

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Last Time Buy
Core Processor	nX-U8/100
Core Size	8-Bit
Speed	8MHz
Connectivity	UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	11
Program Memory Size	4KB (2K x 16)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 6x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	16-LSSOP (0.173", 4.40mm Width)
Supplier Device Package	16-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/rohm-semi/ml610q101-nnnmbz0atl

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

ML610Q101/ML610Q102

• PWM

- Resolution 16 bits \times 1 channel
- Support Continuos timer mode/one shot timer mode
- PWM start/stop function by software or external trigger input
- UART
 - Half-duplex
 - TXD/RXD \times 1 channels
 - Bit length, parity/no parity, odd parity/even parity, 1 stop bit/2 stop bits
 - Positive logic/negative logic selectable
 - Built-in baud rate generator
- Successive approximation type A/D converter (SA-ADC)
 - 10-bit A/D converter
 - Input \times 6 channels
- Analog Comparator
 - Operating voltage: $V_{DD} = 2.7V$ to 5.5V
 - Input voltage by common mode: $V_{DD} = 0.1 V$ to V_{DD} 1.5V
 - Hysteresis (Comparator0 only): 20mV(Typ.)
 - Allows selection of interrupt disabled mode, falling-edge interrupt mode, rising-edge interrupt mode, or both-edge interrupt mode.
- General-purpose ports (GPIO)
 - Input/output port × 11 channels (including secondary functions)
- Reset
 - Reset by the RESET_N pin
 - Reset by power-on detection
 - Reset by the watchdog timer (WDT) overflow
 - Reset by voltage level supervisor(VLS)
- Voltage level supervisor(VLS)
 - Judgment accuracy: $\pm 3.0\%$ (Typ.)
 - It can be used for low level detection reset.
- Clock
 - Low-speed clock:
 - Built-in RC oscillation (32.768 kHz)
 - High-speed clock:
 - Built-in PLL oscillation (16.384 MHz), external clock The clock of the CPU is 8.192MHz(Max)
 - Selection of high-speed clock mode by software: Built-in PLL oscillation, external clock
- Power management
 - HALT mode: Instruction execution by CPU is suspended (peripheral circuits are in operating states).
 - STOP mode: Stop of low-speed oscillation and high-speed oscillation (Operations of CPU and peripheral circuits are stopped.)
 - Clock gear: The frequency of high-speed system clock can be changed by software (1/1, 1/2, 1/4, or 1/8 of the oscillation clock)
 - Block Control Function: Power down (reset registers and stop clock supply) the circuits of unused peripherals.

ML610Q101/ML610Q102

- Shipment
 - 16-pin plastic SSOP
 ML610Q101-xxxMB (Blank product: ML610Q101-NNNMB)
 ML610Q102-xxxMB (Blank product: ML610Q102-NNNMB)
 - 16-pin plastic WQFN ML610Q101-xxxGD (Blank product: ML610Q101-NNNGD) ML610Q102-xxxGD (Blank product: ML610Q102-NNNGD)
- Guaranteed operating range
 - Operating temperature: –40°C to 85°C
 - Operating voltage: $V_{DD} = 2.7V$ to 5.5V

BLOCK DIAGRAM ML610Q101 Block Diagram

Figure 1 show the block diagram of the ML610Q101.

"*" indicates secondary function, tertiary function or quaternary function of each port.

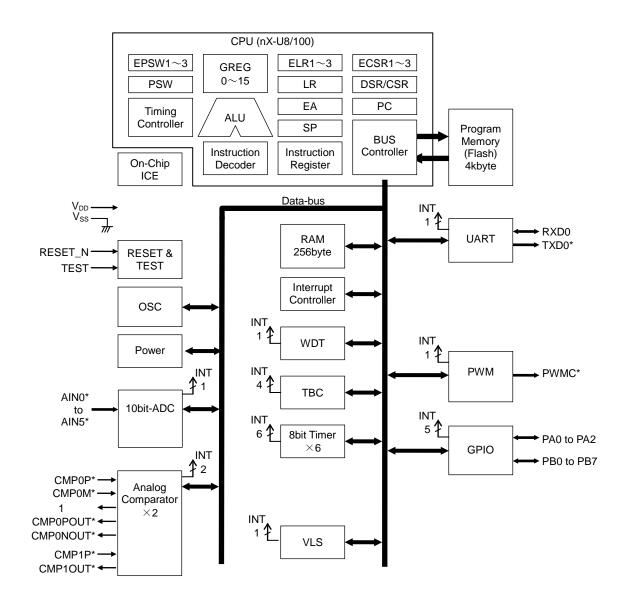
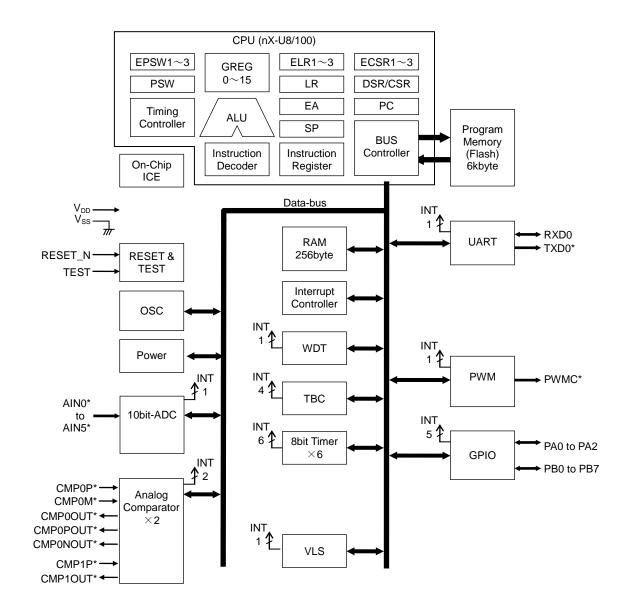
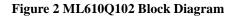




Figure 1 ML610Q101 Block Diagram

ML610Q102 Block Diagram

Figure 2 show the block diagram of the ML610Q102. "*" indicates secondary function, tertiary function or quaternary function of each port.

PIN CONFIGURATION ML610Q101/ML610Q102 SSOP16 Pin Layout

Figure 3 show the SSOP16 pin layout of the ML610Q101/ML610Q102.

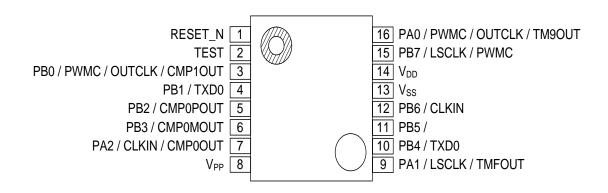


Figure 3 ML610Q101/ML610Q102 SSOP16 Pin Configuration

ML610Q101/ML610Q102 WQFN16 Pin Layout

Figure 4 show the WQFN16 pin layout of the ML610Q101/ML610Q102.

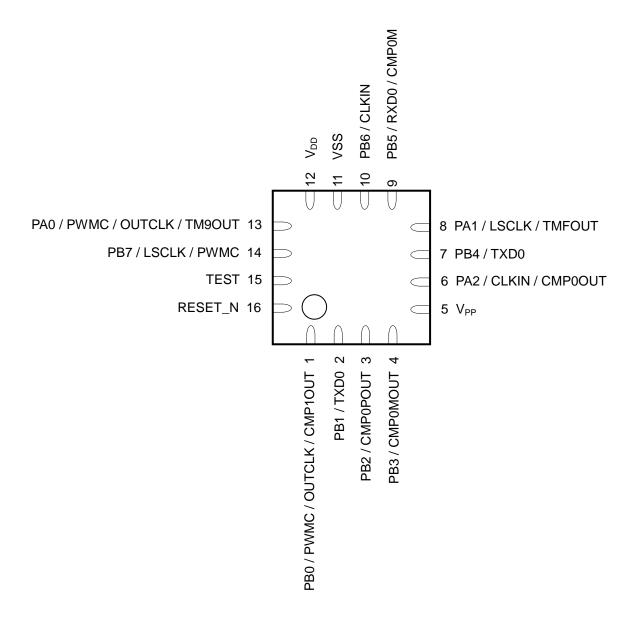


Figure 4 ML610Q101/ML610Q102 WQFN16 Pin Configuration

ML610Q101/ML610Q102

LIST OF PINS

PIN No.	PIN No.	Pri	mary	/ function	Seco	ondary	function	Tertia	ary fu	Inction	Quater	nary fu	nction
(SSOP)	(WQFN)	Pin name	I/O	Function	Pin name	I/O	Function	Pin name	I/O	Function	Pin name	I/O	Function
1	16	RESET_N	Ι	Reset input pin		_	_			_			
2	15	TEST	I/O	Input/output pin for testing	_		_		_	_		_	
3	1	PB0/ EXI4/ AIN2/ RXD0	I/O	Input/output port, External interrupt 4, ADC input 2, UART receive	PWMC	0	PWMC output	OUTCLK	0	High- speed clock output	CMP1 OUT	0	CMP1 output
4	2	PB1/ EXI5/ AIN3	I/O	Input/output port, External interrupt 5, ADC input 3	_		_	TXD0	0	UART data output	_	_	_
5	3	PB2	I/O	Input/output port,	_	_		_		—	CMP0 POUT	0	CMP0_N output
6	4	PB3	I/O	Input/output port	_	_		—		_	CMP0 NOUT	0	CMP0_N output
7	6	PA2/EXI2	I/O	Input/output port, External interrupt2		_	_	CLKIN	I	clock input	CMP0 OUT	0	CMP0 output
8	5	V _{PP}		Power supply pin for Flash ROM	_		_	_	_		_		
9	8	PA1/ EXI1/ AIN1/ CMP1P	I/O	Input/output port, External interrupt 1, ADC input 1, Comparator1 non-inverting input	_			LSCLK	0	Low speed clock output	TMF OUT	0	timer F output
10	7	PB4/ CMP0P	I/O	Input/output port, Comparator0 non-inverting input	_	_	_	TXD0	0	UART data output		_	
11	9	PB5/ RXD0/ CMP0M	I/O	Input/output port, UART data receive, Comparator1- inverting input	_	_	_					_	_
12	10	PB6/ AIN4	I/O	Input/output port, ADC input 4	CLKIN	Ι	clock input	_			_	_	_
13	11	Vss	_	Negative power supply pin	—			—	_	_	—	—	—
14	12	V _{DD}		Positive power supply pin		_			_				
15	14	PB7/ AIN5	I/O	Input/output port, ADC input 5	LSCLK	0	Low- speed clock output	_	_		PWMC	0	PWMC output
16	13	PA0/ EXI0/ AIN0	I/O	Input/output port, External interrupt 0, ADC input 0	PWMC	0	PWMC output	OUTCLK	0	High- speed clock output	TM9OUT	0	timer 9 output

ML610Q101/ML610Q102

PIN DESCRIPTION

			Primary/	
Pin name I/O		Description	Secondary/	Logic
		Description	Tertiary/	Logic
			Quaternary	
System				
		Reset input pin. When this pin is set to a "L" level, system reset mode is set and		
RESET_N	I	the internal section is initialized. When this pin is set to a "H" level subsequently, program execution starts. A pull-up resistor is internally connected.	—	Negative
CLKIN	T	High-speed clock output pin. This pin is used as the tertiary function of the PA2 or	Secondary/	
CLNIN		the secondary function of PB6 pin.	Tertiary	
LSCLK	0	Low-speed clock output pin. This pin is used as the tertiary function of the PA1 or	Secondary/	
LOCER	0	the secondary function of the PB7 pin.	Tertiary	
OUTCLK	0	High-speed clock output pin. This pin is used as the tertiary function of the PA0 or PB0 pin.	Tertiary	—
General-purp	ose i	nput/output port		
		General-purpose input/output port.		
PA0 to PA2	I/O	Since these pins have secondary functions and tertiary functions and quaternary	Primary	Positive
PB0 to PB7	., 0	functions, the pins cannot be used as a port when the secondary functions and	i iiiiaiy	
		tertiary functions and quaternary functions are used.		
UART				
TXD0	0	UART0 data output pin. This pin is used as the tertiary function of the PB1 or PB4 pin.	Tertiary	Positive
RXD0	I	UART0 data input pin. This pin is used as the primary function of the PB0 or PB5 or the quaternary function of the PB7 pin.	Primary	Positive
PWM			1	
	-	PWMC output pin. This pin is used as the secondary function of the PB0 or PA0 or	Secondary	
PWMC	0	the quaternary function of the PB7 pin.	Quaternary	Positive
External inter	rupt			
	- 1 -	External maskable interrupt input pins. Interrupt enable and edge selection can be		
EXI0 to 2	Ι	performed for each bit by software. These pins are used as the primary functions of	Primary	Positive/
		the PA0 – PA2 pins.		negative
		External maskable interrupt input pins. Interrupt enable and edge selection can be		ь, <i>і</i>
EXI4,5 I		performed for each bit by software. These pins are used as the primary functions of	Primary	Positive/
		the PB0, PB1 pins.	-	negative
Timer		•		
		External clock input pin used for both Timer E and Timer F. These pins are used as	During	
TnTG	Ι	the primary function of the PA0-PA2, PB0-PB7 pins.	Primary	—
TM9OUT	0	Timer 9 output pin. This pin is used as the quaternary function of the PA0 pin.	Quaternary	Positive
TMFOUT	0	Timer F output pin. This pin is used as the quaternary function of the PA1 pin.	Quaternary	Positive
TMFOUT	0	Timer F output pin. This pin is used as the quaternary function of the PA1 pin.	Quaternary	Positive

ML610Q101/ML610Q102

Pin name	I/O	Description	Primary/ Secondary/ Tertiary/ Quaternary	Logic
Successive a	approx	kimation type A/D converter		
AINO	I	Channel 0 analog input for successive approximation type A/D converter. This pin is used as the primary function of the PA0 pin.	Primary	—
AIN1	I	Channel 1 analog input for successive approximation type A/D converter. This pin is used as the primary function of the PA1 pin.	Primary	—
AIN2	I	Channel 2 analog input for successive approximation type A/D converter. This pin is used as the primary function of the PB0 pin.	Primary	_
AIN3	I	Channel 3 analog input for successive approximation type A/D converter. This pin is used as the primary function of the PB1 pin.	Primary	_
AIN4	I	Channel 4 analog input for successive approximation type A/D converter. This pin is used as the primary function of the PB6 pin.	Primary	_
AIN5	I	Channel 5 analog input for successive approximation type A/D converter. This pin is used as the primary function of the PB7 pin.	Primary	_
Conparator				
CMP0P	Ι	Non-inverting input for comparator0. This pin is used as the primary function of the PB4 pin.	Primary	_
CMP0M	I	Inverting input for comparator0. This pin is used as the primary function of the PB5 pin.	Primary	_
CMP0OUT	0	Output for comparator0. This pin is used as the quaternary function of the PA2 pin.	Quaternary	_
CMP0OUT	0	Output for comparator0. This pin is used as the quaternary function of the PB2 pin.	Quaternary	_
CMP0OUT	0	Output for comparator0. This pin is used as the quaternary function of the PB3 pin.	Quaternary	_
CMP1P	I	Non-inverting input for comparator1. This pin is used as the primary function of the PA1 pin.	Primary	_
CMP10UT	0	Output for comparator1. This pin is used as the quaternary function of the PB0 pin.	Quaternary	_
For testing	•	·		
TEST	I/O	Input/output pin for testing. A pull-down resistor is internally connected.		Positive
Power supply	y			
V _{SS}	—	Negative power supply pin.	_	_
V _{DD}	—	Positive power supply pin.		_
V _{PP}	—	Power supply pin for Flash ROM		_

ML610Q101/ML610Q102 TERMINATION OF UNUSED PINS

Table 3 shows methods of terminating the unused pins for ML610Q101/ML610Q102.

Pin	Recommended pin termination
RESET_N	Open
TEST	Open
PA0 to PA2	Open
PB0 to PB7	Open
V _{PP}	Open

Table 3 Termination of Unused Pins

Note:

It is recommended to set the unused input ports and input/output ports to the inputs with pull-down resistors/pull-up resistors or the output mode since the supply current may become excessively large if the pins are left open in the high impedance input setting.

ELECTRICAL CHARACTERISTICS

ABSOLUTE MAXIMUM RATINGS

				$(V_{SS} = 0V)$
Parameter	Symbol	Condition	Rating	Unit
Power supply voltage 1	V _{DD}	Ta = 25°C	-0.3 to +7.0	V
Power supply voltage 2	V _{PP}	Ta = 25°C	-0.3 to +9.5	V
Input voltage	V _{IN}	Ta = 25°C	-0.3 to V _{DD} +0.3	V
Output voltage	Vout	Ta = 25°C	-0.3 to V _{DD} +0.3	V
Output current 1	I _{OUT1}	Ta = 25°C	-12 to +11	mA
Power dissipation	PD	Ta = 25°C	0.5	mW
Storage temperature	T _{STG}		-55 to +150	°C

RECOMMENDED OPERATING CONDITIONS

				$(V_{SS} = 0V)$
Parameter	Symbol	Condition	Range	Unit
Operating temperature	T _{OP}		-40 to +85	°C
Operating voltage	V _{DD}		2.7 to 5.5	V
Operating frequency (CPU)	f _{OP}	$V_{DD} = 2.7V$ to 5.5V	30k to 8.4M	Hz

OPERATING CONDITIONS OF FLASH MEMORY

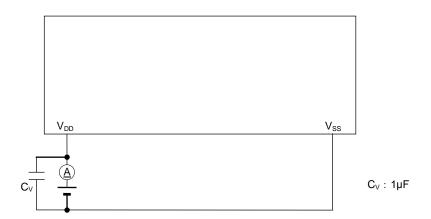
OI ERAIING CONDI							
						(V _{SS} =0V)	
Parameter	Symbol	Condition		Rating		Linit	
Falameter	Symbol	mbol Condition	Min.	Тур.	Max.	Unit	
Operating temperature	T _{OP}	At write/erase	0	—	+40	°C	
Operating voltage	V _{DD}	At write/erase	4.5	_	5.5	V	
Operating voltage	V _{PP}	At write/erase	7.7	—	8.3		
Rewrite counts	CEP	_	_		80	cycles	
Data retention*1	Y _{DR}	_	10	—	—	years	

*1: However, please keep active time of the flash memory from exceeding ten years.
 Vpp pin has internal pull-down resistor.

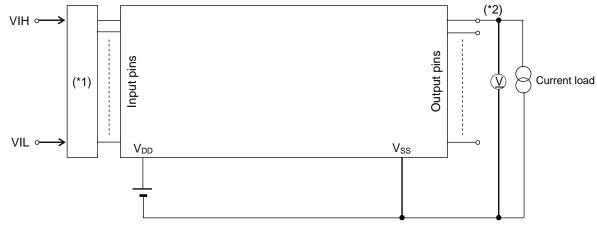
FEDL610Q101-03

LAPIS Semiconductor Co., Ltd.

ML610Q101/ML610Q102


DC CHARA	CTERIS		5V. Vss=0V.	Ta=-40) to +85°(C. unles	s otherw	vise specified)	
				Rating				Measuring	
Parameter	Symbol	Condition		Min.	Тур.	Max.	Unit	circuit	
		Ta=25°C , V _{DD} =f	all	Typ -3.0 %	2.85	Typ +3.0 %			
	Vvlsof	V _{DD} =fall	V _{DD} =fall			Typ. +5.0 %			
VLS		Ta=25°C , V _{DD} =ri	se	Typ. -3.0 %	2.92	Typ. +3.0 %			
Judgment voltage	V _{VLSOR}	V _{DD} =rise		Typ. -5.0 %	2.92	Typ +5.0 %	V	1	
	V _{VLS1}	Ta=25°C	VLS0=0	Тур -3.0	3.295	Тур +3.0			
			VLS0=1	%	3.625	%			
			VLS0=0	Тур 5.0	3.295	Тур +5.0			
		_	VLS0=1	~3.0	3.625	+3.0 %			
Comparator0 In-phase input voltage range	V _{CMR}	_		0.1	_	V _{DD} -1.5	V		
Comparator0		Ta=25°C , V _{DD} = 5	.0V	10	20	30			
hysteresis	V _{HYSP}	V _{DD} = 5.0V		5	20	35			
Comparator0 Input offset voltage	V _{CMOF}	Ta=25°C , V _{DD} = 5	.0V	_	_	7	mV	4	
Comparator		Ta=25°C		-25	_	25			
Reference- voltage error* ³	V _{CMREF}		_		_	50			
Supply current	IDD1	CPU: In STOP state. Low-speed/high-speed oscillation: stopped.	Ta=-40 to +85°C	_	1	30	μA	1	
Supply current 2 IDD2		CPU: In 32.768kHz operating state.* ¹ High-speed oscillation: Stopped.	Ta=-40 to +85°C	_	3.7	6	mA	1	

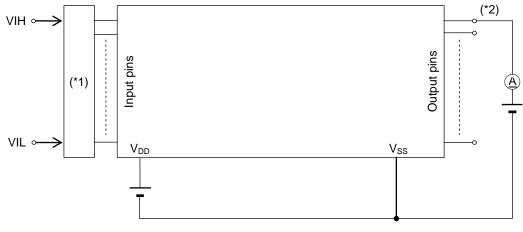
Stopped.
 *¹: LTBC and WDT are operating ,and significant bits of BLKCON0 to BLKCON4 registers are all "1".
 *²: When the CPU operating rate is 100%. Minimum instruction execution time: Approx 0.122 µs (at 8.192MHz system clock)


*³ :Comparator input offset voltage is included.

MEASURING CIRCUITS

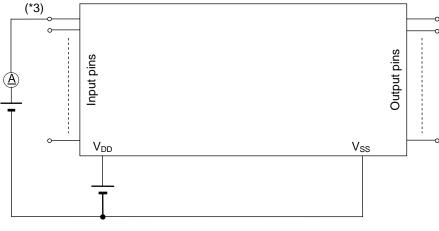
MEASURING CIRCUIT 1

MEASURING CIRCUIT 2



*1: Input logic circuit to determine the specified measuring conditions.

*2: Measured at the specified output pins.

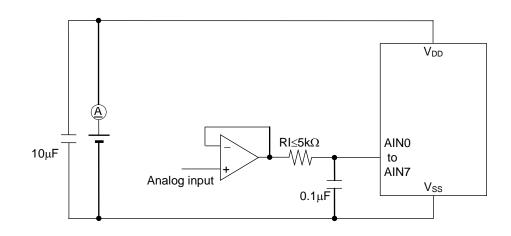

ML610Q101/ML610Q102

MEASURING CIRCUIT 3

*1: Input logic circuit to determine the specified measuring conditions.*2: Measured at the specified output pins.

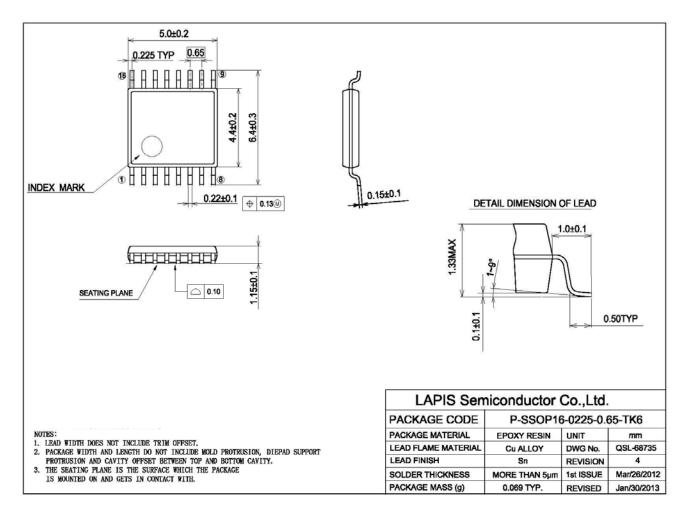
MEASURING CIRCUIT 4

*3: Measured at the specified output pins.


		2.7 to 5.5V, V_{SS} =0V, Ta=-40 to +85	°C, unle	ss other	wise spe	ecified)
Deremeter	Symbol	Condition		Rating		Unit
Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
		Interrupt: Enabled (MIE = 1),	2.5 x		3.5 x	
External interrupt disable period	T _{NUL}	CPU: NOP operation	syscl	—	syscl	μS
		System clock: 32.768kHz	k		k	
PA0 to PA2, PB0 to (Rising-edge PA0 to PA2, PB0 to (Falling-edge PA0 to PA2, PB0 to P00 ,P01,PB0 (Both-edge in	 PB1 interrupt) PB1 o PB1 o PB1 o PB1 o PB1 o PB2 					

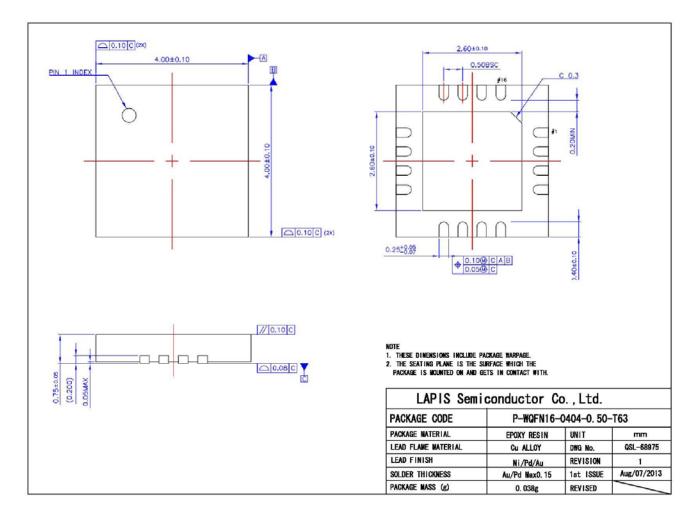
AC CHARACTERISTICS (External Interrupt)

Electrical Characteristics of Successive Approximation Type A/D Converter (V_{DD}=2.7 to 5.5V, V_{SS}=0V, Ta=-40 to +85°C, unless otherwise specified)


$(V_{DD}=2.7 \text{ to } 5.5 \text{ V}, V_{SS}=0 \text{ V}, 1a=-40 \text{ to } +85^{\circ}\text{C}$, unless otherwise specified									
Deverseter	Currents al	Condition							
Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit			
Resolution	n		_	_	10	bit			
Integral non-linearity error	INL	$R_I \leq 5k\Omega$, HSCLK=8.192MHz	-4		+4				
Differential non-linearity error	DNL	$R_I \leq 5k\Omega$, HSCLK=8.192MHz	-3		+3	LSB			
Zero-scale error	V_{OFF}	$R_I \leq 5k\Omega$, HSCLK=8.192MHz	-4	_	+4	LOD			
Full-scale error	FSE	$R_I \leq 5k\Omega$, HSCLK=8.192MHz	-4	_	+4				
Allowable signal source impedance	Rı	_	_	_	5k	Ω			
Conversion time	t _{CONV}			102		∳/CH			

 ϕ : f_{PLL}/2

PACKAGE DIMENSIONS ML610Q101/ML610Q102 SSOP16 Package


(Unit: mm)

Notes for Mounting the Surface Mount Type Package

The surface mount type packages are very susceptible to heat in reflow mounting and humidity absorbed in storage. Therefore, before you perform reflow mounting, contact a ROHM sales office for the product name, package name, pin number, package code and desired mounting conditions (reflow method, temperature and times).

ML610Q101/ML610Q102

ML610Q101/ML610Q102 WQFN16 Package

Notes for Mounting the Surface Mount Type Package

The surface mount type packages are very susceptible to heat in reflow mounting and humidity absorbed in storage. Therefore, before you perform reflow mounting, contact a ROHM sales office for the product name, package name, pin number, package code and desired mounting conditions (reflow method, temperature and times).

REVISION HISTORY

Document		Pa	ge				
No.	Date	Previous Current Edition Edition		Description			
FEDL610Q101-01	Jan., 2013			Formal edition 1			
		_	3	Added "16-pin plastic WQFN"			
		_	7	Added ML610Q101/ML610Q102 WQFN16 Pin Layout			
		6	8	Added PIN No. (SSOP)			
FEDL610Q101-02	Aug., 2013	6	8	Changed the following description of PA0, PA1. "Input port" to "Input/output port".			
						18	19
		18	19	Add ML610Q101/ML610Q102 WQFN16 Package			
		-	-	Change the logo and style.			
FEDL610Q101-03	Aug.4, 2015	19	19	Add the following items. "Allowable signal source impedance"			
		13	13	Add the following items. "Power-on reset activation power rise slope"			

Notes

- 1) The information contained herein is subject to change without notice.
- 2) Although LAPIS Semiconductor is continuously working to improve product reliability and quality, semiconductors can break down and malfunction due to various factors. Therefore, in order to prevent personal injury or fire arising from failure, please take safety measures such as complying with the derating characteristics, implementing redundant and fire prevention designs, and utilizing backups and fail-safe procedures. LAPIS Semiconductor shall have no responsibility for any damages arising out of the use of our Products beyond the rating specified by LAPIS Semiconductor.
- 3) Examples of application circuits, circuit constants and any other information contained herein are provided only to illustrate the standard usage and operations of the Products. The peripheral conditions must be taken into account when designing circuits for mass production.
- 4) The technical information specified herein is intended only to show the typical functions of the Products and examples of application circuits for the Products. No license, expressly or implied, is granted hereby under any intellectual property rights or other rights of LAPIS Semiconductor or any third party with respect to the information contained in this document; therefore LAPIS Semiconductor shall have no responsibility whatsoever for any dispute, concerning such rights owned by third parties, arising out of the use of such technical information.
- 5) The Products are intended for use in general electronic equipment (i.e. AV/OA devices, communication, consumer systems, gaming/entertainment sets) as well as the applications indicated in this document.
- 6) The Products specified in this document are not designed to be radiation tolerant.
- 7) For use of our Products in applications requiring a high degree of reliability (as exemplified below), please contact and consult with a LAPIS Semiconductor representative: transportation equipment (i.e. cars, ships, trains), primary communication equipment, traffic lights, fire/crime prevention, safety equipment, medical systems, servers, solar cells, and power transmission systems.
- 8) Do not use our Products in applications requiring extremely high reliability, such as aerospace equipment, nuclear power control systems, and submarine repeaters.
- 9) LAPIS Semiconductor shall have no responsibility for any damages or injury arising from non-compliance with the recommended usage conditions and specifications contained herein.
- 10) LAPIS Semiconductor has used reasonable care to ensure the accuracy of the information contained in this document. However, LAPIS Semiconductor does not warrant that such information is error-free and LAPIS Semiconductor shall have no responsibility for any damages arising from any inaccuracy or misprint of such information.
- 11) Please use the Products in accordance with any applicable environmental laws and regulations, such as the RoHS Directive. For more details, including RoHS compatibility, please contact a ROHM sales office. LAPIS Semiconductor shall have no responsibility for any damages or losses resulting non-compliance with any applicable laws or regulations.
- 12) When providing our Products and technologies contained in this document to other countries, you must abide by the procedures and provisions stipulated in all applicable export laws and regulations, including without limitation the US Export Administration Regulations and the Foreign Exchange and Foreign Trade Act.
- 13) This document, in part or in whole, may not be reprinted or reproduced without prior consent of LAPIS Semiconductor.

Copyright 2013-2015 LAPIS Semiconductor Co., Ltd.

LAPIS Semiconductor Co., Ltd.

2-4-8 Shinyokohama, Kouhoku-ku, Yokohama 222-8575, Japan http://www.lapis-semi.com/en/