

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Discontinued at Digi-Key
Core Processor	R8C
Core Size	16-Bit
Speed	20MHz
Connectivity	I ² C, LINbus, SIO, SSU, UART/USART
Peripherals	LCD, POR, PWM, Voltage Detect, WDT
Number of I/O	56
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	2K x 8
RAM Size	3.5K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-20°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f2la68anfa-v0

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.1.2 Differences between Groups

Table 1.1 lists the Differences between Groups, Tables 1.2 and 1.3 list the Programmable I/O Ports Provided for Each Group, and Tables 1.4 and 1.5 list the LCD Display Function Pins Provided for Each Group. Figures 1.9 to 1.12 show the pin assignment for each group, and Tables 1.9 to 1.12 list product information. The explanations in the chapters which follow apply to the R8C/LA8A Group only. Note the differences shown below.

Item	Function	R8C/LA3A Group	R8C/LA5A Group	R8C/LA6A Group	R8C/LA8A Group	
I/O Ports	Programmable I/O ports	26 pins	44 pins	56 pins	72 pins	
	High current drive ports	8 pins	8 pins	8 pins	10 pins	
Interrupts	INT interrupt pins	5 pins	6 pins	8 pins	8 pins	
Timer RJ	Timer RJ0 output pin	None	None	None	1 pin	
	Timer RJ1 output pin	None	None	None	1 pin	
	Timer RJ2 I/O pin	None	None	None	1 pin	
	Timer RJ2 output pin	None	None	None	1 pin	
Timer RH	Timer RH output pin	None	1 pin	1 pin	1 pin	
Serial interface	UART2	None	None	1 pin	1 pin	
A/D Converter	Analog input pins	5 pins	7 pins	8 pins	12 pins	
LCD Drive Control Circuit	Segment output pins	Max. 11 pins	Max. 27 pins	Max. 32 pins	Max. 40 pins	
Comparator B	Analog input voltage	1 pin	2 pins	2 pins	2 pins	
	Reference input voltage	1 pin	2 pins	2 pins	2 pins	
Clock	XCIN pin	Shared with XIN pin	Dedicated pin	Dedicated pin	Dedicated pin	
	XCOUT pin	Shared with XOUT pin	Dedicated pin	Dedicated pin	Dedicated pin	
Packages	·	32-pin LQFP	52-pin LQFP	64-pin LQFP	80-pin LQFP	

Table 1.1 Differences between Groups

Note:

1. I/O ports are shared with I/O functions, such as interrupts or timers.

Refer to Tables 1.13 to 1.17, Pin Name Information by Pin Number, for details.

	(INCO/EA			,			• 4p)										
				R8	C/LA3	BA Gro	oup			R8C/LA5A Group							
	Shared I/O Port		Common output: Max. 4					Common output: Max. 4									
			Segment output: Max. 11					S	egme	ent out	tput: N	/lax. 2	7				
P0										SEG	SEG	SEG	SEG	SEG	SEG	SEG	SEG
		_	_		_					7	6	5	4	3	2	1	0
P2		SEG	SEG	SEG	SEG	SEG	SEG	SEG	SEG	SEG	SEG	SEG	SEG	SEG	SEG	SEG	SEG
		15	14	13	12	11	10	9	8	15	14	13	12	11	10	9	8
P3										SEG	SEG	SEG	SEG	SEG	SEG	SEG	SEG
		_	_		_		_		_	23	22	21	20	19	18	17	16
P5							COM	COM	COM						COM	COM	COM
			VL3	VL2	VL1	COM	1	2	3		VL3	VL2	VL1	COM	1	2	3
		_	(2)	(2)	(2)	0	SEG	SEG	SEG		(2)	(2)	(2)	0	SEG	SEG	SEG
							26	25	24						26	25	24

Table 1.4LCD Display Function Pins Provided for Each Group
(R8C/LA3A Group, R8C/LA5A Group)

Notes:

1. The symbol "—" indicates there is no LCD display function. Set the corresponding bits to 0 by setting registers LSE0, LSE2, and LSE5 for these pins.

2. When using the LCD drive control circuit, set the corresponding bit in the LSE5 register to 1.

Table 1.5LCD Display Function Pins Provided for Each Group
(R8C/LA6A Group, R8C/LA8A Group)

			R8	C/LA6	6A Gro	oup			R8C/LA8A Group							
Shared I/O Port		(Comm	ion ou	ıtput: l	Max. 4	1		Common output: Max. 4							
		S	egme	nt out	tput: N	/lax. 3	2			S	egme	ent out	put: N	/lax. 4	0	
P0	SEG	SEG	SEG	SEG	SEG	SEG	SEG	SEG	SEG	SEG	SEG	SEG	SEG	SEG	SEG	SEG
	7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0
P1	SEG	SEG	SEG	SEG	SEG	SEG			SEG	SEG	SEG	SEG	SEG	SEG	SEG	SEG
	15	14	13	12	11	10	_	_	15	14	13	12	11	10	9	8
P2	SEG	SEG	SEG	SEG	SEG	SEG	SEG	SEG	SEG	SEG	SEG	SEG	SEG	SEG	SEG	SEG
	23	22	21	20	19	18	17	16	23	22	21	20	19	18	17	16
P3	SEG	SEG	SEG	SEG	SEG	SEG	SEG	SEG	SEG	SEG	SEG	SEG	SEG	SEG	SEG	SEG
	31	30	29	28	27	26	25	24	31	30	29	28	27	26	25	24
P4	SEG	SEG							SEG	SEG	SEG	SEG	SEG	SEG	SEG	SEG
	39	38	_	_					39	38	37	36	35	34	33	32
P5		VL3	VL2	VL1	COM	COM	COM	COM		VL3	VL2	VL1	COM	COM	COM	COM
		(2)	(2)	(2)	0	1	2	3		(2)	(2)	(2)	0	1	2	3

Notes:

1. The symbol "—" indicates there is no LCD display function. Set the corresponding bits to 0 by setting registers LSE1, LSE4 and LSE5 for these pins.

2. When using the LCD drive control circuit, set the corresponding bit in the LSE5 register to 1.

Current of Oct 2011

1.2 Product Lists

Tables 1.9 to 1.12 list product information for each group. Figures 1.1 to 1.4 show the Correspondence of Part No., with Memory Size and Package for each group.

Part No.	Internal RC	M Capacity	Internal RAM	Package Type	Remarks
Tarrio.	Program ROM	Data Flash	Capacity	i ackage type	Remarks
R5F2LA32ANFP	8 Kbytes	1 Kbyte × 2	2 Kbytes	PLQP0032GB-A	N Version
R5F2LA34ANFP	16 Kbytes	1 Kbyte × 2	2 Kbytes	PLQP0032GB-A	
R5F2LA36ANFP	32 Kbytes	1 Kbyte × 2	2 Kbytes	PLQP0032GB-A	
R5F2LA38ANFP	64 Kbytes	1 Kbyte × 2	3.5 Kbytes	PLQP0032GB-A	
R5F2LA32ADFP	8 Kbytes	1 Kbyte × 2	2 Kbytes	PLQP0032GB-A	D Version
R5F2LA34ADFP	16 Kbytes	1 Kbyte × 2	2 Kbytes	PLQP0032GB-A	
R5F2LA36ADFP	32 Kbytes	1 Kbyte × 2	2 Kbytes	PLQP0032GB-A	
R5F2LA38ADFP	64 Kbytes	1 Kbyte × 2	3.5 Kbytes	PLQP0032GB-A	

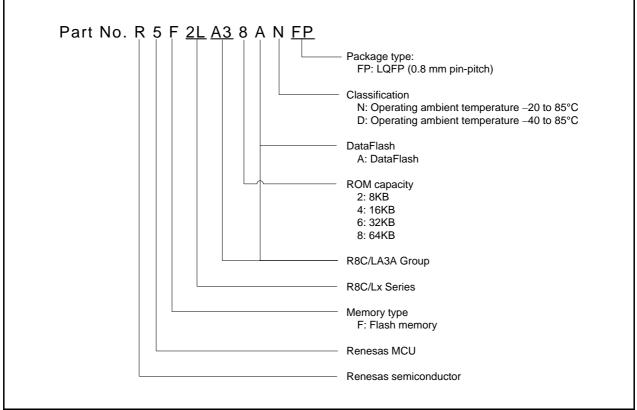


Figure 1.1 Correspondence of Part No., with Memory Size and Package of R8C/LA3A Group

1.	Overview

D	Internal RC	M Capacity	Internal RAM		
Part No.	Program ROM	• •	Capacity	Package Type	Remarks
R5F2LA64ANFP	16 Kbytes	1 Kbyte × 2	2 Kbytes	PLQP0064KB-A	N Version
R5F2LA64ANFA	16 Kbytes	1 Kbyte × 2	2 Kbytes	PLQP0064GA-A	-
R5F2LA66ANFP	32 Kbytes	1 Kbyte × 2	2 Kbytes	PLQP0064KB-A	-
R5F2LA66ANFA	32 Kbytes	1 Kbyte × 2	2 Kbytes	PLQP0064GA-A	
R5F2LA67ANFP	48 Kbytes	1 Kbyte × 2	3.5 Kbytes	PLQP0064KB-A	
R5F2LA67ANFA	48 Kbytes	1 Kbyte × 2	3.5 Kbytes	PLQP0064GA-A	
R5F2LA68ANFP	64 Kbytes	1 Kbyte × 2	3.5 Kbytes	PLQP0064KB-A	
R5F2LA68ANFA	64 Kbytes	1 Kbyte × 2	3.5 Kbytes	PLQP0064GA-A	
R5F2LA6AANFP	96 Kbytes	2 Kbytes × 2	5.5 Kbytes	PLQP0064KB-A	
R5F2LA6AANFA	96 Kbytes	2 Kbytes × 2	5.5 Kbytes	PLQP0064GA-A	
R5F2LA6CANFP	128 Kbytes	2 Kbytes × 2	5.5 Kbytes	PLQP0064KB-A	
R5F2LA6CANFA	128 Kbytes	2 Kbytes × 2	5.5 Kbytes	PLQP0064GA-A	
R5F2LA64ADFP	16 Kbytes	1 Kbyte × 2	2 Kbytes	PLQP0064KB-A	D Version
R5F2LA64ADFA	16 Kbytes	1 Kbyte × 2	2 Kbytes	PLQP0064GA-A	
R5F2LA66ADFP	32 Kbytes	1 Kbyte × 2	2 Kbytes	PLQP0064KB-A	
R5F2LA66ADFA	32 Kbytes	1 Kbyte × 2	2 Kbytes	PLQP0064GA-A	
R5F2LA67ADFP	48 Kbytes	1 Kbyte × 2	3.5 Kbytes	PLQP0064KB-A	
R5F2LA67ADFA	48 Kbytes	1 Kbyte × 2	3.5 Kbytes	PLQP0064GA-A	
R5F2LA68ADFP	64 Kbytes	1 Kbyte × 2	3.5 Kbytes	PLQP0064KB-A	
R5F2LA68ADFA	64 Kbytes	1 Kbyte × 2	3.5 Kbytes	PLQP0064GA-A	
R5F2LA6AADFP	96 Kbytes	2 Kbytes × 2	5.5 Kbytes	PLQP0064KB-A	
R5F2LA6AADFA	96 Kbytes	2 Kbytes × 2	5.5 Kbytes	PLQP0064GA-A	1
R5F2LA6CADFP	128 Kbytes	2 Kbytes × 2	5.5 Kbytes	PLQP0064KB-A	1
R5F2LA6CADFA	128 Kbytes	2 Kbytes × 2	5.5 Kbytes	PLQP0064GA-A	1

Table 1.11 Product List for R8C/LA6A Group

Current of Oct 2011

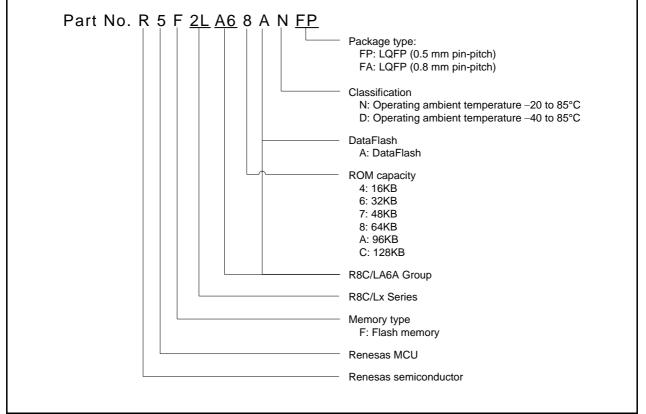


Figure 1.3 Correspondence of Part No., with Memory Size and Package of R8C/LA6A Group

Item	Pin Name	I/O Type	Description
I ² C bus	SCL	I/O	Clock I/O pin.
	SDA	I/O	Data I/O pin.
SSU	SSI	I/O	Data I/O pin.
	SCS	I/O	Chip-select signal I/O pin.
	SSCK	I/O	Clock I/O pin.
	SSO	I/O	Data I/O pin.
Reference voltage input	VREF	I	Reference voltage input pin for the A/D converter.
A/D converter	AN0 to AN6	I	A/D converter analog input pins.
	ADTRG	I	AD external trigger input pin.
Comparator B	IVCMP1, IVCMP3	I	Comparator B analog voltage input pins.
	IVREF1, IVREF3	I	Comparator B reference voltage input pins.
I/O ports	P0_0 to P0_7, P2_0 to P2_7, P3_0 to P3_7, P5_0 to P5_6, P7_0 to P7_2, P8_0 to P8_7, P9_0, P9_1	I/O	CMOS I/O ports. Each port has an I/O select direction register, allowing each pin in the port to be directed for input or output individually. Any port set to input can be set to use a pull-up resistor or not by a program. Port P8 can be used as LED drive ports.
Segment output	SEG0 to SEG26	0	LCD segment output pins.
Common output	COM0 to COM3, COMEXP	0	LCD common output pins.
LCD power supply	VL1	I	Apply the following voltage: $1 \text{ V} \leq \text{VL1} \leq \text{VCC}$ and $\text{VL1} \leq \text{VL2}$.
	VL2	I	Apply the following voltage: VL2 \leq 5.5 V and VL1 \leq VL2 \leq VL3.
	VL3	I	Apply the following voltage: VL3 \leq 5.5 V and VL2 \leq VL3.

Table 1.19	Pin Functions for R8C/LA5A Group (2)
------------	--------------------------------------

I: Input O: Output I/O: Input and output Note:

1. Contact the oscillator manufacturer for oscillation characteristics.

2.1 Data Registers (R0, R1, R2, and R3)

R0 is a 16-bit register for transfer, arithmetic, and logic operations. The same applies to R1 to R3. R0 can be split into high-order bits (R0H) and low-order bits (R0L) to be used separately as 8-bit data registers. R1H and R1L are analogous to R0H and R0L. R2 can be combined with R0 and used as a 32-bit data register (R2R0). R3R1 is analogous to R2R0.

2.2 Address Registers (A0 and A1)

A0 is a 16-bit register for address register indirect addressing and address register relative addressing. It is also used for transfer, arithmetic, and logic operations. A1 is analogous to A0. A1 can be combined with A0 and as a 32-bit address register (A1A0).

2.3 Frame Base Register (FB)

FB is a 16-bit register for FB relative addressing.

2.4 Interrupt Table Register (INTB)

INTB is a 20-bit register that indicates the starting address of an interrupt vector table.

2.5 Program Counter (PC)

PC is 20 bits wide and indicates the address of the next instruction to be executed.

2.6 User Stack Pointer (USP) and Interrupt Stack Pointer (ISP)

The stack pointers (SP), USP and ISP, are each 16 bits wide. The U flag of FLG is used to switch between USP and ISP.

2.7 Static Base Register (SB)

SB is a 16-bit register for SB relative addressing.

2.8 Flag Register (FLG)

FLG is an 11-bit register indicating the CPU state.

2.8.1 Carry Flag (C)

The C flag retains carry, borrow, or shift-out bits that have been generated by the arithmetic and logic unit.

2.8.2 Debug Flag (D)

The D flag is for debugging only. Set it to 0.

2.8.3 Zero Flag (Z)

The Z flag is set to 1 when an arithmetic operation results in 0; otherwise to 0.

2.8.4 Sign Flag (S)

The S flag is set to 1 when an arithmetic operation results in a negative value; otherwise to 0.

2.8.5 Register Bank Select Flag (B)

Register bank 0 is selected when the B flag is 0. Register bank 1 is selected when this flag is set to 1.

2.8.6 Overflow Flag (O)

The O flag is set to 1 when an operation results in an overflow; otherwise to 0.

Special Function Registers (SFRs) 4.

An SFR (special function register) is a control register for a peripheral function. Tables 4.1 to 4.9 list SFR information for R8C/LA5A Group, Tables 4.10 to 4.18 list SFR information for R8C/LA8A Group, and Table 4.19 lists the ID Code Areas and Option Function Select Area. The description offered in this chapter is based on the R8C/LA8A Group.

Table 4.1	SFR Information for R8C/LASA Group (1) (1		
Address	Register	Symbol	After Reset
0000h			
0001h			
0002h			
0003h			
0004h	Processor Mode Register 0	PM0	00h
0005h	Processor Mode Register 1	PM1	00h
			00000100b ⁽²⁾
0006h	System Clock Control Register 0	CM0	0010000b
0007h	System Clock Control Register 1	CM1	0010000b
0008h	Module Standby Control Register 0	MSTCR0	00h
0009h	System Clock Control Register 3	CM3	00h
000Ah	Protect Register	PRCR	00h
000Bh	Reset Source Determination Register	RSTFR	XXh ⁽³⁾
000Ch	Oscillation Stop Detection Register	OCD	00000100b ⁽⁴⁾
			00h ⁽⁴⁾
000Dh	Watchdog Timer Reset Register	WDTR	XXh
000Eh	Watchdog Timer Start Register	WDTS	XXh
000Eh	Watchdog Timer Control Register	WDTC	00111111b
000FN	Module Standby Control Register 1	MSTCR1	00h
0010h		INIG TOR T	
0011h			
0012h 0013h			
0013h 0014h			
0014h 0015h			
0016h			
0017h			
0018h			
0019h			
001Ah			
001Bh			
001Ch	Count Source Protection Mode Register	CSPR	00h
66 (B)			1000000b ⁽⁵⁾
001Dh			
001Eh			
001Fh			
0020h	Power-Off Mode Control Register 0	POMCR0	XXXXXX00b
0021h			
0022h			
0023h	High-Speed On-Chip Oscillator Control Register 0	FRA0	00h
0024h	High-Speed On-Chip Oscillator Frequency Control Register 0	FRC0	When shipping
0025h	High-Speed On-Chip Oscillator Control Register 2	FRA2	00h
0026h	On-Chip Reference Voltage Control Register	OCVREFCR	00h
0027h			
0028h			
0029h	High-Speed On-Chip Oscillator 18 MHz Set Value Register 0	FR18S0	XXh
002Ah	High-Speed On-Chip Oscillator 18 MHz Set Value Register 1	FR18S1	XXh
002Bh			
002Ch			
002Dh			
002Eh			
002Fh	High-Speed On-Chip Oscillator Frequency Control Register 1	FRC1	When shipping
0030h	Voltage Monitor Circuit Control Register	CMPA	00h
0031h	Voltage Monitor Circuit Edge Select Register	VCAC	00h
0032h			
0033h	Voltage Detect Register 1	VCA1	00001000b
0034h	Voltage Detect Register 2	VCA2	00h ⁽⁶⁾
			00100000b ⁽⁷⁾
0035h			
0036h	Voltage Detection 1 Level Select Register	VD1LS	00000111b
0030h		VDILO	
0037h	Voltage Monitor 0 Circuit Control Register	VW0C	1100X010b ⁽⁶⁾
003011		***00	1100X010b (0) 1100X011b (7)
00001	Voltana Manitan A Oissuit Osutusl Danistan	10040	
0039h	Voltage Monitor 1 Circuit Control Register	VW1C	10001010b

Table 4.1 SFR Information for R8C/LA5A Group (1) (1)

 0039h
 Voltage Monitor Longer Construction

 X: Undefined Notes:
 1.

 1. Blank spaces are reserved. No access is allowed.
 2. The CSPRO bit in the CSPR register is set to 1.

 3. The CWR bit in the RSTFR register is set to 0 after power-on, voltage monitor 0 reset, or exit from power-off 0 mode. Hardware reset, software reset, or watchdog timer reset does not after this bit.

 4. The reset value differs depending on the mode.

 5. The CSPROINI bit in the OFS register is set to 0.

 6. The LVDAS bit in the OFS register is set to 1.

 7. The LVDAS bit in the OFS register is set to 0.

Table 5.11Voltage Detection 2 Circuit Characteristics
(Vcc = 1.8 to 5.5 V and Topr = -20 to 85 °C (N version)/ -40 to 85 °C (D version), unless
otherwise specified.)

Symbol	Parameter	Condition			Standard	Unit	
Symbol	Farameter		Condition	Min.	Тур.	Max.	Onit
Vdet2	Voltage detection level Vdet2_0 ⁽¹⁾	At the falling c	of Vcc	3.70	4.0	4.30	V
-	Hysteresis width at the rising of Vcc in voltage detection 2 circuit			-	0.10	-	V
-	Voltage detection 2 circuit response time ⁽²⁾	In operation	At the falling of Vcc from $5 \text{ V to } (\text{Vdet2}_0 - 0.1) \text{ V}$	-	20	150	μs
		In stop mode	At the falling of Vcc from 5 V to (Vdet2_0 - 0.1) V	-	200	500	μs
-	Voltage detection circuit self power consumption	VCA27 = 1, V	cc = 5.0 V	-	1.7	-	μΑ
td(E-A)	Waiting time until voltage detection circuit operation starts ⁽³⁾			Ι	-	100	μS

Notes:

1. The voltage detection level varies with detection targets. Select the level with the VCA24 bit in the VCA2 register.

2. Time until the voltage monitor 2 interrupt request is generated after the voltage passes Vdet2.

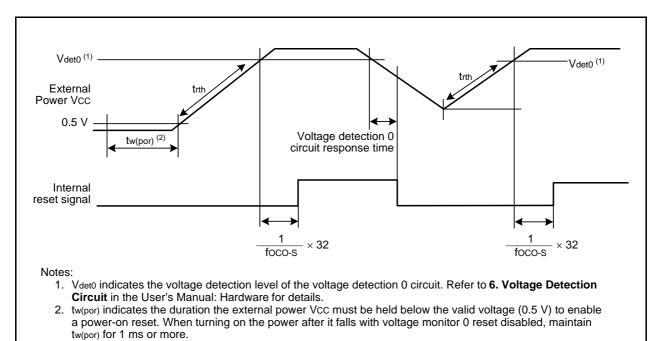

3. Necessary time until the voltage detection circuit operates after setting to 1 again after setting the VCA27 bit in the VCA2 register to 0.

Table 5.12Power-on Reset Circuit Characteristics (1)
(Topr = -20 to 85 °C (N version)/ -40 to 85 °C (D version), unless otherwise specified.)

Symbol	Parameter	Condition		Standard			
	Falanielei	Condition	Min.	Тур.	Max.	Unit	
trth	External power Vcc rise gradient		0	-	50000	mV/ms	

Note:

1. To use the power-on reset function, enable voltage monitor 0 reset by setting the LVDAS bit in the OFS register to 0.

Figure 5.3 Power-on Reset Circuit Characteristics

Table 5.13High-speed On-Chip Oscillator Circuit Characteristics
(Vcc = 1.8 to 5.5 V and Topr = -20 to 85 °C (N version)/ -40 to 85 °C (D version), unless
otherwise specified.)

Symbol	Parameter	Condition		Standard		Unit
Symbol	Falameter	Condition	Min.	Тур.	Max.	Unit
-	High-speed on-chip oscillator frequency after reset	Vcc = 1.8 V to 5.5 V - 20 °C \leq Topr \leq 85 °C	19.2	20	20.8	MHz
		Vcc = 1.8 V to 5.5 V - 40 °C ≤ Topr ≤ 85 °C	19.0	20	21.0	MHz
	High-speed on-chip oscillator frequency when the FRA4 register correction value is written into	Vcc = 1.8 V to 5.5 V - 20 °C ≤ Topr ≤ 85 °C	17.694	18.432	19.169	MHz
	the FRA1 register and the FRA5 register correction value into the FRA3 register ⁽¹⁾	Vcc = 1.8 V to 5.5 V - 40 °C ≤ Topr ≤ 85 °C	17.510	18.432	19.353	MHz
-	Oscillation stability time		-	5	30	μS
-	Self power consumption at oscillation	VCC = 5.0 V, Topr = 25 $^{\circ}$ C	-	530	-	μΑ

Note:

1. This enables the setting errors of bit rates such as 9600 bps and 38400 bps to be 0% when the serial interface is used in UART mode.

Table 5.14 Low-speed On-Chip Oscillator Circuit Characteristics

(Vcc = 1.8 to 5.5 V and Topr = -20 to 85 °C (N version)/ -40 to 85 °C (D version), unless otherwise specified.)

Symbol	Parameter	Condition			Unit	
Symbol	Falanielei	Condition	Min.	Тур.	Max.	Onit
fOCO-S	Low-speed on-chip oscillator frequency		60	125	250	kHz
-	Oscillation stability time		-	-	35	μS
-	Self power consumption at oscillation	Vcc = 5.0 V, Topr = 25°C	-	2	-	μA
fOCO-WDT	Low-speed on-chip oscillator frequency for the watchdog timer		60	125	250	kHz
-	Oscillation stability time		-	-	35	μS
-	Self power consumption at oscillation	Vcc = 5.0 V, Topr = 25°C	-	2	-	μA

Table 5.15 Power Supply Circuit Characteristics

(VCC = 1.8 to 5.5 V, VSS = 0 V, and Topr = 25 °C, unless otherwise specified.)

Symbol	Parameter	Condition		Standard			
Symbol	Falanetei	Condition	Min.	Тур.	Max.	Unit	
td(P-R)	Time for internal power supply stabilization during power-on ⁽¹⁾		-	-	2000	μS	

Note:

1. Waiting time until the internal power supply generation circuit stabilizes during power-on.

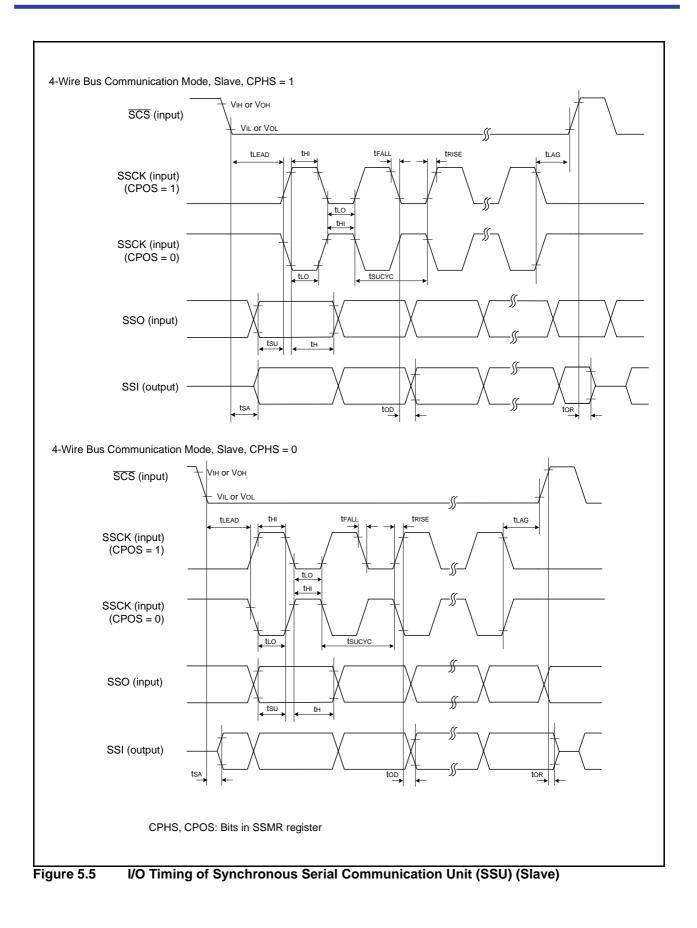
Table 5.19 DC Characteristics (2) [4.0 V \leq Vcc \leq 5.5 V] (Topr = -20 to 85 °C (N version)/ -40 to 85 °C (D version), unless otherwise specified.)

							Condition				S	tanda	rd	
Symbol	Parameter			lation cuit	On-Chip	Oscillator	CPU Clock	Low-Power- Consumption	Oth	her	Min.		Мах	Unit
			XIN (2)	XCIN	High- Speed	Low- Speed		Setting	01			(3)	-	
lcc	Power	High-	20 MHz	Off	Off	125 kHz	No division	-			-	4.7	10	mΑ
	supply	speed	16 MHz	Off	Off	125 kHz	No division	-			-	3.9	8	mΑ
	current (1)	clock mode	10 MHz	Off	Off	125 kHz	No division	-			-	2.3	-	mA
		mode	20 MHz	Off	Off	Off	No division	FMR27 = 1 MSTCR0 = BEh MSTCR1 = 3Fh	Flash memory Program opera Module standb enabled	ation on RAM	-	3.1	-	mA
			20 MHz	Off	Off	125 kHz	Divide-by-8	-			-	1.8	-	mΑ
			16 MHz	Off	Off	125 kHz	Divide-by-8	-			-	1.5	-	mΑ
			10 MHz	Off	Off	125 kHz	Divide-by-8	-			-	1.0	-	mA
		High-	Off	Off	20 MHz	125 kHz	No division	_			-	5.0	11	mA
		speed	Off	Off	20 MHz	125 kHz	Divide-by-8	_			-	2.1	-	mA
		on-chip	Off	Off	4 MHz	125 kHz		MSTCR0 = BEh			_	0.9		mA
		oscillator mode						MSTCR1 = 3Fh					_	
		Low- speed on-chip	Off	Off	Off	125 kHz	No division	FMR27 = 1 VCA20 = 0			-	110	320	μA
		oscillator mode	Off	Off	Off	125 kHz	Divide-by-8	FMR27 = 1 VCA20 = 0			-	63	220	μA
		Low- speed clock	Off	32 kHz	Off	Off	No division	FMR27 = 1 VCA20 = 0			-	60	220	μA
		mode	Off	32 kHz	Off	Off	No division	FMSTP = 1 VCA20 = 0	Flash memory Program opera		-	46	-	μA
		Wait mode	Off	Off	Off	125 kHz	-	VCA27 = 0 VCA26 = 0 VCA25 = 0 VCA20 = 1	While a WAIT executed Peripheral cloo		-	9.0	50	μA
			Off	Off	Off	125 kHz	-	VCA27 = 0 VCA26 = 0 VCA25 = 0 VCA20 = 1 CM02 = 1 CM01 = 1	While a WAIT executed Peripheral cloo		-	2.8	33	μA
			Off	32 kHz	Off	Off	_	VCA27 = 0 VCA26 = 0 VCA25 = 0 VCA20 = 1 CM02 = 1 CM01 = 0	While a WAIT instruction is executed Peripheral clock off Timer RH operation in real-time clock mode	LCD drive control circuit ⁽⁴⁾ When external division resistors are used	_	4.6	_	μA
			Off	32 kHz	Off	Off	-	VCA27 = 0 VCA26 = 0 VCA25 = 0 VCA20 = 1 CM02 = 1 CM01 = 1	While a WAIT executed Peripheral cloo Timer RH oper time clock mod	ck off ration in real-	-	2.4	-	μA
		Stop mode	Off	Off	Off	Off	-	VCA27 = 0 VCA26 = 0 VCA25 = 0 CM10 = 1	Topr = 25 °C Peripheral cloo	ck off	-	0.5	2.2	μA
			Off	Off	Off	Off	-	VCA27 = 0 VCA26 = 0 VCA25 = 0 CM10 = 1	Topr = 85 °C Peripheral cloo	ck off	-	1.2	-	μA
		Power- off mode	Off	Off	Off	Off	-	-	Power-off 0 Topr = 25 °C		-	0.01	0.1	μA
			Off	Off	Off	Off	-	-	Power-off 0 Topr = 85 °C		-	0.03	-	μA
			Off	32 kHz	Off	Off	-	VCA27 = 0 VCA26 = 0 VCA25 = 0 CM10 = 1	Power-off 2 Topr = 25 °C		-	1.8	6.4	μΑ
			Off	32 kHz	Off	Off	-	VCA27 = 0 VCA26 = 0 VCA25 = 0 CM10 = 1	Power-off 2 Topr = 85 °C		-	2.7	-	μA

Notes:

1. 2. 3. 4.

Vcc = 4.0 V to 5.5 V, single chip mode, output pins are open, and other pins are Vss. XIN is set to square wave input. Vcc = 5.0 V VLCD = Vcc, external division resistors are used for VL3 to VL1, 1/3 bias, 1/4 duty, f(FR) = 64 Hz, SEG0 to SEG26 are selected, and segment and common output pins are open. The standard value does not include the current that flows through external division resistors.


Table 5.20DC Characteristics (3) $[2.7 V \le Vcc < 4.0 V]$
(Topr = -20 to 85 °C (N version)/ -40 to 85 °C (D version), unless otherwise specified.)

Symbol	Doro	meter	Conditio	2	St	andard		Unit
Symbol	Fala	lineter			Min.	Тур.	Max.	Unit
Vон	Output "H" voltage		Port P8 ⁽¹⁾	Iон = -5 mA	Vcc - 0.5	-	Vcc	V
			Other pins	Iон = -1 mA	Vcc - 0.5	-	Vcc	V
Vol	Output "L" voltage		Port P8 ⁽¹⁾	IOL = 5 mA	-	-	0.5	V
			Other pins	lo∟ = 1 mA	-	-	0.5	V
VT+-VT-	Hysteresis	INTO, INT1, INT2, INT3, INT5, INT7, KI0, KI1, KI2, KI3, KI4, KI5, KI6, KI7, TRCIOA, TRCIOB, TRCIOC, TRCIOD, TRJOIO, TRJ1IO, TRCTRG, TRCCLK, ADTRG, RXD0, CLK0, SSI, SCL, SDA, SSO RESET, WKUP0			0.05	0.4	-	V
Ін	Input "H" current	1	VI = 3 V, Vcc = 3 V		-	-	5.0	μA
lı∟	Input "L" current		VI = 0 V, Vcc = 3 V		-	-	-5.0	μA
Rpullup	Pull-up resistance		VI = 0 V, Vcc = 3 V		25	80	140	kΩ
RfXIN	Feedback resistance	XIN			-	2.0	-	MΩ
Rfxcin	Feedback resistance	XCIN			-	14	-	MΩ
Vram	RAM hold voltage		During stop mode		1.8	-	-	V

Note:

1. This applies when the drive capacity of the output transistor is set to High by P8DRR register. When the drive capacity is set to Low, the value of any other pin applies.

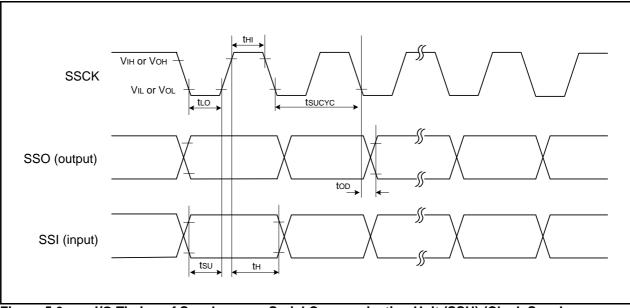


Figure 5.6 I/O Timing of Synchronous Serial Communication Unit (SSU) (Clock Synchronous Communication Mode)

5.2.3 Peripheral Function Characteristics

Table 5.32A/D Converter Characteristics
 $(Vcc/AVcc = Vref = 1.8 \text{ to } 5.5 \text{ V}, \text{ Vss} = 0 \text{ V}, \text{ and Topr} = -20 \text{ to } 85^{\circ}C (N \text{ version})/-40 \text{ to}$
 $85^{\circ}C$ (D version), unless otherwise specified.)

Symbol	Parameter		Condi	tiona		Standard	tandard	
Symbol	Falameter		Condi	10115	Min.	Тур.	Max.	Unit
-	Resolution		Vref = AVCC	Vref = AVCC		-	10	Bit
-	Absolute accuracy (2)	lute accuracy ⁽²⁾ 10-bit mode Vref = AVcc = 5.0 V AN0 to AN11 input		-	-	±3	LSB	
			Vref = AVCC = 2.2 V	AN0 to AN11 input	-	-	±5	LSB
			Vref = AVCC = 1.8 V	AN0 to AN11 input	-	-	±5	LSB
		8-bit mode	Vref = AVCC = 5.0 V	AN0 to AN11 input	-	-	±2	LSB
			Vref = AVCC = 2.2 V	AN0 to AN11 input	-	-	±2	LSB
			Vref = AVCC = 1.8 V	AN0 to AN11 input	-	-	±2	LSB
φAD	A/D conversion clock		$4.0 \le V_{ref} = AV_{CC} \le 5.5$	5 V (1)	1	-	20	MHz
			$3.2 \le Vref = AVCC \le 5.5$	5 V (1)	1	-	16	MHz
			$2.7 \le Vref = AVCC \le 5.5$	5 V (1)	1	-	10	MHz
			$1.8 \le Vref = AVCC \le 5.8$	5 V (1)	1	-	8	MHz
-	Tolerance level impedance				-	3	-	kΩ
t CONV	Conversion time	10-bit mode	$Vref = AVCC = 5.0 V, \phi/$	AD = 20 MHz	2.2	-	-	μS
		8-bit mode	$Vref = AVCC = 5.0 V, \phi/$	AD = 20 MHz	2.2	-	-	ms
t SAMP	Sampling time	•	φAD = 20 MHz		0.8	-	-	μS
IVref	Vref current		$Vcc = 5 V$, $XIN = f1 = \phi AD = 20 MHz$		-	45	-	μA
Vref	Reference voltage				1.8	-	AVcc	V
Via	Analog input voltage (3)					-	Vref	V
OCVREF	On-chip reference voltage		$2 \text{ MHz} \le \phi \text{AD} \le 4 \text{ MHz}$	Z	1.53	1.70	1.87	V

Notes:

1. The A/D conversion result will be undefined in wait mode, stop mode, power-off mode, when the flash memory stops, and in low-current-consumption mode. Do not perform A/D conversion in these states or transition to these states during A/D conversion.

2. This applies when the peripheral functions are stopped.

3. When the analog input voltage is over the reference voltage, the A/D conversion result will be 3FFh in 10-bit mode and FFh in 8-bit mode.

Table 5.33Temperature Sensor Characteristics
(VSS = 0 V and Topr = -20 to 85 °C (N version)/-40 to 85 °C (D version), unless
otherwise specified.)

Symbol	Parameter	Conditions			Unit	
Symbol	i arameter	Conditions	Min.	Тур.	Max.	Unit
Vtmp	Temperature sensor output voltage	1.8 V \leq Vref = AVcc \leq 5.5 V ϕ AD = 1.0 MHz to 5.0 MHz Ambient temperature = 25 °C	550	600	650	mV
-	Temperature coefficient	$1.8 V \le Vref = AVcc \le 5.5 V$ $\phi AD = 1.0 MHz$ to 5.0 MHz Ambient temperature = 25 °C	-	-2.1	-	mV/°C
-	Start-up time	$1.8 \text{ V} \le \text{Vref} = \text{AVcc} \le 5.5 \text{ V}$ $\phi \text{AD} = 1.0 \text{ MHz}$ to 5.0 MHz	-	_	200	μs
Ітмр	Operating current	$1.8 \text{ V} \le \text{Vref} = \text{AVcc} \le 5.5 \text{ V}$ $\phi \text{AD} = 1.0 \text{ MHz}$ to 5.0 MHz	_	100	_	μΑ

Table 5.34Gain Amplifier Characteristics
(VSS = 0 V and Topr = -20 to 85 °C (N version)/-40 to 85 °C (D version), unless
otherwise specified.)

Symbol	Baramatar	Parameter Conditions		Standard			
Symbol	Falameter	Conditions	Min.	Тур.	Max.	Unit	
VGAIN	Gain amplifier operating range		0.4	-	AVCC - 1.0	V	
φAD	A/D conversion clock		1	-	5	MHz	

Table 5.35 Comparator B Characteristics (Vcc = 1.8 to 5.5 V and Topr = -20 to 85°C (N version)/ -40 to 85°C (D version), unless otherwise specified.)

Symbol	Parameter	Condition		Standard			
Symbol	Faranieter	Condition	Min.	Тур.	Max.	Unit	
Vref	IVREF1, IVREF3 input reference voltage		0	-	Vcc - 1.4	V	
VI	IVCMP1, IVCMP3 input voltage		-0.3	-	Vcc + 0.3	V	
-	Offset		-	5	100	mV	
td	Comparator output delay time (1)	VI = Vref ± 100 mV	-	-	1	μS	
ICMP	Comparator operating current	Vcc = 5.0 V	-	12	-	μA	

Note:

1. When the digital filter is disabled.

Table 5.36Flash Memory (Program ROM) Characteristics
(Vcc = 1.8 to 5.5 V and Topr = 0 to 60°C, unless otherwise specified.)

Symbol	Parameter	Conditions		Sta	ndard	Unit
			Min.	Тур.	Max.	Unit
-	Program/erase endurance (1)		10,000 (2)	-	-	times
-	Byte program time		_	80	-	μS
-	Block erase time	Internal ROM Capacity: 16 KB, 32 KB, 48 KB, 64 KB	-	0.12	-	S
		Internal ROM Capacity: 96 KB, 128 KB	-	0.2	-	S
td(SR-SUS)	Time delay from suspend request until suspend		-	-	0.25 + CPU clock × 3 cycles	ms
-	Time from suspend until erase restart		-	-	30 + CPU clock × 1 cycle	μS
td(CMDRST-READY)	Time from when command is forcibly terminated until reading is enabled		-	_	30 + CPU clock × 1 cycle	μS
-	Program, erase voltage		1.8	-	5.5	V
-	Read voltage		1.8	-	5.5	V
-	Program, erase temperature		0	-	60	°C
-	Data hold time ⁽⁶⁾	Ambient temperature = 85°C	10	-	-	year

Notes:

1. Definition of programming/erasure endurance

The programming and erasure endurance is defined on a per-block basis.

If the programming and erasure endurance is n (n = 1,000), each block can be erased n times. For example, if 1,024 1-byte writes are performed to different addresses in block A, a 1 Kbyte block, and then the block is erased, the programming/erasure endurance still stands at one.

However, the same address must not be programmed more than once per erase operation (overwriting prohibited).

2. Endurance to guarantee all electrical characteristics after program and erase. (1 to Min. value can be guaranteed).

3. In a system that executes multiple programming operations, the actual erasure count can be reduced by writing to sequential addresses in turn so that as much of the block as possible is used up before performing an erase operation. For example, when programming groups of 16 bytes, the effective number of rewrites can be minimized by programming up to 128 groups before erasing them all in one operation. It is also advisable to retain data on the erasure endurance of each block and limit the number of erase operations to a certain number.

4. If an error occurs during block erase, attempt to execute the clear status register command, then execute the block erase command at least three times until the erase error does not occur.

5. Customers desiring program/erase failure rate information should contact their Renesas technical support representative.

6. The data hold time includes time that the power supply is off or the clock is not supplied.

5.2.4 DC Characteristics

Table 5.47DC Characteristics (1) [4.0 V \leq Vcc \leq 5.5 V]
(Topr = -20 to 85°C (N version)/ -40 to 85°C (D version), unless otherwise specified.)

Symbol		Parameter	Con	dition		Sta	andard		Unit
Symbol		Parameter	Condition			Min.	Тур.	Max.	Unit
Vон	Output "H"	voltage	Port P7_0, P7_1, P8 (1)	Vcc = 5V	Iон = -20 mA	Vcc - 2.0	-	Vcc	V
			Other pins	Vcc = 5V	Iон = -5 mA	Vcc - 2.0	-	Vcc	V
Vol	Output "L" v	voltage	Port P7_0, P7_1, P8 (1)	Vcc = 5V	IoL = 20 mA	-	-	2.0	V
			Other pins	Vcc = 5V	IoL = 5 mA	-	-	2.0	V
VT+-VT-	Hysteresis	INTO, INT1, INT2, INT3, INT4, INT5, INT6, INT7, KI0, KI1, KI2, KI3, KI4, KI5, KI6, KI7, TRCIOA, TRCIOB, TRCIOC, TRCIOD, TRJ0IO, TRJ1IO, TRJ2O, TRCTRG, TRCLK, ADTRG, RXD0, RXD2, CLK0, CLK2, SSI, SCL, SDA, SSO				0.05	0.5	_	V
		RESET, WKUP0				0.1	0.8	-	V
Ін	Input "H" cu	urrent	VI = 5 V, Vcc = 5 V			-	-	5.0	μΑ
lı∟	Input "L" cu	rrent	VI = 0 V, Vcc = 5 V			-	-	-5.0	μΑ
Rpullup	Pull-up resi	stance	VI = 0 V, Vcc = 5 V			20	40	80	kΩ
Rfxin	Feedback resistance	XIN				_	2.0	-	MΩ
Rfxcin	Feedback resistance	XCIN				-	14	-	MΩ
Vram	RAM hold v	voltage	During stop mode			1.8	-	-	V

Note:

1. This applies when the drive capacity of the output transistor is set to High by registers P7DRR and P8DRR. When the drive capacity is set to Low, the value of any other pin applies.

Table 5.54Timing Requirements of I²C bus Interface (1)
(Vcc = 1.8 to 5.5 V, Vss = 0 V, and Topr = -20 to 85°C (N version)/ -40 to 85°C (D version),
unless otherwise specified.)

Symbol	Parameter	Condition	Sta	andard		Unit
Symbol	Falameter	Condition	Min.	Тур.	Max.	Unit
tSCL	SCL input cycle time		12tcyc + 600 (1)	-	-	ns
t SCLH	SCL input "H" width		3tcyc + 300 ⁽¹⁾	-	-	ns
tSCLL	SCL input "L" width		5tcyc + 500 (1)	-	-	ns
tsf	SCL, SDA input fall time		-	-	300	ns
tSP	SCL, SDA input spike pulse rejection time		-	-	1tcyc (1)	ns
tBUF	SDA input bus-free time		5tcyc (1)	-	-	ns
t STAH	Start condition input hold time		3tcyc (1)	-	-	ns
t STAS	Retransmit start condition input setup time		3tcyc (1)	-	-	ns
t STOP	Stop condition input setup time		3tcyc (1)	-	-	ns
tSDAS	Data input setup time		1tcyc + 40 (1)	-	-	ns
t SDAH	Data input hold time		10	_	-	ns

Note:

1. 1tcyc = 1/f1(s)

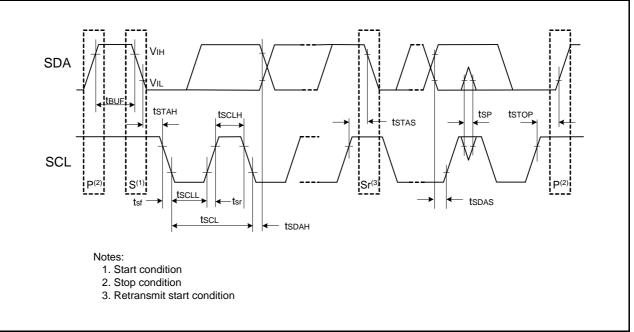


Figure 5.18 I/O Timing of I²C bus Interface

REVISION HISTORY R8C/LA3A Group, R8C/LA5A Group, R8C/LA6A Group, R8C/LA8A Group Datasheet

Rev.	Date	Description	
		Page	Summary
1.00	Dec 21, 2010	32	"The internal ROM (program ROM) is allocated lower addresses, beginning with address 0FFFFh." deleted Figure 3.1 revised
		33 to 41	Tables 4.1 to 4.9 SFR information for R8C/LA5A Group added
		52 to 98	"5. Electrical Characteristics" added
		92	Package Dimensions "PVQN0064LB-A" deleted
1.01	Oct 28, 2011	1	1.1 " data flash (1 KB × 2 blocks)." \rightarrow " data flash."
		10	Table 1.11, Figure 1.3 revised
		11	Table 1.12, Figure 1.4 revised
		32	3 revised, Figure 3.1 revised
		60	Table 5.12 revised
		80	Table 5.36 revised
		81	Table 5.37 revised
		83	Table 5.41 revised

All trademarks and registered trademarks are the property of their respective owners.

Notice

- All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The recommended where you have failed to obtain the prior written consent of Renesas Electronics and the prior written consent of Renesas Electronics and the prior written consent of Renesas Electronics. The recommended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
- "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools
- personal electronic equipment; and industrial robots.
 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; safety equipment; and medical equipment not specifically
 designed for life support.
- *Specific*: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and mafunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and mafunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

Refer to "http://www.renesas.com/" for the latest and detailed information

SALES OFFICES

Renesas Electronics Corporation

http://www.renesas.com

Renesas Electronics America Inc. 2880 Scott Boulevard Santa Clara, CA 95050-2554, U.S.A. Tel: +1-408-588-4000, Fax: +1-408-588-6130 Renesas Electronics Canada Limited 1011 Nicholson Road, Newmarket, Ontario L3Y 9C3, Canada Tel: +1-905-898-5441, Fax: +1-905-898-3220 Renesas Electronics Europe Limited Dukes Meadow, Millboard Road, Boume End, Buckinghamshire, SL8 5FH, U.K Tel: +44-1628-585-100, Fax: +44-1628-585-900 Renesas Electronics Europe GmbH Arcadiastrasse 10, 40472 Düsseldorf, Germany Tel: +49-211-65030, Fax: +44-1628-585-900 Renesas Electronics Curope GmbH Arcadiastrasse 10, 40472 Düsseldorf, Germany Tel: +49-211-65030, Fax: +44-1628-585-900 Renesas Electronics (Shanghai) Co., Ltd. 7th Floor, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100083, P.R.China Tel: +486-12-487-71518, Fax: +486-22-4857-7679 Renesas Electronics (Shanghai) Co., Ltd. Unit 204, 205, A221 Center, No. 1233 Lujiazui Ring Rd., Pudong District, Shanghai 200120, China Tel: +486-12-4877-71818, Fax: +486-22-4867-7858 Renesas Electronics Hong Kong Limited Unit 1001.151, 16/F, Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong Tel: +486-2-4175-9600, Fax: +4882-2486-9022/9044 Renesas Electronics Taiwan Co., Ltd. 154, No. 363, Fu Shing North Road, Taipei, Taiwan Tel: +486-2-4175-9600, Fax: +4882-24175-9670 Renesas Electronics Magayor Phet. Ltd. 1 harbourFront Avenue, #06-10, keppel Bay Tower, Singapore 098632 Tel: +656-2715-9900, Fax: +489-2-4075-9910 Renesas Electronics Kong Co., Ltd. 11 harbourFront Avenue, #06-10, keppel Bay Tower, Singapore 098632 Tel: +656-2715-9900, Fax: +489-2-9175-9670 Renesas Electronics Kong Co., Ltd. 11 harbourFront Avenue, #06-10, keppel Bay Tower, Singapore 098632 Tel: +656-2715-9900, Fax: +489-2-915-9910 Renesas Electronics Konge Co., Ltd. 11F, Samik Lavied' or Billog, 720-2 Veoksam-Dong, Kangnam-Ku, Seoul 135-080, Korea Tel: +60-37-7357-737, Fax: +48-2-558-9141