

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

-·XE

Details	
Product Status	Obsolete
Core Processor	R8C
Core Size	16-Bit
Speed	20MHz
Connectivity	I ² C, LINbus, SIO, SSU, UART/USART
Peripherals	LCD, POR, PWM, Voltage Detect, WDT
Number of I/O	56
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	2K x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-20°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LFQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f2la64anfp-u0

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

	(INCO/EA			,			• 4p)										
			R8C/LA3A Group Common output: Max. 4				R8C/LA5A Group Common output: Max. 4										
	Shared I/O Port																
			Segment output: Max. 11				S	egme	ent out	tput: N	/lax. 2	7					
P0											SEG	SEG	SEG	SEG	SEG	SEG	SEG
		_	_		_					7	6	5	4	3	2	1	0
P2		SEG	SEG	SEG	SEG	SEG	SEG	SEG	SEG	SEG	SEG	SEG	SEG	SEG	SEG	SEG	SEG
		15	14	13	12	11	10	9	8	15	14	13	12	11	10	9	8
P3										SEG	SEG	SEG	SEG	SEG	SEG	SEG	SEG
		_	_		_		_		_	23	22	21	20	19	18	17	16
P5							COM	COM	COM						COM	COM	COM
			VL3	VL2	VL1	COM	1	2	3		VL3	VL2	VL1	COM	1	2	3
		_	(2)	(2)	(2)	0	SEG	SEG	SEG		(2)	(2)	(2)	0	SEG	SEG	SEG
							26	25	24						26	25	24

Table 1.4LCD Display Function Pins Provided for Each Group
(R8C/LA3A Group, R8C/LA5A Group)

Notes:

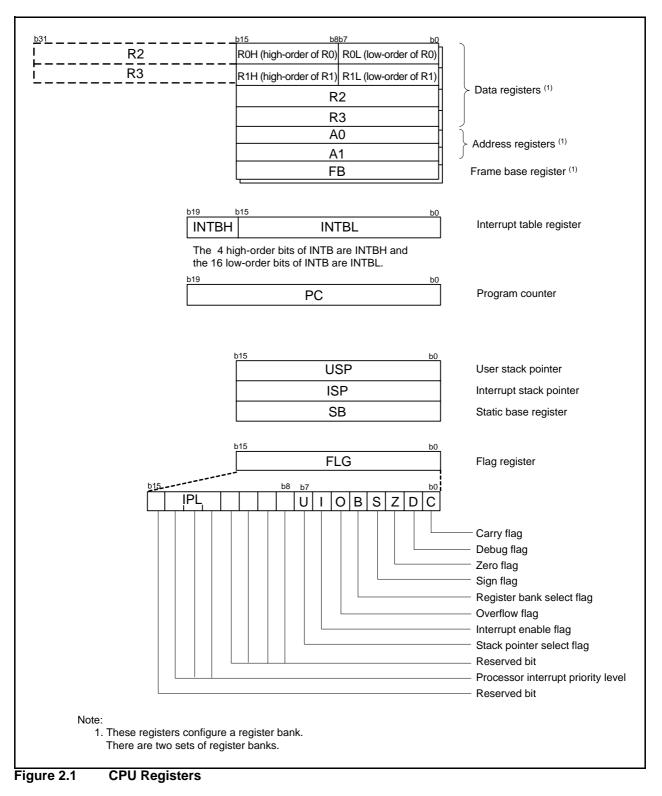
1. The symbol "—" indicates there is no LCD display function. Set the corresponding bits to 0 by setting registers LSE0, LSE2, and LSE5 for these pins.

2. When using the LCD drive control circuit, set the corresponding bit in the LSE5 register to 1.

Table 1.5LCD Display Function Pins Provided for Each Group
(R8C/LA6A Group, R8C/LA8A Group)

	R8C/LA6A Group				R8C/LA8A Group											
Shared I/O Port	Common output: Max. 4						Common output: Max. 4									
		S	egme	nt out	tput: N	/lax. 3	2		Segment output: Max. 40							
P0	SEG		SEG	SEG	SEG	SEG	SEG	SEG	SEG	SEG						
	7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0
P1	SEG	SEG	SEG	SEG	SEG	SEG	i i		SEG	SEG	SEG	SEG	SEG	SEG	SEG	SEG
	15 14 13 12 11 10	_	_	15	14	13	12	11	10	9	8					
P2	SEG	SEG	SEG	SEG	SEG	SEG	SEG	SEG	SEG	SEG	SEG	SEG	SEG	SEG	SEG	SEG
	23	22	21	20	19	18	17	16	23	22	21	20	19	18	17	16
P3	SEG	SEG	SEG	SEG	SEG	SEG	SEG	SEG	SEG	SEG	SEG	SEG	SEG	SEG	SEG	SEG
	31	30	29	28	27	26	25	24	31	30	29	28	27	26	25	24
P4	SEG	SEG							SEG	SEG	SEG	SEG	SEG	SEG	SEG	SEG
	39	38	_	_					39	38	37	36	35	34	33	32
P5		VL3	VL2	VL1	COM	COM	COM	COM		VL3	VL2	VL1	COM	COM	COM	COM
		(2)	(2)	(2)	0	1	2	3		(2)	(2)	(2)	0	1	2	3

Notes:


1. The symbol "—" indicates there is no LCD display function. Set the corresponding bits to 0 by setting registers LSE1, LSE4 and LSE5 for these pins.

2. When using the LCD drive control circuit, set the corresponding bit in the LSE5 register to 1.

2. Central Processing Unit (CPU)

Figure 2.1 shows the CPU Registers. The CPU contains 13 registers. R0, R1, R2, R3, A0, A1, and FB configure a register bank. There are two sets of register banks.

2.1 Data Registers (R0, R1, R2, and R3)

R0 is a 16-bit register for transfer, arithmetic, and logic operations. The same applies to R1 to R3. R0 can be split into high-order bits (R0H) and low-order bits (R0L) to be used separately as 8-bit data registers. R1H and R1L are analogous to R0H and R0L. R2 can be combined with R0 and used as a 32-bit data register (R2R0). R3R1 is analogous to R2R0.

2.2 Address Registers (A0 and A1)

A0 is a 16-bit register for address register indirect addressing and address register relative addressing. It is also used for transfer, arithmetic, and logic operations. A1 is analogous to A0. A1 can be combined with A0 and as a 32-bit address register (A1A0).

2.3 Frame Base Register (FB)

FB is a 16-bit register for FB relative addressing.

2.4 Interrupt Table Register (INTB)

INTB is a 20-bit register that indicates the starting address of an interrupt vector table.

2.5 Program Counter (PC)

PC is 20 bits wide and indicates the address of the next instruction to be executed.

2.6 User Stack Pointer (USP) and Interrupt Stack Pointer (ISP)

The stack pointers (SP), USP and ISP, are each 16 bits wide. The U flag of FLG is used to switch between USP and ISP.

2.7 Static Base Register (SB)

SB is a 16-bit register for SB relative addressing.

2.8 Flag Register (FLG)

FLG is an 11-bit register indicating the CPU state.

2.8.1 Carry Flag (C)

The C flag retains carry, borrow, or shift-out bits that have been generated by the arithmetic and logic unit.

2.8.2 Debug Flag (D)

The D flag is for debugging only. Set it to 0.

2.8.3 Zero Flag (Z)

The Z flag is set to 1 when an arithmetic operation results in 0; otherwise to 0.

2.8.4 Sign Flag (S)

The S flag is set to 1 when an arithmetic operation results in a negative value; otherwise to 0.

2.8.5 Register Bank Select Flag (B)

Register bank 0 is selected when the B flag is 0. Register bank 1 is selected when this flag is set to 1.

2.8.6 Overflow Flag (O)

The O flag is set to 1 when an operation results in an overflow; otherwise to 0.

Address	Register	Symbol	After Reset
0200h	LCD Control Register	LCR0	00h
0201h			
0202h	LCD Option Clock Control Register	LCR2	00h
0203h	LCD Clock Control Register	LCR3	00h
0204h	LCD Display Control Register	LCR4	00h
0205h			
0206h	LCD Port Select Register 0	LSE0	00h
0207h	LCD Port Select Register 1	LSE1	00h
0208h	LCD Port Select Register 2	LSE2	00h
0209h			
020Ah			
020Bh	LCD Port Select Register 5	LSE5	00h
020Ch			
020Dh			
020Eh			
020Fh			
0210h	LCD Display Data Register	LRAOL	XXh
0211h		LRA1L	XXh
0212h	1	LRA2L	XXh
0213h	1	LRA3L	XXh
0214h	1	LRA4L	XXh
0215h	1	LRA5L	XXh
0216h	4	LRA6L	XXh
0217h		LRA7L	XXh
0218h		LRA8L	XXh
0219h	-	LRA9L	XXh
021Ah	-	LRA10L	XXh
021An	-	LRA11L	XXh
021Ch	-	LRA12L	XXh
021Dh	4	LRA13L	XXh
021Eh	4	LRA14L	XXh
021Eh	-	LRA15L	XXh
0220h	-	LRA16L	XXh
0220h	4	LRA17L	XXh
022111 0222h	4	LRA17L	XXh
0222h	4	LRA19L	XXh
0223h	4	LRA20L	XXh
022411 0225h	4	LRA20L	XXh
	4		
0226h 0227h	4	LRA22L LRA23L	XXh XXh
0227h 0228h	4	LRA23L	XXh
0228h 0229h	4	LRA24L LRA25L	XXn XXh
	4		
022Ah		LRA26L	XXh
022Bh			
022Ch			
022Dh			
022Eh			
022Fh			
0230h			
0231h			
0232h			
0233h			
0234h			
0235h			
0236h			
0237h			
023711			
:	•		

Table 4.9 SFR Information for R8C/LA5A Group (9) ⁽¹⁾

X: Undefined Note:

1. Blank spaces are reserved. No access is allowed.

R01DS0011EJ0101 Rev.1.01 Oct 28, 2011

ddress 0080h	Register Timer RJ0 Control Register	Symbol TRJ0CR	After Reset
0081h	Timer RJ0 I/O Control Register	TRJOIOC	00h
0082h	Timer RJ0 Mode Register	TRJOMR	00h
0083h	Timer RJ0 Event Pin Select Register	TRJ0ISR	00h
0084h	Timer RJ0 Register	TRJ0	FFh
0085h			FFh
0086h			
0087h			
0088h	Timer RJ1 Control Register	TRJ1CR	00h
0089h	Timer RJ1 I/O Control Register	TRJ1IOC	00h
	5		
008Ah	Timer RJ1 Mode Register	TRJ1MR	00h
008Bh	Timer RJ1 Event Pin Select Register	TRJ1ISR	00h
008Ch	Timer RJ1 Register	TRJ1	FFh
008Dh			FFh
008Eh			
008Fh			
0090h	Timer RJ2 Control Register	TRJ2CR	00h
	0		
0091h	Timer RJ2 I/O Control Register	TRJ2IOC	00h
0092h	Timer RJ2 Mode Register	TRJ2MR	00h
0093h	Timer RJ2 Event Pin Select Register	TRJ2ISR	00h
0094h	Timer RJ2 Register	TRJ2	FFh
0095h	1		FFh
0096h			
0097h			
009711 0098h	Timer RB1 Control Register	TRB1CR	00h
	5		
0099h	Timer RB1 One-Shot Control Register	TRB10CR	00h
009Ah	Timer RB1 I/O Control Register	TRB1IOC	00h
009Bh	Timer RB1 Mode Register	TRB1MR	00h
009Ch	Timer RB1 Prescaler Register	TRB1PRE	FFh
009Dh	Timer RB1 Secondary Register	TRB1SC	FFh
009Eh	Timer RB1 Primary Register	TRB1PR	FFh
	Timer (CDTT Timary (Cegister	INDII K	1111
009Fh			
00A0h	UART0 Transmit/Receive Mode Register	U0MR	00h
00A1h	UART0 Bit Rate Register	U0BRG	XXh
00A2h	UART0 Transmit Buffer Register	U0TB	XXh
00A3h			XXh
00A4h	UART0 Transmit/Receive Control Register 0	U0C0	00001000b
00A5h	UART0 Transmit/Receive Control Register 1	U0C1	00000010b
00/(6h	UARTO Receive Buffer Register	UORB	XXh
	UARTO Receive Buller Register	UURB	
00A7h			XXh
00A8h	UART2 Transmit/Receive Mode Register	U2MR	00h
00A9h	UART2 Bit Rate Register	U2BRG	XXh
00AAh	UART2 Transmit Buffer Register	U2TB	XXh
00ABh	1 ~		XXh
00ACh	UART2 Transmit/Receive Control Register 0	U2C0	00001000b
00ACh	UART2 Transmit/Receive Control Register 0	U2C1	00001000b
	5	U2RB	
00AEh	UART2 Receive Buffer Register	UZKB	XXh
00AFh			XXh
00B0h	UART2 Digital Filter Function Select Register	URXDF	00h
00B1h			
00B2h			
00B3h			
00B4h			
00B5h			
00B6h			
00B7h			
00B8h			
00B9h			
00BAh			
00BBh	UART2 Special Mode Register 5	U2SMR5	00h
00BCh	UART2 Special Mode Register 4	U2SMR4	00h
00BDh	UART2 Special Mode Register 3	U2SMR3	000X0X0Xb
	UART2 Special Mode Register 2	U2SMR2	X000000b
00BEh	UART2 Special Mode Register	020101112	X000000D

Table 4.12 SFR Information for R8C/LA8A Group (3)	(1)
---	-----

Note:

1. Blank spaces are reserved. No access is allowed.

Address	Register	Symbol	After Reset
0100h			
0101h			
0102h			
0103h			
0104h			
0105h			
0106h			
0107h			
0108h	Timer RB0 Control Register	TRB0CR	00h
0109h	Timer RB0 One-Shot Control Register	TRB0OCR	00h
010Ah	Timer RB0 I/O Control Register	TRB0IOC	00h
010Bh	Timer RB0 Mode Register	TRB0MR	00h
010Ch	Timer RB0 Prescaler Register	TRB0PRE	FFh
010Dh	Timer RB0 Secondary Register	TRB0SC	FFh
010Eh	Timer RB0 Primary Register	TRB0PR	FFh
010Eh		The of the	
0110h	Timer RH Second Data Register / Counter Data Register	TRHSEC	XXh
orron	Timer Ni r Gecond Data Register / Gounter Data Register	TITIBLE	00h ⁽²⁾
0111h	Timer RH Minute Data Register / Compare Data Register	TRHMIN	XXh
UTTI	Timer NT Windle Data Negister / Compare Data Negister		00h ⁽²⁾
0112h	Timer RH Hour Data Register	TRHHR	00XXXXXb
011211			00h ⁽²⁾
0113h	Timer RH Day-of-the-Week Data Register	TRHWK	00000XXXb
011011			00h (2)
0114h	Timer RH Date Data Register	TRHDY	00XXXXXb
011711			00000001b ⁽²⁾
0115h	Timer RH Month Data Register	TRHMON	000XXXXb
011011			00000001b ⁽²⁾
0116h	Timer RH Year Data Register	TRHYR	XXh
011011	Timer Kir real Data Kegister	IXIIIX	00h ⁽²⁾
0117h	Timer RH Control Register	TRHCR	XXX00X0Xb
011711	Timer Kir Control Register	TRIER	000XX1X0b ⁽²⁾
0118h	Timer RH Count Source Select Register	TRHCSR	X0001000b
011011	Timer Kir Count Source Select Register	TRICOR	0XXXXXXb ⁽²⁾
0119h	Timer RH Clock Error Correction Register	TRHADJ	XXh
011911		TRIADS	00h ⁽²⁾
011Ah	Timer RH Interrupt Flag Register	TRHIFR	00000XXXb
UTAI	Timer for interrupt hag register		000XX000b ⁽²⁾
011Bh	Timer RH Interrupt Enable Register	TRHIER	XXh
UTIBII		TRITER	00h ⁽²⁾
011Ch	Timer RH Alarm Minute Register	TRHAMN	XXh
UTICI		IRHAWIN	00h ⁽²⁾
011Dh	Timer DH Alerm Heur Degister	TRHAHR	XXh
UTIDI	Timer RH Alarm Hour Register	INDADK	00h ⁽²⁾
044 Eh	Timer DI L Alexer Devict the Wickle Devictor	TDUANU	X0000XXXb
011Eh	Timer RH Alarm Day-of-the-Week Register	TRHAWK	00h ⁽²⁾
011Fh	Timer DH Drotoot Degister	TRHPRC	00h
UTIFI	Timer RH Protect Register	IKHERC	X0000000b (2)
0120h	Timer RC Mode Register	TRCMR	01001000b
0121h	Timer RC Control Register 1	TRCCR1	00h
0122h	Timer RC Interrupt Enable Register	TRCIER	01110000b
0123h	Timer RC Status Register	TRCSR	01110000b
0124h	Timer RC I/O Control Register 0	TRCIOR0	10001000b
0125h	Timer RC I/O Control Register 1	TRCIOR1	10001000b
0126h	Timer RC Counter	TRC	00h
0127h			00h
0128h	Timer RC General Register A	TRCGRA	FFh
0129h			FFh
012Ah	Timer RC General Register B	TRCGRB	FFh
012Bh			FFh
012Ch	Timer RC General Register C	TRCGRC	FFh
012Dh	1		FFh
012Eh	Timer RC General Register D	TRCGRD	FFh
012Fh	1		FFh
0130h	Timer RC Control Register 2	TRCCR2	00011000b
0131h	Timer RC Digital Filter Function Select Register	TRCDF	00h
0132h	Timer RC Output Master Enable Register	TRCOER	01111111b
0132h	Timer RC Trigger Control Register	TRCADCR	00h
0133h		INCODOR	
0134h 0135h			
0136h			
0137h			
0138h			
0139h			
013Ah			
013Bh			
013Ch			
013Dh			
			1
013Eh			

SFR Information for R8C/LA8A Group (5) ⁽¹⁾ Table 4.14

X: Undefined

Notes: 1. Blank spaces are reserved. No access is allowed. 2. This is the reset value after reset by RTCRST bit in TRHCR register.

Address	Area Name	Symbol	After Reset
:			
FFDBh	Option Function Select Register 2	OFS2	(Note 1)
:			
FFDFh	ID1		(Note 2)
:			
FFE3h	ID2		(Note 2)
:			
FFEBh	ID3		(Note 2)
:			
FFEFh	ID4		(Note 2)
:			
FFF3h	ID5		(Note 2)
:	1=-		
FFF7h	ID6		(Note 2)
:			
FFFBh	ID7		(Note 2)
:		1.050	
FFFFh	Option Function Select Register	OFS	(Note 1)

 Table 4.19
 ID Code Areas and Option Function Select Area

Notes:

The option function select area is allocated in the flash memory, not in the SFRs. Set appropriate values as ROM data by a program.

Do not write additions to the option function select area. If the block including the option function select area is erased, the option function select area is set to FFh.

When blank products are shipped, the option function select area is set to FFh. It is set to the written value after written by the user. When factory-programming products are shipped, the value of the option function select area is the value programmed by the user.

2. The ID code areas are allocated in the flash memory, not in the SFRs. Set appropriate values as ROM data by a program. Do not write additions to the ID code areas. If the block including the ID code areas is erased, the ID code areas are set to FFh. When blank products are shipped, the ID code areas are set to FFh. They are set to the written value after written by the user. When factory-programming products are shipped, the value of the ID code areas is the value programmed by the user.

Table 5.8Flash Memory (Data flash Block A and Block B) Characteristics
(Vcc = 1.8 to 5.5 V and Topr = -20 to 85 °C (N version)/ -40 to 85 °C (D version), unless
otherwise specified.)

Symbol	Deremeter	Conditiono		Linit		
Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
-	Program/erase endurance (1)		10,000 (2)	-	-	time s
-	Byte program time (program/erase endurance ≤ 10,000 times)		-	150	-	μS
-	Block erase time (program/erase endurance ≤ 10,000 times)		-	0.05	1	S
td(SR-SUS)	Time delay from suspend request until suspend		-	-	0.25 + CPU clock × 3 cycles	ms
-	Time from suspend until erase restart		-	-	30 + CPU clock × 1 cycle	μS
td(CMDRST-READY)	Time from when command is forcibly terminated until reading is enabled		-	-	30 + CPU clock × 1 cycle	μS
-	Program, erase voltage		1.8	-	5.5	V
-	Read voltage		1.8	-	5.5	V
-	Program, erase temperature		-20 (6)	-	85	°C
-	Data hold time ⁽⁷⁾	Ambient temperature = 85 °C	10	-	_	year

Notes:

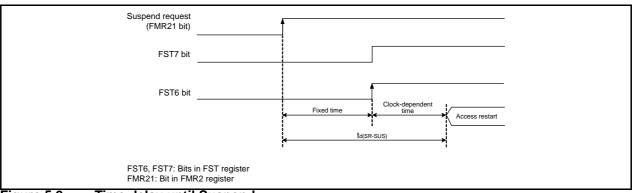
1. Definition of programming/erasure endurance

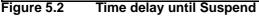
The programming and erasure endurance is defined on a per-block basis.

If the programming and erasure endurance is n (n = 10,000), each block can be erased n times. For example, if 1,024 1-byte writes are performed to different addresses in block A, a 1 Kbyte block, and then the block is erased, the programming/erasure endurance still stands at one.

However, the same address must not be programmed more than once per erase operation (overwriting prohibited).

2. Endurance to guarantee all electrical characteristics after program and erase. (1 to Min. value can be guaranteed).


3. In a system that executes multiple programming operations, the actual erasure count can be reduced by writing to sequential addresses in turn so that as much of the block as possible is used up before performing an erase operation. For example, when programming groups of 16 bytes, the effective number of rewrites can be minimized by programming up to 128 groups before erasing them all in one operation. In addition, averaging the erasure endurance between blocks A and B can further reduce the actual erasure endurance. It is also advisable to retain data on the erasure endurance of each block and limit the number of erase operations to a certain number.


4. If an error occurs during block erase, attempt to execute the clear status register command, then execute the block erase command at least three times until the erase error does not occur.

5. Customers desiring program/erase failure rate information should contact their Renesas technical support representative.

6. -40 °C for D version.

7. The data hold time includes time that the power supply is off or the clock is not supplied.

Table 5.13High-speed On-Chip Oscillator Circuit Characteristics
(Vcc = 1.8 to 5.5 V and Topr = -20 to 85 °C (N version)/ -40 to 85 °C (D version), unless
otherwise specified.)

Symbol	Parameter	Condition		Unit			
Symbol	Falameter	Condition	Min.	Тур.	Max.	Unit	
-	High-speed on-chip oscillator frequency after reset	Vcc = 1.8 V to 5.5 V - 20 °C \leq Topr \leq 85 °C	19.2	20	20.8	MHz	
		Vcc = 1.8 V to 5.5 V - 40 °C ≤ Topr ≤ 85 °C	19.0	20	21.0	MHz	
	igh-speed on-chip oscillator frequency when the FRA4 register correction value is written into	Vcc = 1.8 V to 5.5 V - 20 °C ≤ Topr ≤ 85 °C	17.694	18.432	19.169	MHz	
	the FRA1 register and the FRA5 register correction value into the FRA3 register ⁽¹⁾	Vcc = 1.8 V to 5.5 V - 40 °C ≤ Topr ≤ 85 °C	17.510	18.432	19.353	MHz	
-	Oscillation stability time		-	5	30	μS	
-	Self power consumption at oscillation	VCC = 5.0 V, Topr = 25 $^{\circ}$ C	-	530	-	μΑ	

Note:

1. This enables the setting errors of bit rates such as 9600 bps and 38400 bps to be 0% when the serial interface is used in UART mode.

Table 5.14 Low-speed On-Chip Oscillator Circuit Characteristics

(Vcc = 1.8 to 5.5 V and Topr = -20 to 85 °C (N version)/ -40 to 85 °C (D version), unless otherwise specified.)

Symbol	Parameter	Condition		Standard		Unit
Symbol	Falanielei	Condition	Min.	Тур.	Max.	Onit
fOCO-S	Low-speed on-chip oscillator frequency		60	125	250	kHz
-	Oscillation stability time		-	-	35	μS
-	Self power consumption at oscillation	Vcc = 5.0 V, Topr = 25°C	-	2	-	μA
fOCO-WDT	Low-speed on-chip oscillator frequency for the watchdog timer		60	125	250	kHz
-	Oscillation stability time		-	-	35	μS
-	Self power consumption at oscillation	Vcc = 5.0 V, Topr = 25°C	-	2	-	μA

Table 5.15 Power Supply Circuit Characteristics

(VCC = 1.8 to 5.5 V, VSS = 0 V, and Topr = 25 °C, unless otherwise specified.)

Symbol	Parameter	Condition		Standard	4	Unit
Symbol	Falanetei	Condition	Min.	Тур.	Max.	Offic
td(P-R)	Time for internal power supply stabilization during power-on ⁽¹⁾		-	-	2000	μS

Note:

1. Waiting time until the internal power supply generation circuit stabilizes during power-on.

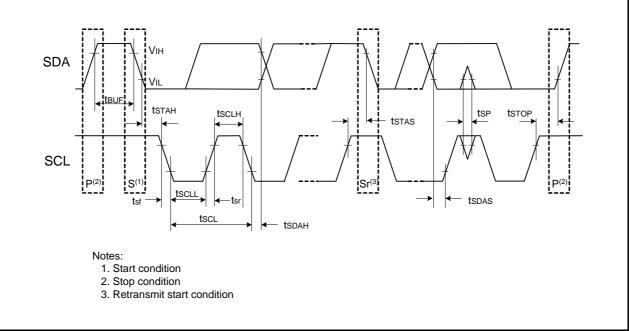


Table 5.25Timing Requirements of I2C bus Interface (1)
(Vcc = 1.8 to 5.5 V, Vss = 0 V, and Topr = -20 to 85 °C (N version)/ -40 to 85 °C
(D version), unless otherwise specified.)

Cumbal	Parameter	Condition	Sta	andard		Unit
Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
tscl	SCL input cycle time		12tcyc + 600 (1)	-	-	ns
t SCLH	SCL input "H" width		3tcyc + 300 (1)	-	-	ns
tSCLL	SCL input "L" width		5tcyc + 500 (1)	-	-	ns
tsf	SCL, SDA input fall time		-	-	300	ns
tsp	SCL, SDA input spike pulse rejection time		-	-	1tcyc (1)	ns
t BUF	SDA input bus-free time		5tcyc (1)	-	-	ns
t STAH	Start condition input hold time		3tcyc ⁽¹⁾	-	-	ns
t STAS	Retransmit start condition input setup time		3tcyc (1)	-	-	ns
t STOP	Stop condition input setup time		3tcyc (1)	-	-	ns
tsdas	Data input setup time		1tcyc + 40 (1)	-	-	ns
t SDAH	Data input hold time		10	-	-	ns

Note:

1. 1tcyc = 1/f1(s)

Table 5.26Timing Requirements of External Clock Input (XIN, XCIN)
(Vss = 0 V and Topr = -20 to 85 °C (N version)/ -40 to 85 °C (D version), unless
otherwise specified.)

				Stan	Idard			
Symbol	Symbol Parameter		$Vcc = 2.2V$, $Topr = 25^{\circ}C$		Vcc = 3V, Topr = 25°C		Fopr = 25°C	Unit
		Min.	Max.	Min.	Max.	Min.	Max.	
tc(XIN)	XIN input cycle time	200	-	50	-	50	-	ns
twh(xin)	XIN input "H" width	90	-	24	-	24	-	ns
twl(XIN)	XIN input "L" width	90	-	24	-	24	-	ns
tc(XCIN)	XCIN input cycle time	20	-	20	-	20	-	μS
tWH(XCIN)	XCIN input "H" width	10	-	10	-	10	-	μS
twl(xcin)	XCIN input "L" width	10	-	10	-	10	-	μS

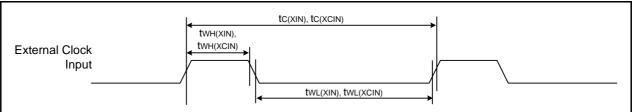
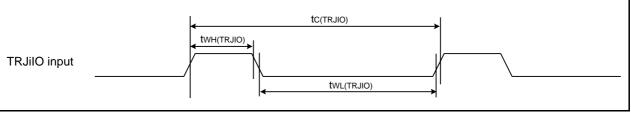
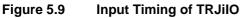




Figure 5.8 External Clock Input Timing

Table 5.27Timing Requirements of TRJiIO (i = 0 or 1)
(Vss = 0 V and Topr = -20 to 85 °C (N version)/ -40 to 85 °C (D version), unless
otherwise specified.)

	Parameter			Stan	dard			
Symbol		$Vcc = 2.2V$, $Topr = 25^{\circ}C$		Vcc = 3V, Topr = 25°C		$Vcc = 5V$, Topr = $25^{\circ}C$		Unit
		Min.	Max.	Min.	Max.	Min.	Max.	
tc(TRJIO)	TRJilO input cycle time	500	-	300	-	100	-	ns
twh(trjio)	TRJilO input "H" width	200	-	120	-	40	-	ns
twl(trjio)	TRJilO input "L" width	200	-	120	-	40	-	ns

5.2.3 Peripheral Function Characteristics

Table 5.32A/D Converter Characteristics
 $(Vcc/AVcc = Vref = 1.8 \text{ to } 5.5 \text{ V}, \text{ Vss} = 0 \text{ V}, \text{ and Topr} = -20 \text{ to } 85^{\circ}C (N \text{ version})/-40 \text{ to}$
 $85^{\circ}C$ (D version), unless otherwise specified.)

Symbol	Parameter		Condi	tiona		Standard		Unit
Symbol	Falameter		Condi	10115	Min.	Тур.	Max.	Unit
-	Resolution		Vref = AVCC		-	-	10	Bit
-	Absolute accuracy (2)	10-bit mode	Vref = AVCC = 5.0 V	AN0 to AN11 input	-	-	±3	LSB
			Vref = AVCC = 2.2 V	AN0 to AN11 input	-	-	±5	LSB
			Vref = AVCC = 1.8 V	AN0 to AN11 input	-	-	±5	LSB
		8-bit mode	Vref = AVCC = 5.0 V	AN0 to AN11 input	-	-	±2	LSB
			Vref = AVCC = 2.2 V	AN0 to AN11 input	-	-	±2	LSB
			Vref = AVCC = 1.8 V	AN0 to AN11 input	-	-	±2	LSB
φAD	A/D conversion clock	clock $4.0 \le V_{ref} = AV_{CC} \le 5.5 V^{(1)}$		1	-	20	MHz	
			$3.2 \leq V_{ref} = AV_{CC} \leq 5.5 \ V^{(1)}$		1	-	16	MHz
			$2.7 \leq V_{ref} = AV_{CC} \leq 5.5 \ V^{(1)}$		1	-	10	MHz
			$1.8 \leq V_{ref} = AV_{CC} \leq 5.5 \ V^{(1)}$		1	-	8	MHz
-	Tolerance level impedance				-	3	-	kΩ
t CONV	Conversion time	10-bit mode	$Vref = AVCC = 5.0 V, \phi/$	AD = 20 MHz	2.2	-	-	μS
		8-bit mode	$Vref = AVCC = 5.0 V, \phi/$	AD = 20 MHz	2.2	-	-	ms
t SAMP	Sampling time		φAD = 20 MHz		0.8	-	-	μS
IVref	Vref current		Vcc = 5 V, XIN = f1 = ϕ AD = 20 MHz		-	45	-	μA
Vref	Reference voltage				1.8	-	AVcc	V
Via	Analog input voltage (3)				0	-	Vref	V
OCVREF	On-chip reference voltage		$2 \text{ MHz} \le \phi \text{AD} \le 4 \text{ MHz}$	Z	1.53	1.70	1.87	V

Notes:

1. The A/D conversion result will be undefined in wait mode, stop mode, power-off mode, when the flash memory stops, and in low-current-consumption mode. Do not perform A/D conversion in these states or transition to these states during A/D conversion.

2. This applies when the peripheral functions are stopped.

3. When the analog input voltage is over the reference voltage, the A/D conversion result will be 3FFh in 10-bit mode and FFh in 8-bit mode.

Table 5.33Temperature Sensor Characteristics
(VSS = 0 V and Topr = -20 to 85 °C (N version)/-40 to 85 °C (D version), unless
otherwise specified.)

Symbol	Parameter	Conditions			Unit	
Symbol		Conditions	Min.	Тур.	Max.	Unit
Vtmp	Temperature sensor output voltage	1.8 V \leq Vref = AVcc \leq 5.5 V ϕ AD = 1.0 MHz to 5.0 MHz Ambient temperature = 25 °C	550	600	650	mV
-	Temperature coefficient	$1.8 V \le Vref = AVcc \le 5.5 V$ $\phi AD = 1.0 MHz$ to 5.0 MHz Ambient temperature = 25 °C	-	-2.1	-	mV/°C
-	Start-up time	$1.8 \text{ V} \le \text{Vref} = \text{AVcc} \le 5.5 \text{ V}$ $\phi \text{AD} = 1.0 \text{ MHz}$ to 5.0 MHz	-	_	200	μs
Ітмр	Operating current	$1.8 \text{ V} \le \text{Vref} = \text{AVcc} \le 5.5 \text{ V}$ $\phi \text{AD} = 1.0 \text{ MHz}$ to 5.0 MHz	_	100	_	μΑ

Table 5.34Gain Amplifier Characteristics
(VSS = 0 V and Topr = -20 to 85 °C (N version)/-40 to 85 °C (D version), unless
otherwise specified.)

Symbol	Parameter	Conditions		Unit		
		Conditions	Min.	Тур.	Max.	Onic
VGAIN	Gain amplifier operating range		0.4	-	AVCC - 1.0	V
φAD	A/D conversion clock		1	-	5	MHz

Table 5.35 Comparator B Characteristics (Vcc = 1.8 to 5.5 V and Topr = -20 to 85°C (N version)/ -40 to 85°C (D version), unless otherwise specified.)

Symbol	Parameter	Condition		Standard				
Symbol	Faranieter	Condition	Min.	Тур.	Max.	Unit		
Vref	IVREF1, IVREF3 input reference voltage		0	-	Vcc - 1.4	V		
VI	IVCMP1, IVCMP3 input voltage		-0.3	-	Vcc + 0.3	V		
-	Offset		-	5	100	mV		
td	Comparator output delay time (1)	VI = Vref ± 100 mV	-	-	1	μS		
ICMP	Comparator operating current	Vcc = 5.0 V	-	12	-	μA		

Note:

1. When the digital filter is disabled.

Table 5.36Flash Memory (Program ROM) Characteristics
(Vcc = 1.8 to 5.5 V and Topr = 0 to 60°C, unless otherwise specified.)

Symbol	Parameter	Conditions		Sta	ndard	Unit
			Min.	Тур.	Max.	Unit
-	Program/erase endurance (1)		10,000 (2)	-	-	times
-	Byte program time		_	80	-	μS
-	Block erase time	Internal ROM Capacity: 16 KB, 32 KB, 48 KB, 64 KB	-	0.12	-	S
		Internal ROM Capacity: 96 KB, 128 KB	-	0.2	-	S
td(SR-SUS)	Time delay from suspend request until suspend		-	-	0.25 + CPU clock × 3 cycles	ms
-	Time from suspend until erase restart		-	-	30 + CPU clock × 1 cycle	μS
td(CMDRST-READY)	Time from when command is forcibly terminated until reading is enabled		-	_	30 + CPU clock × 1 cycle	μS
-	Program, erase voltage		1.8	-	5.5	V
-	Read voltage		1.8	-	5.5	V
-	Program, erase temperature		0	-	60	°C
-	Data hold time ⁽⁶⁾	Ambient temperature = 85°C	10	-	-	year

Notes:

1. Definition of programming/erasure endurance

The programming and erasure endurance is defined on a per-block basis.

If the programming and erasure endurance is n (n = 1,000), each block can be erased n times. For example, if 1,024 1-byte writes are performed to different addresses in block A, a 1 Kbyte block, and then the block is erased, the programming/erasure endurance still stands at one.

However, the same address must not be programmed more than once per erase operation (overwriting prohibited).

2. Endurance to guarantee all electrical characteristics after program and erase. (1 to Min. value can be guaranteed).

3. In a system that executes multiple programming operations, the actual erasure count can be reduced by writing to sequential addresses in turn so that as much of the block as possible is used up before performing an erase operation. For example, when programming groups of 16 bytes, the effective number of rewrites can be minimized by programming up to 128 groups before erasing them all in one operation. It is also advisable to retain data on the erasure endurance of each block and limit the number of erase operations to a certain number.

4. If an error occurs during block erase, attempt to execute the clear status register command, then execute the block erase command at least three times until the erase error does not occur.

5. Customers desiring program/erase failure rate information should contact their Renesas technical support representative.

6. The data hold time includes time that the power supply is off or the clock is not supplied.

Table 5.40Voltage Detection 2 Circuit Characteristics
(Vcc = 1.8 to 5.5 V and Topr = -20 to 85°C (N version)/ -40 to 85°C (D version), unless
otherwise specified.)

Symbol	Parameter		Condition		Standard		
Symbol	Farameter		Condition	Min.	Тур.	Max.	Unit
Vdet2	Voltage detection level Vdet2_0 ⁽¹⁾	At the falling c	of Vcc	3.70	4.0	4.30	V
-	Hysteresis width at the rising of Vcc in voltage detection 2 circuit			-	0.10	-	V
-	Voltage detection 2 circuit response time ⁽²⁾	In operation	At the falling of Vcc from $5 \text{ V to } (\text{Vdet2}_0 - 0.1) \text{ V}$	-	20	150	μs
		In stop mode	At the falling of Vcc from $5 \text{ V to } (\text{Vdet2}_0 - 0.1) \text{ V}$	-	200	500	μs
-	Voltage detection circuit self power consumption	VCA27 = 1, V	cc = 5.0 V	-	1.7	-	μΑ
td(E-A)	Waiting time until voltage detection circuit operation starts ⁽³⁾			Ι	-	100	μS

Notes:

1. The voltage detection level varies with detection targets. Select the level with the VCA24 bit in the VCA2 register.

2. Time until the voltage monitor 2 interrupt request is generated after the voltage passes Vdet2.

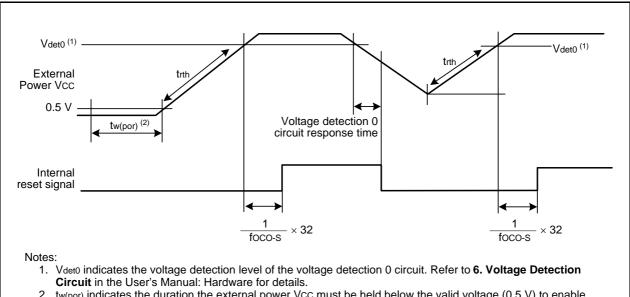

3. Necessary time until the voltage detection circuit operates after setting to 1 again after setting the VCA27 bit in the VCA2 register to 0.

Table 5.41Power-on Reset Circuit Characteristics (1)
(Topr = -20 to 85°C (N version)/ -40 to 85°C (D version), unless otherwise specified.)

Symbol	Parameter	Condition		Unit		
		Condition	Min.	Тур.	Max.	Onit
trth	External power Vcc rise gradient		0	-	50000	mV/ms

Note:

1. To use the power-on reset function, enable voltage monitor 0 reset by setting the LVDAS bit in the OFS register to 0.

 tw(por) indicates the duration the external power Vcc must be held below the valid voltage (0.5 V) to enable a power-on reset. When turning on the power after it falls with voltage monitor 0 reset disabled, maintain tw(por) for 1 ms or more.

Figure 5.14 Power-on Reset Circuit Characteristics

Table 5.42High-speed On-Chip Oscillator Circuit Characteristics
(Vcc = 1.8 to 5.5 V and Topr = -20 to 85°C (N version)/ -40 to 85°C (D version), unless
otherwise specified.)

Symbol	Parameter	Condition		Standard		Unit
Symbol	Falameter	Condition	Min.	Тур.	Max.	Unit
-	High-speed on-chip oscillator frequency after reset	$\label{eq:Vcc} \begin{array}{l} Vcc = 1.8 \ V \ to \ 5.5 \ V \\ - \ 20^{\circ}C \leq T_{opr} \leq 85^{\circ}C \end{array}$	19.2	20	20.8	MHz
		$\label{eq:VC} \begin{array}{l} Vcc = 1.8 \; V \; \text{to} \; 5.5 \; V \\ - \; 40^\circ C \leq Topr \leq 85^\circ C \end{array}$	19.0	20	21.0	MHz
	High-speed on-chip oscillator frequency when the FRA4 register correction value is written into	Vcc = 1.8 V to 5.5 V - 20°C ≤ Topr ≤ 85°C	17.694	18.432	19.169	MHz
	the FRA1 register and the FRA5 register correction value into the FRA3 register ⁽¹⁾	$\label{eq:VC} \begin{array}{l} \mbox{Vcc} = 1.8 \mbox{ V to } 5.5 \mbox{ V} \\ \mbox{-} 40^{\circ}\mbox{C} \leq \mbox{Topr} \leq 85^{\circ}\mbox{C} \end{array}$	17.510	18.432	19.353	MHz
-	Oscillation stability time		-	5	30	μS
-	Self power consumption at oscillation	$VCC = 5.0 V$, $Topr = 25^{\circ}C$	-	530	-	μΑ

Note:

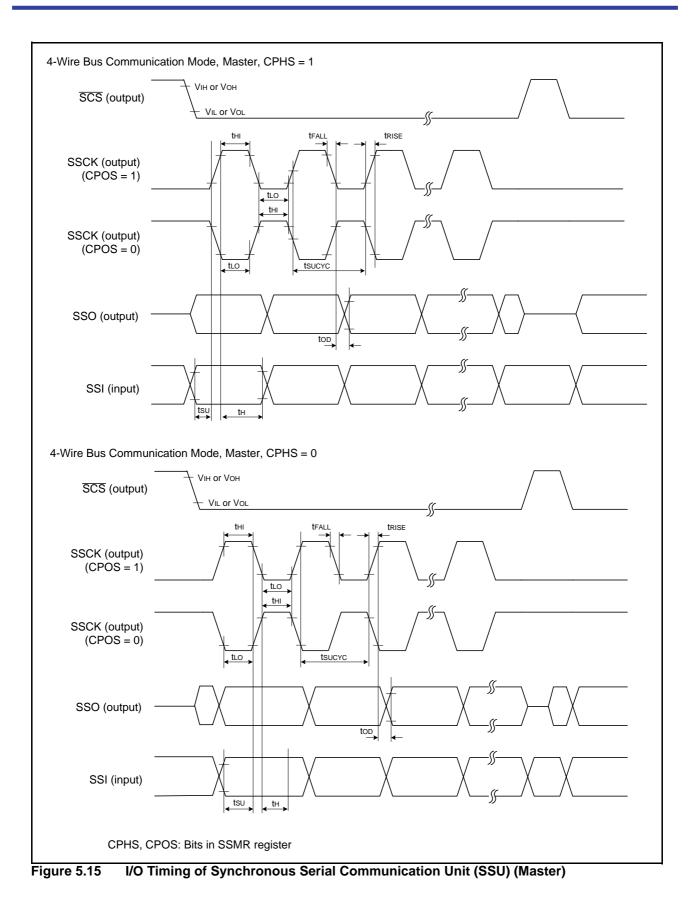
1. This enables the setting errors of bit rates such as 9600 bps and 38400 bps to be 0% when the serial interface is used in UART mode.

Table 5.43 Low-speed On-Chip Oscillator Circuit Characteristics

(Vcc = 1.8 to 5.5 V and Topr = -20 to 85°C (N version)/ -40 to 85°C (D version), unless otherwise specified.)

Symbol	Parameter	Condition			Unit	
Symbol	Falanielei	Condition	Min.	Тур.	Max.	Unit
fOCO-S	Low-speed on-chip oscillator frequency		60	125	250	kHz
-	Oscillation stability time		-	-	35	μS
-	Self power consumption at oscillation	Vcc = 5.0 V, Topr = 25°C	-	2	-	μΑ
fOCO-WDT	Low-speed on-chip oscillator frequency for the watchdog timer		60	125	250	kHz
-	Oscillation stability time		-	-	35	μS
-	Self power consumption at oscillation	Vcc = 5.0 V, Topr = 25°C	-	2	-	μΑ

Table 5.44 Power Supply Circuit Characteristics


(Vcc = 1.8 to 5.5 V, Vss = 0 V, and Topr = 25°C, unless otherwise specified.)

Symbol Parameter	Condition	Standard			Unit
Symbol Falameter	Condition	Min.	Тур.	Max.	Offic
td(P-R) Time for internal power supply stabilize power-on (1)	ration during	-	-	2000	μS

Note:

1. Waiting time until the internal power supply generation circuit stabilizes during power-on.

Table 5.55Timing Requirements of External Clock Input (XIN, XCIN)
(Vss = 0 V and Topr = -20 to 85°C (N version)/ -40 to 85°C (D version), unless otherwise
specified.)

	Parameter	Standard						
Symbol		Vcc = 2.2V, Topr = 25°C		Vcc = 3V, Topr = 25°C		Vcc = 5V, Topr = 25°C		Unit
		Min.	Max.	Min.	Max.	Min.	Max.	
tc(XIN)	XIN input cycle time	200	-	50	-	50	-	ns
twh(XIN)	XIN input "H" width	90	-	24	-	24	-	ns
twl(XIN)	XIN input "L" width	90	-	24	-	24	-	ns
tc(XCIN)	XCIN input cycle time	20	-	20	-	20	-	μS
twH(XCIN)	XCIN input "H" width	10	-	10	-	10	-	μS
twl(xcin)	XCIN input "L" width	10	-	10	-	10	_	μS

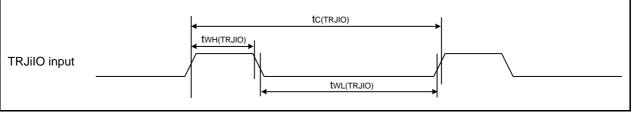
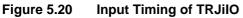
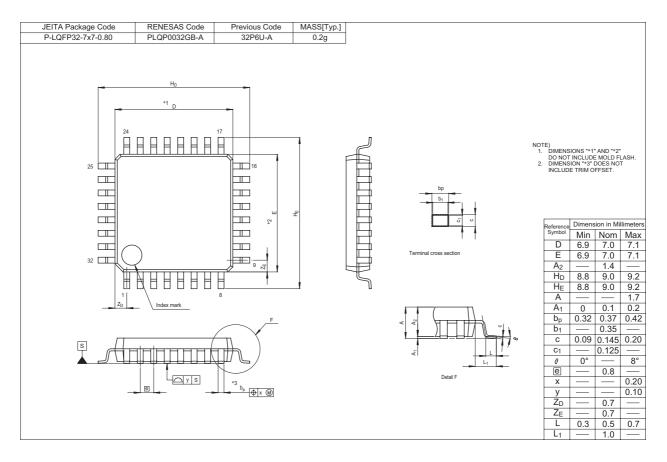
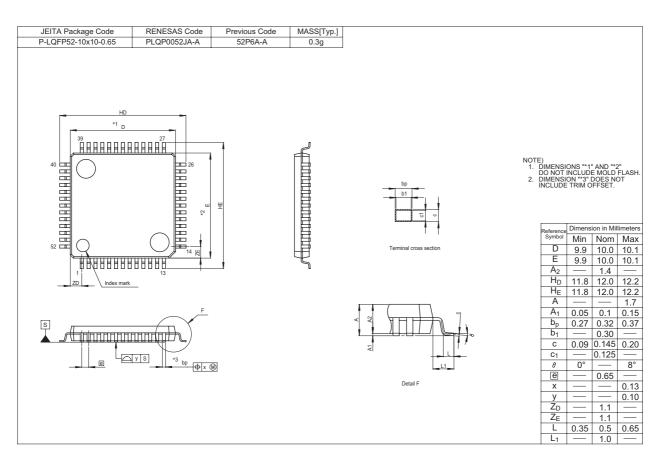




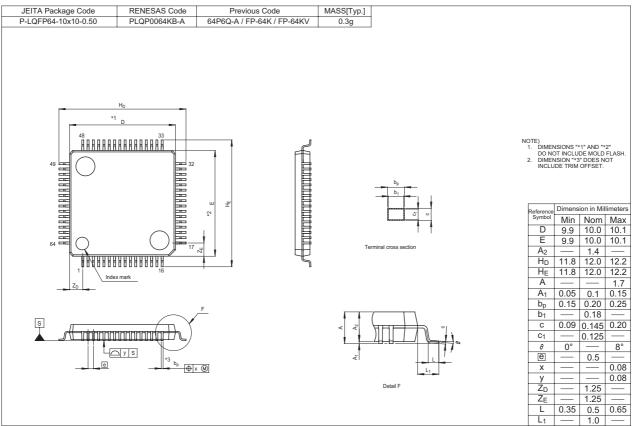
Figure 5.19 External Clock Input Timing

Table 5.56Timing Requirements of TRJiIO (i = 0 to 2)
(Vss = 0 V and Topr = -20 to 85°C (N version)/ -40 to 85°C (D version), unless otherwise
specified.)

	Parameter	Standard						
Symbol		Vcc = 2.2V, Topr = $25^{\circ}C$		Vcc = 3V, Topr = 25°C		Vcc = 5V, Topr = 25°C		Unit
		Min.	Max.	Min.	Max.	Min.	Max.	
tc(TRJIO)	TRJilO input cycle time	500	-	300	-	100	-	ns
twh(trjio)	TRJilO input "H" width	200	-	120	-	40	-	ns
twl(trjio)	TRJilO input "L" width	200	-	120	-	40	-	ns






Package Dimensions

Diagrams showing the latest package dimensions and mounting information are available in the "Packages" section of the Renesas Electronics web site.

Notice

- All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The recommended where you have failed to obtain the prior written consent of Renesas Electronics and the prior written consent of Renesas Electronics and the prior written consent of Renesas Electronics. The recommended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
- "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools
- personal electronic equipment; and industrial robots.
 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; safety equipment; and medical equipment not specifically
 designed for life support.
- *Specific*: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and mafunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and mafunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

Refer to "http://www.renesas.com/" for the latest and detailed information

SALES OFFICES

Renesas Electronics Corporation

http://www.renesas.com

Renesas Electronics America Inc. 2880 Scott Boulevard Santa Clara, CA 95050-2554, U.S.A. Tel: +1-408-588-4000, Fax: +1-408-588-6130 Renesas Electronics Canada Limited 1011 Nicholson Road, Newmarket, Ontario L3Y 9C3, Canada Tel: +1-905-898-5441, Fax: +1-905-898-3220 Renesas Electronics Europe Limited Dukes Meadow, Millboard Road, Boume End, Buckinghamshire, SL8 5FH, U.K Tel: +44-1628-585-100, Fax: +44-1628-585-900 Renesas Electronics Europe GmbH Arcadiastrasse 10, 40472 Düsseldorf, Germany Tel: +49-211-65030, Fax: +44-1628-585-900 Renesas Electronics Curope GmbH Arcadiastrasse 10, 40472 Düsseldorf, Germany Tel: +49-211-65030, Fax: +44-1628-585-900 Renesas Electronics (Shanghai) Co., Ltd. 7th Floor, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100083, P.R.China Tel: +486-12-487-71518, Fax: +486-22-4857-7679 Renesas Electronics (Shanghai) Co., Ltd. Unit 204, 205, A221 Center, No. 1233 Lujiazui Ring Rd., Pudong District, Shanghai 200120, China Tel: +486-12-4877-71818, Fax: +486-22-4867-7858 Renesas Electronics Hong Kong Limited Unit 1001.151, 16/F, Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong Tel: +486-2-4175-9600, Fax: +4882-2486-9022/9044 Renesas Electronics Taiwan Co., Ltd. 154, No. 363, Fu Shing North Road, Taipei, Taiwan Tel: +486-2-4175-9600, Fax: +4882-24175-9670 Renesas Electronics Magayor Phet. Ltd. 1 harbourFront Avenue, #06-10, keppel Bay Tower, Singapore 098632 Tel: +656-2715-9900, Fax: +489-2-4075-9910 Renesas Electronics Kong Co., Ltd. 11 harbourFront Avenue, #06-10, keppel Bay Tower, Singapore 098632 Tel: +656-2715-9900, Fax: +489-2-9175-9670 Renesas Electronics Kong Co., Ltd. 11 harbourFront Avenue, #06-10, keppel Bay Tower, Singapore 098632 Tel: +656-2715-9900, Fax: +489-2-915-9910 Renesas Electronics Konge Co., Ltd. 11F, Samik Lavied' or Billog, 720-2 Veoksam-Dong, Kangnam-Ku, Seoul 135-080, Korea Tel: +60-37-7357-737, Fax: +48-2-558-9141