

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	-
Core Size	8-Bit
Speed	12MHz
Connectivity	SIO, UART/USART, USB
Peripherals	LVD, POR, PWM, WDT
Number of I/O	35
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 20x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-LQFP
Supplier Device Package	48-SQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/onsemi/lc87f1m16auwa-2h

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

■Bus Cycle Time

• 83.3ns (When CF=12MHz)

Note: The bus cycle time here refers to the ROM read speed.

- ■Minimum Instruction Cycle Time (tCYC)
 - 250ns (When CF=12MHz)

■Ports

• I/O ports

Ports whose I/O direction can be designated in 1-bit units	35 (P00 to P07, P10 to P17, P20 to P27, P31 to P34,
	P70 to P73, PWM0, PWM1, XT2)

• USB ports	2 (D+, D-)
 Dedicated oscillator ports 	2 (CF1, CF2)
• Input-only port (also used for oscillation)	1 (XT1)
• Reset pins	$1(\overline{\text{RES}})$
 Dedicated debugger port 	1 (OWP0)
• Power supply pins	6 (VSS1 to 3, VDD1 to 3)

- ■Timers
 - Timer 0: 16-bit timer/counter with 2 capture registers.
 - Mode 0: 8-bit timer with an 8-bit programmable prescaler (with two 8-bit capture registers) × 2 channels Mode 1: 8-bit timer with an 8-bit programmable prescaler (with two 8-bit capture registers)
 - + 8-bit counter (with two 8-bit capture registers)
 - Mode 2: 16-bit timer with an 8-bit programmable prescaler (with two 16-bit capture registers)
 - Mode 3: 16-bit counter (with two 16-bit capture registers)
 - Timer 1: 16-bit timer/counter that supports PWM/toggle outputs

Mode 0: 8-bit timer with an 8-bit prescaler (with toggle outputs) + 8-bit timer/

- counter with an 8-bit prescaler (with toggle outputs)
- Mode 1: 8-bit PWM with an 8-bit prescaler \times 2 channels
- Mode 2: 16-bit timer/counter with an 8-bit prescaler (with toggle outputs)
 - (toggle outputs also possible from lower-order 8 bits)
- Mode 3: 16-bit timer with an 8-bit prescaler (with toggle outputs)
 - (lower-order 8 bits may be used as a PWM output)
- Timer 4: 8-bit timer with a 6-bit prescaler
- Timer 5: 8-bit timer with a 6-bit prescaler
- Timer 6: 8-bit timer with a 6-bit prescaler (with toggle outputs)
- Timer 7: 8-bit timer with a 6-bit prescaler (with toggle outputs)
- Base timer
 - (1) The clock is selectable from the subclock (32.768kHz crystal oscillation), system clock, and timer 0 prescaler output.
 - (2) Interrupts programmable in 5 different time schemes

■SIO

- SIO0: Synchronous serial interface
 - (1) LSB first/MSB first mode selectable
 - (2) Transfer clock cycle: 4/3 to 512/3 tCYC
 - (3) Automatic continuous data transmission (1 to 256 bits, specifiable in 1-bit units) (Suspension and resumption of data transmission possible in 1 byte units)
- SIO1: 8-bit asynchronous/synchronous serial interface
 - Mode 0: Synchronous 8-bit serial I/O (2- or 3-wire configuration, 2 to 512 tCYC transfer clocks)
 - Mode 1: Asynchronous serial I/O (half-duplex, 8 data bits, 1 stop bit, 8 to 2048 tCYC baudrates)
 - Mode 2: Bus mode 1 (start bit, 8 data bits, 2 to 512 tCYC transfer clocks)
 - Mode 3: Bus mode 2 (start detect, 8 data bits, stop detect)
- SIO4: Synchronous serial interface
 - (1) LSB first/MSB first mode selectable
 - (2) Transfer clock cycle: 4/3 to 1020/3 tCYC
 - (3) Automatic continuous data transmission (1 to 1024 bytes, specifiable in 1 byte units, suspension and resumption of data transmission possible in 1 byte or 2 bytes units)
 - (4) Clock polarity selectable
 - (5) CRC16 calculator circuit built in

■Full Duplex UART

• UART1

- (1) Data length : 7/8/9 bits selectable
- (2) Stop bits : 1 bit (2 bits in continuous transmission mode)
- (3) Baud rate : 16/3 to 8192/3 tCYC
- SCUART
 - (1) Data length : 7/8 bits selectable
 - (2) Stop bits : 1/2 bits selectable
 - (3) Parity bits : None/even parity/odd parity
 - (4) Baud rate : 8/3 to 8192/3 tCYC
 - (5) LSB first/MSB first mode delectable
 - (6) Smartcard interface function

■AD Converter: 12 bits × 20 channels

- 12-/8-bit resolution selectable AD converter
- ■PWM: Multifrequency 12-bit PWM × 2 channels
- ■USB Interface (function controller)
 - (1) Compliant with USB 2.0 Full-Speed

(2) Supports a maximum of 6 user-defined endpoints.

	Endpoint		EP1	EP2	EP3	EP4	EP5	EP6
Transfer	Control	0	-	-	-	-	-	-
Туре	Bulk	-	0	0	0	0	0	0
	Interrupt	-	0	0	0	0	0	0
	Isochronous	-	0	0	0	0	0	0
Max. paylo	Max. payload		64	64	64	64	64	64

■Watchdog Timer

• Internal counter watchdog timer

- (1) Generates an internal reset on an overflow occurring in the timer running on the low-speed RC oscillator clock (approx. 30kHz) or subclock.
- (2) Operating mode at HALT/HOLD mode is selectable from 3 modes(continue counting/suspend operation/suspend counting with the count value retained)

■Clock Output Function

- (1) Can output a clock with a clock rate of 1/1, 1/2, 1/4, 1/8, 1/16, 1/32, or 1/64 of the source oscillator clock selected as the system clock.
- (2) Can output the source oscillation clock for the subclock.

■Interrupts

- 35 sources, 10 vector addresses
 - (1) Provides three levels (low (L), high (H), and highest (X)) of multiplex interrupt control. Any interrupt requests of the level equal to or lower than the current interrupt are not accepted.
 - (2) When interrupt requests to two or more vector addresses occur at the same time, the interrupt of the highest level takes precedence over the other interrupts. For interrupts of the same level, the interrupt into the smallest vector address takes precedence.

No.	Vector Address	Level	Interrupt Source
1	00003H	X or L	INTO
2	0000BH	X or L	INT1
3	00013H	H or L	INT2/T0L/INT4/USB bus active
4	0001BH	H or L	INT3/INT5/base timer
5	00023H	H or L	T0H/INT6
6	0002BH	H or L	T1L/T1H/INT7
7	00033H	H or L	SIO0/USB bus reset/USB suspend/UART1 receive complete/ SCUART receive complete
8	0003BH	H or L	SIO1/USB endpoint/USB-SOF/SIO4/ UART1 buffer empty/UART1 transmit complete/ SCUART buffer empty/SCUART transmit complete
9	00043H	H or L	ADC/T6/T7
10	0004BH	H or L	Port 0/PWM0/PWM1/T4/T5

• Priority levels X > H > L

• Of interrupts of the same level, the one with the smallest vector address takes precedence.

Subroutine Stack Levels: 512 levels maximum (The stack is allocated in RAM.)

■High-speed Multiplication/Division Instructions

- 16 bits \times 8 bits (5 tCYC execution time)
- 24 bits \times 16 bits (12 tCYC execution time)
- 16 bits ÷ 8 bits (8 tCYC execution time)
- 24 bits ÷ 16 bits (12 tCYC execution time)

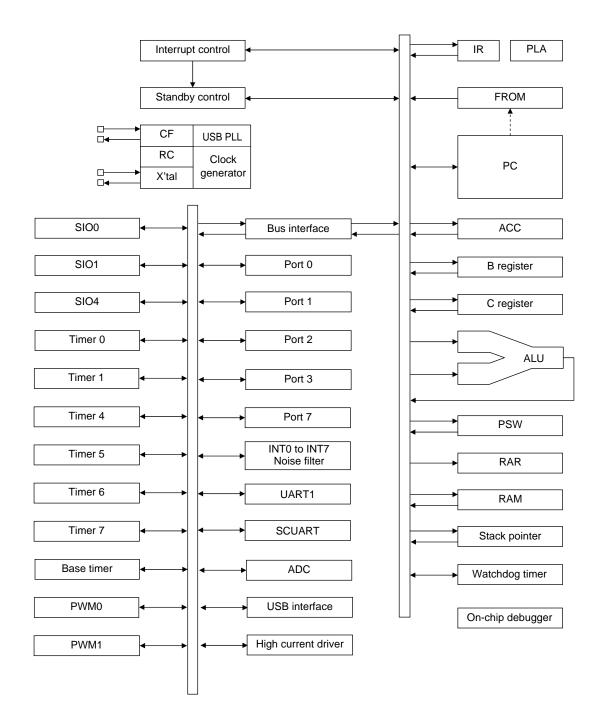
■Oscillation and PLL Circuits

- RC oscillation circuit (internal) : For system clock (approx. 1MHz)
- Low-speed RC oscillation circuit (internal) : For watchdog timer (approx. 30kHz)
- CF oscillation circuit

- : For system clock
- Crystal oscillation circuit
- PLL circuit (internal)
- : For system clock, time-of-day clock
- : For USB interface (see Fig.5)

■Internal Reset Circuit

- •Power-on reset (POR) function
 - (1) POR reset is generated only at power-on time.
- (2) The POR release level can be selected from 4 levels (2.57V, 2.87V, 3.86V and 4.35V) through option configuration.
- •Low-voltage detection reset (LVD) function
 - (1) LVD and POR functions are combined to generate resets when power is turned on and when power voltage falls below a certain level.
 - (2) The use/disuse of the LVD function and the voltage threshold level can be selected from 3 levels (2.81V, 3.79V and 4.28V) through option configuration.


■Standby Function

- HALT mode: Halts instruction execution while allowing the peripheral circuits to continue operation.
 - (1) Oscillation is not halted automatically.
 - (2) There are three ways of resetting the HOLD mode.
 - 1) Setting the reset pin to the lower level
 - 2) Having the watchdog timer or LVD function generate a reset
 - 3) Having an interrupt generated
- HOLD mode: Suspends instruction execution and the operation of the peripheral circuits.
 - (1) The PLL base clock generator, CF, RC and crystal oscillators automatically stop operation.
 - Note: The low-speed RC oscillator is controlled directly by the watchdog timer; its oscillation in the standby mode is also controlled by the watchdog timer.
 - (2) There are five ways of resetting the HOLD mode.
 - 1) Setting the reset pin to the lower level
 - 2) Having the watchdog timer or LVD function generate a reset
 - 3) Having an interrupt source established at one of the INT0, INT1, INT2, INT4 or INT5 pins
 - * INT0 and INT1 HOLD mode reset is available only when level detection is set.
 - 4) Having an interrupt source established at port 0
 - 5) Having an bus active interrupt source established in the USB interface circuit
- X'tal HOLD mode: Suspends instruction execution and the operation of the peripheral circuits except the base timer.
 - (1) The PLL base clock generator, CF and RC oscillator automatically stop operation.
 - Note: The low-speed RC oscillator is controlled directly by the watchdog timer; its oscillation in the standby mode is also controlled by the watchdog timer.
 - (2) The state of crystal oscillation established when the X'tal HOLD mode is entered is retained.
 - (3) There are six ways of resetting the X'tal HOLD mode.
 - 1) Setting the reset pin to the low level
 - 2) Having the watchdog timer or LVD function generate a reset
 - 3) Having an interrupt source established at either INT0, INT1, INT2, INT4 or INT5 * INT0 and INT1 HOLD mode reset is available only when level detection is set.
 - 4) Having an interrupt source established at port 0
 - 5) Having an interrupt source established in the base timer circuit
 - 6) Having an bus active interrupt source established in the USB interface circuit

■Development Tools

• On-chip debugger: TCB87 type-C (one wire communication cable) + LC87F1M16A

System Block Diagram

Pin Name	I/O			Desc	ription			Option
Port 7	I/O	• 4-bit I/O port						No
P70 to P73		• I/O specifiable	in 1-bit units					
		Pull-up resistor	s can be turned	on and off in 1-b	oit units			
		 Pin functions 						
		P70: INT0 input	t/HOLD reset inp	out/timer 0L capt	ure input/ D+ 1.	5kΩ pull-up resi	stor connect pin	
		P71: INT1 input	t/HOLD reset inp	out/timer 0H cap	ture input			
		P72: INT2 input	t/HOLD reset inp	out/timer 0 event	input/timer 0L o	capture input/		
		. .	d clock counter i	•				
		P73: INT3 input	t (input with nois	e filter)/timer 0 e	event input/timer	0H capture inpu	ut	
		Interrupt acknow	wledge types		[1	1	
			Rising	Falling	Rising &	H level	L level	
			Ŭ		Falling			
		INT0	enable	enable	disable	enable	enable	
		INT1	enable	enable	disable	enable	enable	
		INT2	enable	enable	enable	disable	disable	
		INT3	enable	enable	enable	disable	disable	
PWM0	I/O	• PWM0, PWM1	output port					No
PWM1		Pin functions						
		General-purpose input ports						
		AD converter in	put ports: AN8(F	PWM1), AN9(PV	VM0)			
		PWM0: High current Pch driver(TDP0)						
			Irrent Nch driver	(TDN0)				
D-	I/O	USB data I/O p						No
		General-purpos	•					
D+	I/O	• USB data I/O p						No
RES		General-purpos						N
-	Input	External reset inp						No
XT1	Input	• 32.768kHz crys	stal oscillator inp	ut				No
		Pin functions						
		General-purpos						
XT2	I/O		put ports: AN10	out				No
X12	1/0	 32.768kHz crys Pin functions 		put				INO
		General-purpos						
			e I/O put port: AN11					
								1
CF1	Input		• •					No
CF1 CF2	Input Output	Ceramic resonate	or input					No No

On-chip Debugger Pin Connection Requirements

For the treatment of the on-chip debugger pins, refer to the separately available documents entitled "Rd87 On-chip Debugger Installation Manual"

Recommended Unused Pin Connections

Port Name	Recommended Unused Pin Connections				
Port Name	Board	Software			
P00 to P07	Open	Output low			
P10 to P17	Open	Output low			
P20 to P27	Open	Output low			
P31 to P34	Open	Output low			
P70 to P73	Open	Output low			
PWM0, PWM1	Open	Output low			
D+, D-	Open	Output low			
XT1	Pulled low with a $100k\Omega$ resistor or less	-			
XT2	Open	Output low			
OWP0	Pulled low with a $100k\Omega$ resistor	-			

Note: P34 and UFILT share the same pin, so if USB function is used, the pin must be set to input mode.

Port Output Types

The table below lists the types of port outputs and the presence/absence of a pull-up resistor.

Data can be read into any input port even if it is in the output mode.

Port Name	Option selected in units of	Option type	Output type	Pull-up resistor
P00 to P07	1 bit	1	CMOS	Programmable
P10 to P17				
P20 to P27		2	Nch-open drain	Programmable
P31 to P34				
P70	-	No	Nch-open drain	Programmable
P71 to P73	-	No	CMOS	Programmable
PWM0, PWM1	-	No	CMOS	No
D+, D-	-	No	CMOS	No
XT1	-	No	Input only	No
XT2	-	No	32.768kHz crystal resonator output (N channel open	No
			drain when in general-purpose output mode)	

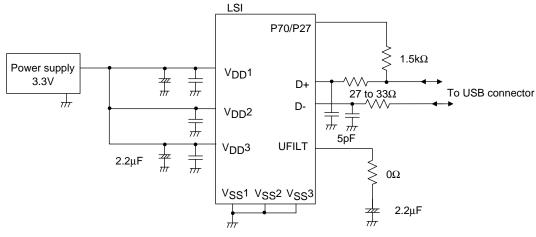
User Option Table

Option Name	Option Type	Flash Version	Option Selected in Units of	Option Selection
Port output form	D00 to D07	a na bla	4 1-14	CMOS
	P00 to P07	enable	1 bit	Nch-open drain
	D10 / D17		41.2	CMOS
	P10 to P17	enable	1 bit	Nch-open drain
	D00 to D07	a sector	4 1-14	CMOS
	P20 to P27	enable	1 bit	Nch-open drain
	D04 to D04	a na bla	1 bit	CMOS
	P31 to P34	enable	1 Dit	Nch-open drain
Program start		a na bla		00000h
address	-	enable	-	03E00h
USB Regulator		a sector		USE
	USB Regulator	enable	-	NONUSE
	USB Regulator	anabla		USE
	(at HOLD mode)	enable	-	NONUSE
	USB Regulator	a na bla		USE
	(at HALT mode)	enable	-	NONUSE
Main clock 8MHz				ENABLE
selection	-	enable	-	DISABLE
Low-voltage detection				Enable: Use
reset function	Detect function	enable	-	Disable: Not Used
	Detect level	enable	-	3-level
Power-on reset function	Power-On reset level	enable	-	4-level

USB Reference Power Option

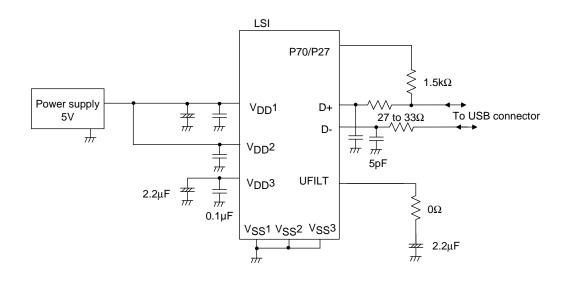
When a voltage 4.5 to 5.5V is supplied to $V_{DD}1$ and the internal USB reference voltage circuit is activated, the reference voltage for USB port output is generated. The active/inactive state of the reference voltage circuit can be switched by option select. The procedure for marking the option selection is described below.

		(1)	(2)	(3)	(4)
Option settings	USB regulator	USE	USE	USE	NONUSE
	USB regulator at HOLD mode	USE	NONUSE	NONUSE	NONUSE
	USB regulator at HALT mode	USE	NONUSE	USE	NONUSE
Reference voltage circuit state	Normal mode	active	active	active	inactive
	HOLD mode	active	inactive	inactive	inactive
	HALT mode	active	inactive	active	inactive


• When the USB reference voltage circuit is made inactive, the level of the reference voltage for USB port output is equal to V_{DD}1.

• Selection (2) or (3) can be used to set the reference voltage circuit inactive in HOLD or HALT mode.

• When the reference voltage circuit is activated, the current drain increases by approximately 100µA compared with when the reference voltage circuit is inactive.


Example 1: VDD1=VDD2=3.3V

- Inactivating the reference voltage circuit (selection (4)).
- Connecting VDD3 to VDD1 and VDD2.

Example 2: VDD1=VDD2=5.0V

- Activating the reference voltage circuit (selection (1)).
- Isolating VDD3 from VDD1 and VDD2, and connecting capacitor between VDD3 and VSS.

	Demonster	Ourseland.	Dia /D a sea a star	O a setti a sa			Specific	cation	
Parameter		Symbol	Pin/Remarks	Conditions	V _{DD} [V]	min	typ	max	unit
	Peak output current	IOPL(1)	P03 to P07 Ports 1, 2 PWM0	Per 1 applicable pin				20	
		IOPL(2)	P01	Per 1 applicable pin				30	
		IOPL(3)	PWM1(TDN0) P00(TDN1) P02(TDN2)	Per 1 applicable pin				50	
		IOPL(4)	Ports 3, 7 XT2	Per 1 applicable pin				10	
	Average output current (Note 1-1)	IOML(1)	P03 to P07 Ports 1, 2 PWM0	Per 1 applicable pin				15	
ent		IOML(2)	P01	Per 1 applicable pin				20	1
Low level output current		IOML(3)	PWM1(TDN0) P00(TDN1) P02(TDN2)	Per 1 applicable pin				30	mA
w level		IOML(4)	Ports 3, 7 XT2	Per 1 applicable pin				7.5	
Lo	Total output current	ΣIOAL(1)	P01, P03 to P07 Ports 2	Total current of all applicable pins				45	
		ΣIOAL(2)	Port 1 PWM0	Total current of all applicable pins				45	
		ΣIOAL(3)	PWM1(TDN0) P00(TDN1) P02(TDN2)	Total current of all applicable pins				50	
		ΣIOAL(4)	Ports 0, 1, 2 PWM0, PWM1	Total current of all applicable pins				140	
		ΣIOAL(5)	Ports 3, 7 XT2	Total current of all applicable pins				15	
		ΣIOAL(6)	D+, D-	Total current of all applicable pins				25	
All	owable power	Pd max	SQFP48(7×7)	Ta=-30 to +70°C				190	
Di	ssipation			Ta=-40 to +85°C				140	mV
	perating ambient	Topr				-40		+85	°C
	orage ambient nperature	Tstg				-55		+125	Ű

Note 1-1: The average output current is an average of current values measured over 100ms intervals.

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

Parameter	Symbol	Din/Pomorko	Conditions			Specific	Specification		
Parameter	Symbol	Pin/Remarks	Conditions	V _{DD} [V]	min	typ	max	unit	
Operating	V _{DD} (1)	V _{DD} 1=V _{DD} 2=V _{DD} 3	$0.245 \mu s \leq tCYC \leq 200 \mu s$		3.0		5.5		
supply voltage (Note 2-1)			$0.490\mu s \le tCYC \le 200\mu s$ Except in onboard programming mode		2.7		5.5		
			0.245μs ≤ CYC ≤ 0.383μs USB circuit active		3.0		5.5		
Memory sustaining supply voltage	VHD	V _{DD} 1=V _{DD} 2=V _{DD} 3	RAM and register contents sustained in HOLD mode.		2.0		5.5		
High level input voltage	V _{IH} (1)	Port 0, 1, 2, 3, 7 PWM0, PWM1		2.7 to 5.5	0.3V _{DD} +0.7		V _{DD}	v	
	V _{IH} (2)	XT1, XT2, CF1, RES		2.7 to 5.5	0.75V _{DD}		V _{DD}		
Low level input voltage	V _{IL} (1)	Port 1, 2, 3, 7		4.0 to 5.5	V _{SS}		0.1V _{DD} +0.4		
	V _{IL} (2)			2.7 to 4.0	VSS		0.2V _{DD}		
	V _{IL} (3)	Port 0 PWM0, PWM1		4.0 to 5.5	V _{SS}		0.15V _{DD} +0.4		
	V _{IL} (4)			2.7 to 4.0	V _{SS}		0.2V _{DD}		
	V _{IL} (5)	XT1, XT2, CF1, RES		2.7 to 5.5	VSS		0.25V _{DD}		
Instruction	tCYC			3.0 to 5.5	0.245		200		
cycle time (Note 2-2)			Except for onboard programming mode	2.7 to 5.5	0.490		200	μs	
			USB circuit active	3.0 to 5.5	0.245		0.383		
External system clock frequency	FEXCF(1)	CF1	 CF2 pin open System clock frequency division ratio=1/1 External system clock duty =50±5% 	3.0 to 5.5	0.1		12		
			 CF2 pin open System clock frequency division ratio=1/1 External system clock duty =50±5% 	2.7 to 5.5	0.1		6	MHz	
Oscillation frequency	FmCF	CF1, CF2	When 12MHz ceramic oscillation See Fig. 1.	3.0 to 5.5		12		MHz	
range	FmRC		Internal RC oscillation	2.7 to 5.5	0.5	1.0	2.0		
(Note 2-3)	FmSLRC		Internal low-speed RC oscillation	2.7 to 5.5	15	30	60		
	FsX'tal	XT1, XT2	32.768kHz crystal oscillation See Fig. 2.	2.7 to 5.5		32.768		kHz	

Allowable Operating Conditions at Ta = -40°C to +85°C, $V_{SS}1 = V_{SS}2 = V_{SS}3 = 0V$

Note 2-1: V_{DD} must be held greater than or equal to 3.0V in the flash ROM onboard programming mode.

Note 2-2: Relationship between tCYC and oscillation frequency is 3/FmCF at a division ratio of 1/1 and 6/FmCF at a division ratio of 1/2.

Note 2-3: See Tables 1 and 2 for the oscillation constants.

Electrical Characteristics at Ta = -40°C to +85°C, $V_{SS}1 = V_{SS}2 = V_{SS}3 = 0V$

Parameter	Symbol	Pin/Remarks	Conditions		Specification					
Parameter	Symbol	Pin/Remarks	Conditions	V _{DD} [V]	min	typ	max	unit		
High level input current	I _{IH} (1)	Ports 0, 1, 2, 3, 7 RES PWM0, PWM1 D+, D-	Output disabled Pull-up resistor off VIN=VDD (Including output Tr's off leakage current)	2.7 to 5.5			1			
	I _{IH} (2)	XT1, XT2	Input port configuration VIN=VDD	2.7 to 5.5			1			
	I _{IH} (3)	CF1	V _{IN} =V _{DD}	2.7 to 5.5			15			
Low level input current	l _I L(1)	Ports 0, 1, 2, 3, 7 RES PWM0, PWM1 D+, D-	Output disabled Pull-up resistor off VIN=VSS (Including output Tr's off leakage current)	2.7 to 5.5	-1			μA		
	I _{IL} (2)	XT1, XT2	Input port configuration VIN ^{=V} SS	2.7 to 5.5	-1					
	I _{IL} (3)	CF1	V _{IN} =V _{SS}	2.7 to 5.5	-15					
High level output	V _{OH} (1)	Ports 0, 1, 2, 3	I _{OH} =-1mA	4.5 to 5.5	V _{DD} -1					
voltage	V _{OH} (2)	P71 to P73	I _{OH} =-0.4mA	3.0 to 5.5	V _{DD} -0.4					
	V _{OH} (3)		I _{OH} =-0.2mA	2.7 to 5.5	V _{DD} -0.4					
	V _{OH} (4)	PWM0, WM1	I _{OH} =-10mA	4.5 to 5.5	V _{DD} -1.5					
	V _{OH} (5)	P05(CKO when using system clock	I _{OH} =-1.6mA	3.0 to 5.5	V _{DD} -0.4					
	V _{OH} (6)	output function)	I _{OH} =-1mA	2.7 to 5.5	V _{DD} -0.4					
	V _{OH} (7)	PWM0, P01 (when using high current driver)	I _{OH} =-30mA	4.5 to 5.5	V _{DD} -0.5	V _{DD} -0.15				
Low level output	V _{OL} (1)	P00, P01	I _{OL} =30mA	4.5 to 5.5			1.5	v		
voltage	V _{OL} (2)		I _{OL} =5mA	3.0 to 5.5			0.4	v		
	V _{OL} (3)		I _{OL} =2.5mA	2.7 to 5.5			0.4			
	V _{OL} (4)	Ports 0, 1, 2	I _{OL} =10mA	4.5 to 5.5			1.5			
	V _{OL} (5)	PWM0, PWM1	I _{OL} =1.6mA	3.0 to 5.5			0.4			
	V _{OL} (6)	XT2	I _{OL} =1mA	2.7 to 5.5			0.4			
	V _{OL} (7)	Ports 3, 7	I _{OL} =1.6mA	3.0 to 5.5			0.4			
	V _{OL} (8)		I _{OL} =1mA	2.7 to 5.5			0.4			
	V _{OL} (9)	PWM1, P00, P02 (when using high current driver)	I _{OL} =30mA	4.5 to 5.5		0.15	0.5			
Pull-up resistance	Rpu(1)	Ports 0, 1, 2, 3, 7	V _{OH} =0.9V _{DD}	4.5 to 5.5	15	35	80	ko		
	Rpu(2)			2.7 to 5.5	18	50	150	kΩ		
Hysteresis voltage	VHYS	RES Port 1, 2, 3, 7		2.7 to 5.5		0.1V _{DD}		V		
Pin capacitance CP		All pins	For pins other than that under test: VIN=VSS f=1MHz Ta=25°C	2.7 to 5.5		10		pF		

3. SIO4 Serial I/O Characteristics (Note 4-3-1)

	Parameter	Symbol	Pin/	Conditions	r			ification	
		-	Remarks		V _{DD} [V]	min	typ	max	unit
	Frequency	tSCK(5)	SCK4(P24)	See Fig.8.		2			
	Low level pulse width	tSCKL(5)				1			
	High level pulse width	tSCKH(5)				1			
slock		tSCKHA(5a)		 USB nor continuous data transmission/reception mode of SIO0 are not in use simultaneous. See Fig.8. (Note 4-3-2) 		4			
Input clock		tSCKHA(5b)		 USB is in use simultaneous. Do not use SIO0 continuous data transmission mode at the same time. See Fig.8. (Note 4-3-2) 	- 2.7 to 5.5	7			tCYC
		tSCKHA(5c)		 USB and continuous data transmission/ reception mode of SIO0 are in use simultaneous. See Fig.8. (Note 4-3-2) 		10			
0410	Frequency	tSCK(6)	SCK4(P24)	CMOS output selected See Fig.8		4/3			
	Low level pulse width	tSCKL(6)	_(6)				1/2		
	High level pulse width	tSCKH(6)					1/2		tSCK
clock		tSCKHA(6a)		USB nor continuous data transmission/reception mode of SIO0 are not in use simultaneous. CMOS output selected See Fig.8.		tSCKH(6) +(5/3) tCYC		tSCKH(6) +(10/3) tCYC	
Output clock		tSCKHA(6b)		 USB is in use simultaneous. Do not use SIO0 continuous data transmission mode at the same time. CMOS output selected See Fig8. 	- 2.7 to 5.5	tSCKH(6) +(5/3) tCYC		tSCKH(6) +(19/3) tCYC	tCYC
		tSCKHA(6c)		USB and continuous data transmission/reception mode of SIO0 are in use simultaneous. CMOS output selected See Fig.8.		tSCKH(6) +(5/3) tCYC		tSCKH(6) +(28/3) tCYC	
	Data setup time tsDI(3) SO4(P22), SI4(P23) • Must be specified with respective to rising edge of SIOCLK.		Must be specified with respect	2.7 to 5.5	0.03				
	ata hold time	thDI(3)			2.7 to 5.5	0.03			μs

Note 4-3-1: These specifications are theoretical values. Add margin depending on its use.

Note 4-3-2: To use serial-clock-input in continuous trans/rec mode, a time from SI4RUN being set when serial clock is "H" to the first negative edge of the serial clock must be longer than tSCKHA.

Continued on next page.

Continued from preceding page. Pin/ Specification Parameter Symbol Conditions Remarks V_{DD}[V] min typ max unit Output delay time tdD0(5) SO4(P22), Must be specified with SI4(P23) respect to rising edge of Serial output SIOCLK. (1/3)tCYC • Must be specified as the time 2.7 to 5.5 μs to the beginning of output state +0.05 change in open drain output mode. • See Fig.8.

Pulse Input Conditions at $Ta = -40^{\circ}C$ to $+85^{\circ}C$, $V_{SS}1 = V_{SS}2 = V_{SS}3 = 0V$

Descurration	Symbol	Dia (Desservice	Ormalitiener	_		Speci	fication	
Parameter	Symbol	Pin/Remarks	Conditions	V _{DD} [V]	min	typ	max	unit
High/low level pulse width	tP1H(1) tP1L(1)	INT0(P70), INT1(P71), INT2(P72), INT4(P20 to P23), INT5(P24 to P27), INT6(P20), INT7(P24)	 Interrupt source flag can be set. Event inputs for timer 0 or 1 are enabled. 	2.7 to 5.5	1			
	tPIH(2) tPIL(2)	INT3(P73) when noise filter time constant is 1/1	 Interrupt source flag can be set. Event inputs for timer 0 are enabled. 	2.7 to 5.5	2			tCYC
	tPIH(3) tPIL(3)	INT3(P73) when noise filter time constant is 1/32	 Interrupt source flag can be set. Event inputs for timer 0 are nabled. 	2.7 to 5.5	64			
	tPIH(4) tPIL(4)	INT3(P73) when noise filter time constant is 1/128	 Interrupt source flag can be set. Event inputs for timer 0 are enabled. 	2.7 to 5.5	256			
	tPIL(5)	RES	Resetting is enabled.	2.7 to 5.5	200			μs

					Specifi	cation	
Parameter	Symbol	Conditions	Option selected voltage	min	typ	max	unit
POR release voltage	PORRL	Select from option	2.57V	2.45	2.57	2.69	
		(Note 7-1)	2.87V	2.75	2.87	2.99	
			3.86V	3.73	3.86	3.99	V
			4.35V	4.21	4.35	4.49	v
Detection voltage unknown state	POUKS	See Fig.11 (Note 7-2)			0.7	0.95	
Power supply rise time	PORIS	Power supply rise time from 0V to 1.6V				100	ms

Power-on Reset (POR) Characteristics at $Ta = -40^{\circ}C$ to $+85^{\circ}C$, $V_{SS}1 = V_{SS}2 = V_{SS}3 = 0V$

Note 7-1: The POR release level can be selected out of 4 levels only when the LVD reset function is disabled. Note 7-2: POR is in unknown state before transistor start operation.

Low Voltage Detection Reset (LVD) Characteristics at $Ta = -40^{\circ}C$ to $+85^{\circ}C$, $V_{SS}1 = V_{SS}2 = V_{SS}3 = 0V$

					Specifi	ication	
Parameter	Symbol	Conditions	Option selected voltage	min	typ	max	unit
LVD reset voltage	LVDET	Select from option	2.81V	2.71	2.81	2.91	
(Note 8-2)		See Fig.12	3.79V	3.69	3.79	3.89	V
		(Note 8-1) (Note 8-3)	4.28V	4.18	4.28	4.38	
LVD hysteresis width LVH	LVHYS	(10018-0-3)	2.81V		55		
			3.79V		60		mV
			4.28V		60		
Detection voltage unknown state	LVUKS	See Fig.12 (Note 8-4)			0.7	0.95	V
Low voltage detection minimum width (Reply sensitivity).	TLVDW	LVDET-0.5V See Fig.13		0.2			ms

Note 8-1: The LVD reset level can be selected out of 3 levels only when the LVD reset function is enabled.

Note 8-2: LVD reset voltage specification values do not include hysteresis voltage.

Note 8-3: LVD reset voltage may exceed its specification values when port output state changes and and/or when a large current flows through port.

Note 8-4: LVD is in unknown state before transistor start operation.

Continued from an editor

Devenueter	Ourseland.	Pin/	O an dition a			Specif	ication	
Parameter	Symbol	Remarks	Conditions	V _{DD} [V]	min	typ	max	unit
HALT mode consumption	IDDHALT(11)	V _{DD} 1 =V _{DD} 2	HALT mode FmCF=0MHz (oscillation stopped)	4.5 to 5.5		35	120	
current (Note 9-1)	IDDHALT(12)	=V _{DD} 3	 FsX'tal=32.768kHz crystal oscillation mode System clock set to crystal oscillation. 	3.0 to 3.6		9.5	39	
(Note 9-2)	IDDHALT(13)		(32.768kHz) Internal RC oscillation stopped 1/2 frequency division ratio	2.7 to 3.0		6.4	27	
HOLD mode	IDDHOLD(1)	V _{DD} 1	HOLD mode	4.5 to 5.5		0.08	24	
consumption	IDDHOLD(2)		 CF1=V_{DD} or open (External clock mode) 	3.0 to 3.6		0.03	11	
urrent Note 9-1)	IDDHOLD(3)			2.7 to 3.0		0.02	9.6	
Note 9-2)	IDDHOLD(4)		LVD option selected 3.0	4.5 to 5.5		2.9	29	
,	IDDHOLD(5)			3.0 to 3.6		2.2	15	μA
	IDDHOLD(6)		CF1=V _{DD} or open (External clock mode)	2.7 to 3.0		2.1	12	•
	IDDHOLD(7)		HOLD mode	4.5 to 5.5		2.9	32	
	IDDHOLD(8)		 Watchdog timer operation mode (internal low-speed RC oscillation circuit 	3.0 to 3.6		1.4	16	
	IDDHOLD(9)		operation) • CF1=V _{DD} or open (External clock mode)	2.7 to 3.0		1.2	14	
imer HOLD	IDDHOLD(10)		Timer HOLD mode CF1=V _{DD} or open (External clock mode)	4.5 to 5.5		31	110	
consumption	IDDHOLD(11)		FsX'tal=32.768kHz crystal oscillation mode	3.0 to 3.6		7.0	34	
Note 9-1) Note 9-2)	IDDHOLD(12)			2.7 to 3.0		4.3	22	

Note 9-1: The consumption current value includes none of the currents that flow into the output transistors and internal pull-up resistors.

Note9-2: Unless otherwise specified, the consumption current for the LVD circuits is not included.

USB Characteristics and Timing at $Ta=-40^{\circ}C$ to $+85^{\circ}C,\,V_{SS}1=V_{SS}2=V_{SS}3=0V$

Devenueter	Querra la cl	Symbol Conditions		Specif	cation	
Parameter	Symbol	Conditions	min	typ	max	unit
High level output	VOH(USB)	• 15kΩ±5% to GND	2.8		3.6	V
Low level output	VOL(USB)	• 1.5kΩ±5% to 3.6V	0.0		0.3	V
Output signal crossover voltage	VCRS		1.3		2.0	V
Differential input sensitivity	V _{DI}	• (D+)-(D-)	0.2			V
Differential input common mode range	V _{CM}		0.8		2.5	V
High level input	VIH(USB)		2.0			V
Low level input	VIL(USB)				0.8	V
USB data rise time	^t R	• R _S =27 to 33Ω, C _L =50pF • V _{DD} 3=3.0 to 3.6V	4		20	ns
USB data fall time	^t F	• R _S =27 to 33Ω, C _L =50pF • V _{DD} 3=3.0 to 3.6V	4		20	ns

F-ROM Programming Characteristics at $Ta = +10^{\circ}C$ to $+55^{\circ}C$, $V_{SS}1 = 0V$

Descenter	Pin/		Que distante		Specification				
Parameter	Symbol	Remarks	Conditions	V _{DD} [V]	min	typ	max	unit	
Onboard programming current	IDDFW(1)	V _{DD} 1	 Excluding power dissipation in the microcontroller block 	3.0 to 5.5		5	10	mA	
Programming time	tFW(1)		Erase operation	0.01.55		20	30	ms	
	tFW(2)	W(2) • Write operation		3.0 to 5.5		40	60	μs	

Characteristics of a Sample Main System Clock Oscillation Circuit

Given below are the characteristics of a sample main system clock oscillation circuit that are measured using a Our designated oscillation characteristics evaluation board and external components with circuit constant values with which the oscillator vendor confirmed normal and stable oscillation.

Table 1 Characteristics of a Sample Main System Clock Oscillator Circuit with a Ceramic Oscillator at Ta = -40° C to $+85^{\circ}$ C

ut 1	$a = -40 \ C \ 10$	105 6							
Nominal	Vendor		Circuit Constant Operating Oscillation Voltage Stabilization Time	Circuit Constant				Demeric	
Frequency	Name	Oscillator Name	C1 [pF]	C2 [pF]	Rd1 [Ω]	Range [V]	typ [ms]	max [ms]	Remarks
12MHz	MURATA	CSTCE12M0GH5L**-R0	(33)	(33)	470	3.0 to 5.5	0.1	0.5	C1 and C2 integrated SMD type

The oscillation stabilization time refers to the time interval that is required for the oscillation to get stabilized in the following cases (see Figure 4):

- Till the oscillation gets stabilized after VDD goes above the operating voltage lower limit.
- Till the oscillation gets stabilized after the instruction for starting the main clock oscillation circuit is executed.
- Till the oscillation gets stabilized after the HOLD mode is reset.
- Till the oscillation gets stabilized after the X'tal HOLD mode is reset with CFSTOP (OCR register, bit 0) set to 0.

Characteristics of a Sample Subsystem Clock Oscillator Circuit

Given below are the characteristics of a sample subsystem clock oscillation circuit that are measured using a Our designated oscillation characteristics evaluation board and external components with circuit constant values with which the oscillator vendor confirmed normal and stable oscillation.

Nominal	Vendor	O sillatas Nama		Circuit C	Constant		Operating Voltage	Oscil Stabilizat	lation tion Time	Demeric
Frequency	Name	lame Oscillator Name	C3	C4	Rf	Rd2	Range	typ	max	Remarks
			[pF]	[pF]	[Ω]	[Ω]	[V]	[s]	[s]	
32.768kHz	EPSON TOYOCOM	MC-306	18	18	OPEN	680k	2.7 to 5.5	1.1	3.0	Applicable CL value=12.5pF SMD type

Table 2 Characteristics of a Sample Subsystem Clock Oscillator Circuit with a Crystal Oscillator

The oscillation stabilization time refers to the time interval that is required for the oscillation to get stabilized in the following cases (see Figure 4):

• Till the oscillation gets stabilized after the instruction for starting the subclock oscillation circuit is executed.

• Till the oscillation gets stabilized after the HOLD mode is reset with EXTOSC (OCR register, bit 6) set to 1.

Note: The components that are involved in oscillation should be placed as close to the IC and to one another as possible because they are vulnerable to the influences of the circuit pattern.

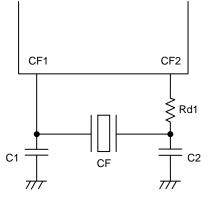


Figure 1 CF Oscillator Circuit

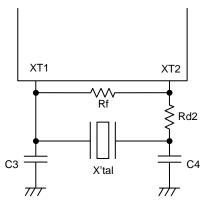


Figure 2 Crystal Oscillator Circuit

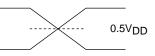
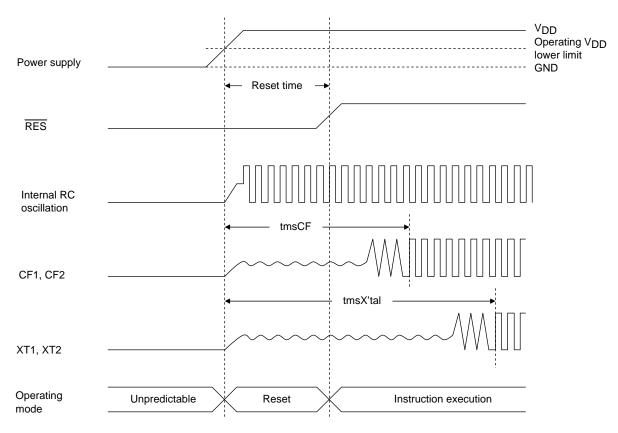
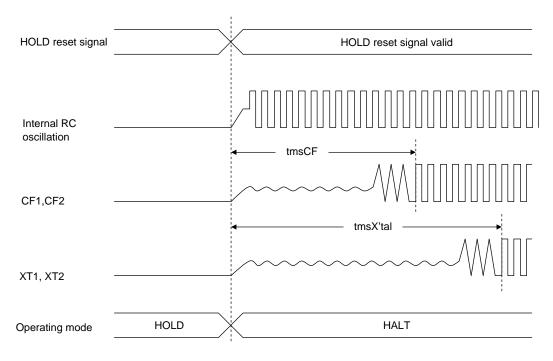
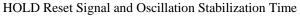
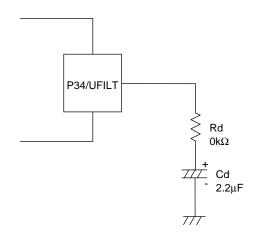
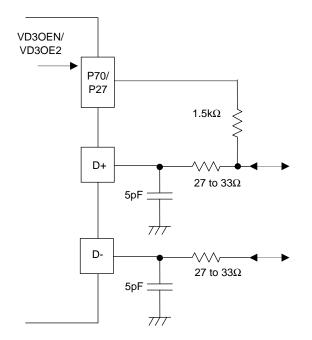




Figure 3 AC Timing Measurement Point

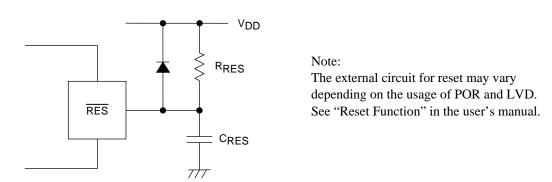
Reset Time and Oscillation Stabilization Time

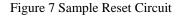




Figure 4 Oscillation Stabilization Time

When using the internal PLL circuit to generate the-48MHz clock for USB, it is necessary to connect a filter circuit such as that shown to the left to the P34/UFILT pin.

After PLL settings, 20ms or more is required to stabilize.





Note:

It's necessary to adjust the Circuit Constant of the USB Port Peripheral Circuit each mounting board. Make the D+ Pull-up resistors available to control on/off according to the Vbus.

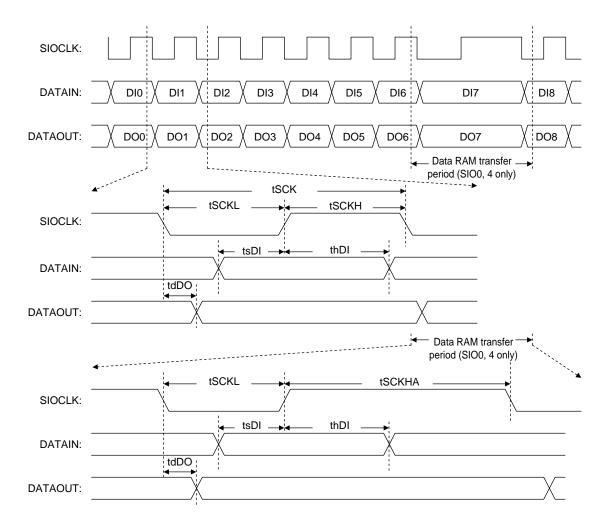


Figure 8 Serial Input/Output Waveform

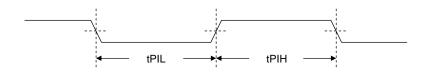


Figure 9 Pulse Input Timing Signal Waveform

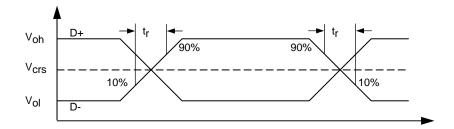


Figure 10 USB Data Signal Timing and Voltage Level