip oscillator mode | Main clock off
High-speed on-chip oscillator off
Low-speed on-chip oscillator on=125 kHz
Division by 8 | _ | 470 900 | μА | | | | | Wa | Wait mode | Main clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on=125 kHz When a WAIT instruction is executed ⁽¹⁾ Peripheral clock operation VCZT="0" | _ | 40 | 80 | μА | | | | | Wait mode | Main clock off
High-speed on-chip oscillator off
Low-speed on-chip oscillator on=125 kHz
When a WAIT instruction is executed ⁽¹⁾
Peripheral clock off
VC27="0" | _ | 38 | 76 | μА | | | | | Stop mode | Main clock off, Topr = 25 °C High-speed on-chip oscillator off Low-speed on-chip oscillator off CM10="1" Petripheral clock off VC27="0" | _ | 0.8 | 3.0 | μА | NOTES: 1. Timer Y is operated with timer mode. 2. Referenced to Vcc = AVcc = 4.2 to 5.5V at Topr = -20 to 85 °C / -40 to 85 °C, f(XIN)=20MHz unless otherwise specified. Figure 5.4 Vcc=5V timing diagram R8C/11 Group 5. Electrical Characteristics Table 5.17 Electrical Characteristics (3) [Vcc=3V] | Symbol | | Parameter | Measuring condition | | | Standard | | | |---------|--|---|---------------------|-------------|---------|----------|------|------| | Symbol | | Parameter | | | Min. | Тур. | Max. | Unit | | | "H" output voltage | Except Xout | Iон=-1mA | | Vcc-0.5 | _ | Vcc | V | | Vон | | Хоит | Drive capacity HIGH | Iон=-0.1 mA | Vcc-0.5 | _ | Vcc | V | | | | | Drive capacity LOW | Іон=-50 μΑ | Vcc-0.5 | _ | Vcc | V | | | "L" output voltage | Except P10 to P17, XouT | IoL= 1 mA | | _ | _ | 0.5 | V | | VoL | | P10 to P17 | Drive capacity HIGH | IoL= 2 mA | _ | _ | 0.5 | V | | | | | Drive capacity LOW | IoL= 1 mA | _ | _ | 0.5 | V | | | | Хоит | Drive capacity HIGH | IoL= 0.1 mA | _ | - | 0.5 | V | | | | | Drive capacity LOW | IoL=50 μA | | _ | 0.5 | V | | VT+-VT- | Hysteresis | INTo, INT1, INT2, INT3, KI0, KI1,
KI2, KI3, CNTR0, CNTR1, TCIN,
RxD0, RxD1, P45 | | | 0.2 | _ | 0.8 | | | | | RESET | | | 0.2 | _ | 1.8 | V | | liн | "H" input current | | VI=3V | | _ | _ | 4.0 | μA | | lıL | "L" input current | | Vi=0V | | _ | _ | -4.0 | μΑ | | RPULLUP | Pull-up resistance | | VI=0V | | 66 | 160 | 500 | kΩ | | RfXIN | Feedback resistance | XIN | | | _ | 3.0 | _ | МΩ | | fRING-S | Low-speed on-chip oscillator frequency | | | | 40 | 125 | 250 | kHz | | VRAM | RAM retention voltage | | At stop mode | | 2.0 | _ | _ | V | NOTES: 1. Referenced to Vcc = AVcc = 2.7 to 3.3V at Topr = -20 to 85 °C / -40 to 85 °C, f(XIN)=10MHz unless otherwise specified. Table 5.18 Electrical Characteristics (4) [Vcc=3V] | Symbol | Parameter | | Measuring condition | | Standard | | | | |--------|--|-------|--|--|----------|------|------|------| | Symbol | | | | | Min. | Тур. | Max. | Unit | | | | | High-speed mode | XIN=20 MHz (square wave)
High-speed on-chip oscillator off
Low-speed on-chip oscillator on=125 kHz
No division | _ | 8 | 13 | mA | | | | | | X _{IN} =16 MHz (square wave)
High-speed on-chip oscillator off
Low-speed on-chip oscillator on=125 kHz
No division | _ | 7 | 12 | mA | | | | | | X _{IN} =10 MHz (square wave)
High-speed on-chip oscillator off
Low-speed on-chip oscillator on=125 kHz
No division | _ | 5 | _ | mA | | | | | Medium-speed mode | XIN=20 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on=125 kHz Division by 8 | _ | 3 | _ | mA | | Icc | Power supply current | | | X _{IN} =16 MHz (square wave)
High-speed on-chip oscillator off
Low-speed on-chip oscillator on=125 kHz
Division by 8 | _ | 2.5 | _ | mA | | | (Vcc=2.7 to 3.3V) In single-chip mode, the output pins are open and other pins are Vss | | | XIN=10 MHz (square wave)
High-speed on-chip oscillator off
Low-speed on-chip oscillator on=125 kHz
Division by 8 | _ | 1.6 | _ | mA | | | | on-ch | High-speed on-chip oscillator mode | Main clock off
High-speed on-chip oscillator on=8 MHz
Low-speed on-chip oscillator on=125 kHz
No division | _ | 3.5 | 7.5 | mA | | | | | Main clock off
High-speed on-chip oscillator on=8 MHz
Low-speed on-chip oscillator on=125 kHz
Division by 8 | _ | 1.5 | _ | mA | | | | | | Low-speed on-chip oscillator mode | Main clock off
High-speed on-chip oscillator off
Low-speed on-chip oscillator on=125 kHz
Division by 8 | _ | 420 | 800 | μА | | | | | Wait mode | Main clock off
High-speed on-chip oscillator off
Low-speed on-chip oscillator on=125 kHz
When a WAIT instruction is executed ⁽¹⁾
Peripheral clock operation
VC27="0" | _ | 37 | 74 | μА | | | | | Wait mode | Main clock off
High-speed on-chip oscillator off
Low-speed on-chip oscillator on=125 kHz
When a WAIT instruction is executed ⁽¹⁾
Peripheral clock off
VC27="0" | _ | 35 | 70 | μА | | | | | Stop mode | Main clock off, Topr = 25 °C High-speed on-chip oscillator off Low-speed on-chip oscillator off CM10="1" Peripheral clock off VC27="0" | _ | 0.7 | 3.0 | μА | NOTES: 1. Timer Y is operated with timer mode. 2. Referenced to Vcc = AVcc = 2.7 to 3.3V at Topr = -20 to 85 °C / -40 to 85 °C, f(XIN)=10MHz unless otherwise specified. Figure 5.5 Vcc=3V timing diagram ### **REVISION HISTORY** ### R8C/11 Group Datasheet | Rev. | Date | | Description | | | |------|---------------|--|---|--|--| | | | Page | Summary | | | | 1.00 | Jun. 19, 2003 | | First edition issued | | | | 1.10 | Sep. 08, 2003 | 2
5
6
10
12
14 | Table 1.1: Shortest instruction execution time and f(XIN) changed Figure 1.3: Pin name changed from TXOUT to CNTR0 Table 1.3: Pin name changed from TXOUT to CNTR0 The value of HR1 register after reset changed The value of TC register after reset changed Chapter "5. Electrical Characteristics" added | | | | 1.20 | Oct. 31, 2003 | 2
6
11
14
15
17
19
20
21
22
23 | Table 1.1: Power consumption values added Table 1.3: Resistor value for CNVss and MODE deleted Register name of address 005016 modified from CMP2IC to CMP1IC, register name of address 005C16 modified from CMP1IC to CMP0IC Table 5.2: Note 3 and Note 4 deleted tsamp in Table 5.3 deleted Figure 5.1 added Table 5.10: Vcc changed from "4.2 to 5.5V" to "3.3V to 5.5V", low-power on-chip oscillator changed from "on 100kHz" to "125kHz", XIN=5MHz deleted and XIN=10MHz added in high-speed mode and medium-speed mode, VC27="0" added in stop mode measuring condition, data added and modified Table 11 to Table 15 added Figure 5.2 added Table 5.16: Note 1, f(BCLK)=5 MHz changed to 10 MHz Table 5.17: low-power ring oscillator changed from "on 100kHz" to "125kHz", XIN=5MHz deleted and XIN=10MHz added in high-speed mode and medium-speed mode, VC27="0" added in stop mode measuring condition, data added and modified Table 5.18 to Table 5.22 added Figure 5.3 added | | | | 1.30 | Dec 05, 2003 | 4
15 | Table 1.2 : ** deleted Table 5.4 revised | | | | 1.40 | Sep 30, 2004 | all pages 2 5 6 9 10-13 12 14 15 16 17 18 | Words standardized (on-chip oscillator, serial interface, A/D) Table 1.1 revised Figure 1.3, NOTES 3 added Table 1.3 revised Figure 3.1, NOTES added One body sentence in chapter 4 added; Title of Table 4.1 to 4.4 added Table 4.3 revised; Table 4.4 revised Table 5.2 revised Table 5.3 revised Table 5.4 revised; Table 16.5 revised Table 5.6, 5.7 adn 5.8 revised; Figure 5.3 revised Table 5.9 revised; Table 5.10 revised | | | ### **REVISION HISTORY** ### R8C/11 Group Datasheet | Rev. | Date | | Description | | | |------|--------------|----------|--|--|--| | | | Page | Summary | | | | 1.40 | Sep 30, 2004 | 20 | Table 5.12 revised ; Table 5.16 revised | | | | | | 22 | Table 16.17 revised | | | | | | 24 | Table 16.19 revised | | | | 1.50 | Apr.27.2005 | 4 | Table 1.2, Figure 1.2 package name revised | | | | | | 5 | Figure 1.3 package name revised | | | | | | 10 | Table 4.1 revised | | | | | | 12 | Table 4.3 revised | | | | | | 15 | Table 5.3 partly revised | | | | | | 16 | Table 5.4 partly added | | | | | | 17 | Table 5.6, Table 5.7 revised | | | | | | 18 | Table 5.9, Table 10 partly revised | | | | | | 22 | Table 5.17 partly revised | | | | | | 26 | Package Dimensions revised | | | | 1.60 | Jan.27.2006 | 2 | Table 1.1 Performance outline revised | | | | | | 3
4 | Figure 1.1 Block diagram partly revised 1.4 Product Information, title of Table 1.2 "Product List" \rightarrow | | | | | | 4 | "Product Information" revised | | | | | | | Figure 1.2 Type No., Memory Size, and Package partly revised | | | | | | 6 | Table 1.3 Pin description revised | | | | | | 7-8 | 2 Central Processing Unit (CPU) revised | | | | | | 10 | Figure 2.1 CPU register revised | | | | | | 11 | Table 4.1 SFR Information(1) NOTES:1 revised Table 4.2 SFR Information(2) NOTES:1 revised | | | | | | 12 | Table 4.3 SFR Information(3); | | | | | | | 0081₁6: "Prescaler Y" → "Prescaler Y Register" | | | | | | | 0082₁6: "Timer Y Secondary" → "Timer Y Secondary Register" | | | | | | | 0083 ₁₆ : "Timer Y Primary" → "Timer Y Primary Register" | | | | | | | 008516: "Prescaler Z" → "Prescaler Z Register"
008616: "Timer Z Secondary" → "Timer Z Secondary Register" | | | | | | | 0087₁6: "Timer Z Primary" → "Timer Z Primary Register" | | | | | | | 008C ₁₆ : "Prescaler X" → "Prescaler X Register" revised | | | | | | | NOTES:1, 2 revised | | | | | | 13 | Table 4.4 SFR Information(4) NOTES:1 revised | | | | | | 14
15 | Table 5.2 Recommended Operating Conditions; NOTES: 1, 2, 3 revised Table 5.3 A/D Conversion Characteristics; | | | | | | 15 | "A/D operation clock frequency" → "A/D operating clock frequency" revised | | | | | | | NOTES: 1, 2, 3, 4 revised | | | | | | 16 | Table 5.4 Flash Memory (Program ROM) Electrical Characteristics; | | | | | | | "Topr" → "Ambient temperature" revised | | | | | | 47 | Measuring condition of byte program time and block erase time deleted | | | | | | 17 | Table 5.6 Reset Circuit Electrical Characteristics (When Using Hardware Reset 2) NOTES: 3 revised | | | | | | 18 | Table 5.8 High-speed On-Chip Oscillator Circuit Electrical Characteristics; | | | | | | _ | "High-speed on-chip oscillator temperature dependence" → | | | | | | | "High-speed on-chip oscillator frequency temperature dependence" revised | | | | | | | Table 5.10 Electrical Characteristics (1) [Vcc=5V]; | | | | | | | "Р1₀ to Р17 Except Xouт" → "Except Р1₀ to Р17, Xouт" revised | | | | | | | | | | ### **REVISION HISTORY** ### R8C/11 Group Datasheet | Rev. | Date | Description | | | |------|-------------|----------------|--|--| | | | Page | Summary | | | 1.60 | Jan.27.2006 | 19
22
23 | Table 5.11 Electrical Characteristics (2) [Vcc=5V] NOTES: 1, 2 revised Measuring condition Stop mode: "Topr = 25 °C" Table 5.17 Electrical Characteristics (3) [Vcc=3V] "P1₀ to P1ァ Except Xout" → "Except P1₀ to P1ァ, Xout" revised Table 5.18 Electrical Characteristics (4) [Vcc=3V] NOTES: 1, 2 revised Measuring condition Stop mode: "Topr = 25 °C" | | | | | | | |