

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Obsolete
Core Processor	8051
Core Size	8-Bit
Speed	16MHz
Connectivity	UART/USART
Peripherals	POR
Number of I/O	32
Program Memory Size	-
Program Memory Type	ROMIess
EEPROM Size	-
RAM Size	128 x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	44-LCC (J-Lead)
Supplier Device Package	44-PLCC (16.59x16.59)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/p80c31sbaa-512

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

80C31/80C32

DESCRIPTION

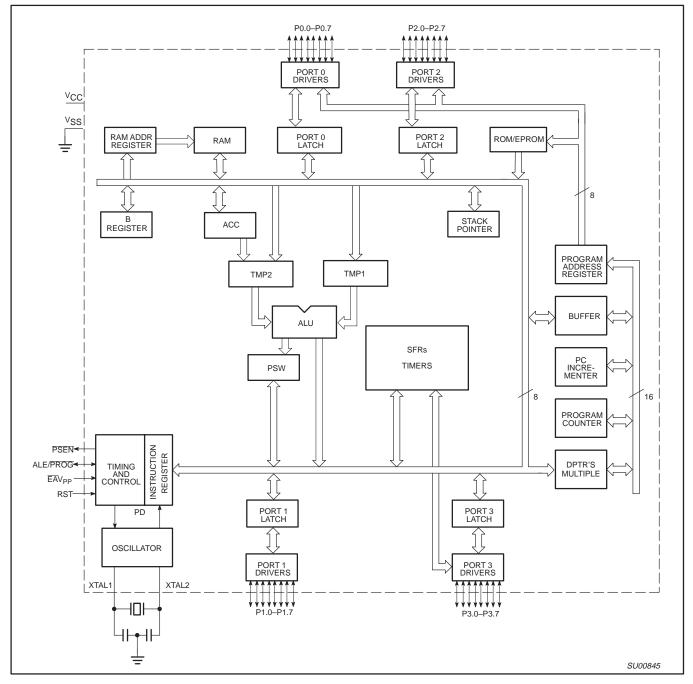
The Philips 80C31/32 is a high-performance static 80C51 design fabricated with Philips high-density CMOS technology with operation from 2.7 V to 5.5 V.

The 80C31/32 ROMless devices contain a 128×8 RAM/ 256×8 RAM, 32 I/O lines, three 16-bit counter/timers, a six-source, four-priority level nested interrupt structure, a serial I/O port for either multi-processor communications, I/O expansion or full duplex UART, and on-chip oscillator and clock circuits.

In addition, the device is a low power static design which offers a wide range of operating frequencies down to zero. Two software selectable modes of power reduction—idle mode and power-down mode are available. The idle mode freezes the CPU while allowing the RAM, timers, serial port, and interrupt system to continue functioning. The power-down mode saves the RAM contents but freezes the oscillator, causing all other chip functions to be inoperative. Since the design is static, the clock can be stopped without loss of user data and then the execution resumed from the point the clock was stopped.

SELECTION TABLE

For applications requiring more ROM and RAM, see the 8XC54/58 and 8XC51RA+/RB+/RC+/80C51RA+ data sheet.


ROM/EPROM Memory Size (X by 8)	RAM Size (X by 8)	Programmable Timer Counter (PCA)	Hardware Watch Dog Timer						
80C31/8XC51									
0K/4K	128	No	No						
80C32/8XC52/54/58									
0K/8K/16K/32K	256	No	No						
80C51RA+/8XC5	51RA+/RB+/RC+	ŀ							
0K/8K/16K/32K	512	Yes	Yes						
8XC51RD+									
64K	1024	Yes	Yes						

FEATURES

- 8051 Central Processing Unit
 - 128 × 8 RAM (80C31)
 - 256 × 8 RAM (80C32)
 - Three 16-bit counter/timers
 - Boolean processor
 - Full static operation
 - Low voltage (2.7 V to 5.5 V@ 16 MHz) operation
- Memory addressing capability
 - 64k ROM and 64k RAM
- Power control modes:
 - Clock can be stopped and resumed
 - Idle mode
 - Power-down mode
- CMOS and TTL compatible
- TWO speed ranges at V_{CC} = 5 V
 - 0 to 16 MHz
 - 0 to 33 MHz
- Three package styles
- Extended temperature ranges
- Dual Data Pointers
- 4 level priority interrupt
- 6 interrupt sources
- Four 8-bit I/O ports
- Full-duplex enhanced UART
 - Framing error detection
 - Automatic address recognition
- Programmable clock out
- Asynchronous port reset
- Low EMI (inhibit ALE)
- Wake-up from Power Down by an external interrupt

80C31/80C32

BLOCK DIAGRAM

Product specification

80C31/80C32

PIN DESCRIPTIONS

MNEMONIC DIP LCC OFP TYPE NAME AND FUNCTION VSS 20 22 16 1 Ground: 0 V reference. VCC 44 38 1 Power Supply: This is the power supply voltage for normal, idle, and power-down operation. P0.0-0.7 38-32 43-36 37-30 1/0 Port 0: son open-drain, bidirectional I/O port with Schnitt trigger inputs. Port 1 pins and paper and data memory. In this application, 1: uses strong internal pull-ups and Schnitt trigger inputs. Port 1 pins that ave 1s written to 16m are pulled high by the internal pull-ups and Schnitt trigger inputs. Port 1 pins that ave 1s written to 16m are pulled high by the internal pull-ups and Schnitt trigger inputs. Port 2 pins that are 1s written to 16m are pulled high by the internal pull-ups and Schnitt trigger inputs. Port 2 pins that are 1s written to 16m are pulled high by the internal pull-ups and can be used as inputs. As inputs, port 1 pins that are sermally being pulled for will source current because of the internal pull-ups. (See D C Electrical Characteristics: IL). Alternate the functional index is submits and and a memory into a solubility of the internal pull-ups and Schnitt trigger inputs. Port 2 pins that are 1s written to 16m are pulled high by the internal pull-ups and Schnitt trigger inputs. Port 2 pins that are sermally being pulled low will source current because of the pull-ups with an entiting 15. Ungrassing and tanemory into a solubility of the internal pull-ups and Schnitt trigger inputs. Port 2 pins that are sermally being pulled low will source current because of the pull-ups withe entiting pull-ups and Schnit trigger 1 pins that are		PI	N NUMBER			
VCc 40 44 38 1 Power Supply: This is the power supply voltage for normal, idle, and power-down operation. P0.0-0.7 38-32 43-36 37-30 10 Port 0: Fort 0 is an open-drain, bidirectional I/O port with Stimult trigger inputs. Port 0 is also the multiplexed low-order address and data bus during accesses to external program and data memory. In this application, it uses strong nitemal pull-ups and Schmitt trigger inputs. Port 1 prins that have 1s written to them and pull-ups and Schmitt trigger inputs. Port 1 prins that have 1s written to them and pull-ups and Schmitt trigger inputs. Port 1 prins that are externally pulled low will source control to the strong three strong pulles and schmitt trigger Prot 1 cludae. 1 2 40 1/O Port 1: Port 1 is an 8-bit bidirectional I/O port with iternal pull-ups and Schmitt trigger inputs. Port 1 prins that are externally pulled low will source control to Port 1 cludae. 2 3 41 1 T2 (P1.9): Timer/Counter 2 external count input/clockout (see Programmable Clock-Out) 2 2 3 10 T2 (P1.9): Timer/Counter 2 external to pull-ups and Schmitt trigger inputs. Port 2 prins that have 1s written to them are pulled high by the internal pull-ups and Schmitt trigger inputs. Port 2 prins that have 1s written to them are pulled high by the internal pull-ups and Schmitt trigger inputs. Port 2 prins that have 1s written to them are pulled high by the internal pull-ups and Schmitt trigger inputs. Port 2 prins that have 1s written to them are pulled high by the internal pull-ups	MNEMONIC	DIP	LCC	QFP	TYPE	NAME AND FUNCTION
P0.0-0.7 39-32 43-36 37-30 I/O Port 0: an open-drain, bidrectional I/O port with Somptilit trigger inputs. Port 0 is also the think be is within to the min bair and can be used as high-impedance binds. Port 0 is also the multiplexed low-order address and data bus during accesses to external program and data memory. In turns a soft in this application, it uses strong internal pull-ups and Schmitt trigger inputs. Port 1 pins that have 1s written to them are pulled high by the internal pull-ups and schmitt trigger inputs. Port 1 pins that have 1s written to them are pulled high by the internal pull-ups and Schmitt trigger inputs. Port 1 pins that have 1s written to them are pulled will source that bus data memory. In this 4.8 inputs. Port 1 pins that have 1s written to them are pulled high by the internal pull-ups and Schmitt trigger inputs. Port 1 pins that have 1s written to them are pulled high by the internal pull-ups and Schmitt trigger inputs. Port 2 pins that have 1s written to them are pulled high by the internal pull-ups and Schmitt trigger inputs. Port 2 pins that have 1s written to them are pulled high by the internal pull-ups and Schmitt trigger inputs. Port 2 pins that have 1s written to them are pulled high by the internal pull-ups and can be used as inputs. As inputs. Port 2 pins that have 1s written to them are pulled high by the internal pull-ups and Schmitt trigger inputs. Port 2 pins that have 1s written to them are pulled high by the internal pull-ups and Schmitt trigger inputs. Port 2 pins that have 1s written to them are pulled high by the internal pull-ups and pull-ups and schmitt trigger inputs. Port 2 pins that have 1s written to them are pulled high by the internal pull-ups and can be used as inputs. Port 2 pins that have 1s written to them are pulled high by the internal pull-ups and pull-ups and pull-ups and pull-ups and Schmit trigger 1 and 1 is 1 and 1 pull-ups and pull-ups and	V _{SS}	20	22	16	I	Ground: 0 V reference.
P1.0-P1.7 1-8 2-9 40-44, 1-3 I/O Port 1: Fort 1 is an 8-bi bid/recional I/O port with internal pull-ups where entiting 1s. Port 1: Fort 1 is an 8-bi bid/recional I/O port with internal pull-ups and Schmitt trigger inputs. Fort 1 pins that have 1s written to them are pulled low will source current because of the internal pull-ups. (See DC Electrical Characteristics: I _U). Alternate functions for Port 1 include: 1 2 40 I/O Port 2: Fort 1 is an 8-bi bid/recional I/O port with internal pull-ups and can be used a inputs. As inputs, port 1 pins that are externally pulled low will source current because of the internal pull-ups. (See DC Electrical Characteristics: I _U). Alternate functions for Port 1 include: P2.0-P2.7 21-28 24-31 18-25 I/O Port 2: Fort 2 is an 8-bit bid/rectonal I/O port with internal pull-ups and can be used as inputs. As inputs, port 2 pins that are externally being pulled low will source current because of the internal pull-ups. (See DC Electrical Characteristics: I _U). Port 2 emits the high-order address byte during teches prove external program memory and during accesses to external clara memory that use 1-bit addresses (MOV & @DPTE). In this application, it uses strong internal pull-ups (MOV @DPTE). In this application, it uses strong internal pull-ups (MOV @DPTE). The 2 emits accesses to external during the memory and uping accesses to external during teches pulled low will source current because of the internal pull-ups. (See DC Electrical Characteristics: I _U). Port 2 emits accesses to external during the internal pull-ups and Schmitt rigger inputs. Fort 3 pins that have 1s written to them are pulled high by the internal pull-ups and can be used as inputs. As i	V _{CC}	40	44	38	I.	Power Supply: This is the power supply voltage for normal, idle, and power-down operation.
1-3 inputs. Port 1 pins that have 1s written to them are pulled high by the internal pull-typs and can be used as inputs. As inputs, port 1 pins that are externally pulled low will source current because of the internal pull-ups. (See DC Electrical Characteristics: It_L). Alternate functions for Port 1 include: 1 2 41 1 P2.0-P2.7 21-28 24-31 18-25 UO P2.0-P2.7 21-28 24-31 18-25 UO Port 2: Port 2 is an 8-bit bidrectional I/O port with internal pull-ups and can be used as inputs. As inputs, port 2 pins that are externally being pulled low will source current because of the internal pull-ups. (See DC Electrical Characteristics: It_L). Port 2: emits the high-order address by when emitting 15. Dort with internal pull-ups and can be used as inputs. As inputs, port 2 pins that are externally being pulled low will source current because of the internal pull-ups. (See DC Electrical Characteristics: It_L). Port 2 emits the high-order address by when emitting 15. During accesses to external data memory that use 8-bit addresses (MOVX @RI), port 2 emits the contents of the P2 special function register. P3.0-P3.7 10-17 11. 5. IVO P3.0-P3.7 10-17 11. 5. INTO (P3.2): External internal pull-ups. (See DC Electrical Characteristics: It_L). Port 3 also serves the special features of the 80C51 family, as listed below: P3.0-P3.7 10-17 11. 5. INTO (P3.2): External interrupt 11 13	P0.0–0.7	39–32	43–36	37–30	I/O	that have 1s written to them float and can be used as high-impedance inputs. Port 0 is also the multiplexed low-order address and data bus during accesses to external program and
2 3 41 I TZEX (P1.1): Timer/Counter 2 Reload/Capture/Direction control P2.0–P2.7 21–28 24-31 18–25 I/O Port 2: Port 2 is an 8-bit bidirectional I/O port with internal pull-ups and Schmitt trigger inputs. Port 2 prints that have 1s written to them are pulled high by the internal pull-ups and can be used as inputs. As inputs, port 2 prints that are externally being pulled low will source current because of the internal pull-ups. (See DC Electrical Characteristics: IL). Port 2 emits the high-order address byte during fetches from external program memory and during accesses to external data memory that use 8-bit addresses (MOV @RI), port 2 emits the contents of the P2 special function register. P3.0–P3.7 10–17 11 5 VO Port 3: Port 3 is an 8-bit bidirectional I/O port with internal pull-ups and Schmitt trigger inputs. Port 3 pins that have 1s written to them are pulled high by the internal pull-ups and Schmitt trigger inputs. Port 3 pins that have 1s written to them are pulled high by the internal pull-ups and Schmitt trigger inputs. Port 3 pins that have 1s written to them are pulled high by the internal pull-ups and Schmitt trigger inputs. Port 3 pins that are externally being pulled low will source current because of the pull-ups. (See DC Electrical Characteristics: IL). Port 3 also serves the special features of the 90/CS1 farmily, as listed below. 10 11 5 I RXD (P3.1): Serial output port 12 14 16 10 I ITO (P3.2): External interrupt	P1.0–P1.7	1–8	2–9	· · · ·	I/O	inputs. Port 1 pins that have 1s written to them are pulled high by the internal pull-ups and can be used as inputs. As inputs, port 1 pins that are externally pulled low will source current because of the internal pull-ups. (See DC Electrical Characteristics: $I_{\rm IL}$). Alternate
P2.0-P2.721-2824-3118-251/0Port 2: Port 2 is an 8-bit bidirectional I/O port with internal pull-ups and Schmitt trigger inputs. Port 2 pins that have 1s written to them are pulled high by the internal pull-ups and can be used as inputs. As inputs, port 2 pins that are externally being pulled low will source current because of the internal pull-ups. (See DC Electrical Characteristics: III). Port 2 entits the high-order address by the during teches from external program memory and during accesses to external data memory that use 16-bit addresses (MOV & @PTR). In this application, it uses strong internal pull-ups when entiting 1s. During accesses to external data memory that use 16-bit addresses (MOV & @PTR). In this application, it uses strong internal pull-ups when entiting 1s. During accesses to external data memory that use 16-bit addresses (MOV & @PTR). In this application, it uses strong internal pull-ups when entiting the by the internal pull-ups and can be used as inputs. As inputs, port 3 pins that are externally being pulled low will source current because of the pull-ups. (See DC Electrical Characteristics: IIL). Port 3 also serves the special features of the 80C51 finally, as listed below: the special features of the 80C51 finally, as listed below:101151RxD (P3.1): Serial input port131591INTT (P3.3): External interrupt141610TXD (P3.4): Timer 1 external input151711116181201719130181201913010141614161015171116 <td></td> <td>1</td> <td>2</td> <td>40</td> <td>I/O</td> <td>T2 (P1.0): Timer/Counter 2 external count input/clockout (see Programmable Clock-Out)</td>		1	2	40	I/O	T2 (P1.0): Timer/Counter 2 external count input/clockout (see Programmable Clock-Out)
P3.0-P3.710-1711, 13-195, 7-13I/OPort 2 pins that are visual source current because of the internal pull-ups. (See DC Electrical Characteristics: I ₁₁). Port 2 emits the high-order address byte during fetches from external program memory and during accesses to external data memory that use 16-bit addresses (MOV &RI), port 2 emits the high-order address byte during fetches from external program memory and during accesses to external data memory that use 16-bit addresses (MOV &RI), port 2 emits the high-order address byte during fetches from external program memory and during accesses to external data memory that use 6-bit addresses (MOV &RI), port 2 emits the contents of the P2 special function register.P3.0-P3.710-1711, 13-195, 7-13I/OPort 3: port 3 is an 8-bit addresses (MOV &RI), port 2 emits the contents of the P2 special function register.P3.0-P3.710-1111, 13, 145, 13-19I/OPort 3: port 3 is not abit bid/recitonal I/O port with internal pull-ups and Schmitt trigger inputs. Port 3 pins that have 1s written to them are pulled high by the internal pull-ups and ccan be used as inputs. As inputs, port 3 pins that are externally being pulled low will source current because of the pull-ups. (See DC Electrical Characteristics: I ₁₀). Port 3 also serves the special features of the 80C51 farmily, as listed below: It special features of the 80C51 farmily, as listed below: III III III III IIII IIII IIIIIIIIIII		2	3	41	I	T2EX (P1.1): Timer/Counter 2 Reload/Capture/Direction control
13-197-13inputs. Port 3 pins that have 1s written to them are pulled high by the internal pull-ups and can be used as inputs. As inputs, port 3 pins that are externally being pulled low will source current because of the pull-ups. (See DC Electrical Characteristics: IIL). Port 3 also serves the special features of the 80C51 family, as listed below:10115IRxD (P3.0): Serial input port12148IINTTO (P3.2): External interrupt13159IINTT (P3.3): External interrupt141610ITO (P3.4): Timer 0 external input151711IT1 (P3.6): External interrupt161812OReset: A high on this pin for two machine cycles while the oscillator is running, resets the device. An internal diffused resistor to V _{SS} permits a power-on reset using only an external capacitor to V _{CC} .ALE303327OAddress Latch Enable: Output pulse for latching the low byte of the address during an access to external memory. In normal operation, ALE is emitted at a constant rate of 1/6 the oscillator frequency, and can be used for external itiming or clocking. Note that one ALE pulse is skipped during each access to external atome memory. When the 80C31/32 is executing code from the external program memory. When the 80C31/32 is executing code from the external program memory. When the 80C31/32 is executing code from the external program memory. When the 80C31/32 is executing code from the external program memory. Destin is antivated twice each machine cycle, except that two PSEN is activations are skipped during each access to external data memory. PSEN is not activated twice each machine cycle, except t		21–28	24–31	18–25		inputs. Port 2 pins that have 1s written to them are pulled high by the internal pull-ups and can be used as inputs. As inputs, port 2 pins that are externally being pulled low will source current because of the internal pull-ups. (See DC Electrical Characteristics: I_{IL}). Port 2 emits the high-order address byte during fetches from external program memory and during accesses to external data memory that use 16-bit addresses (MOVX @DPTR). In this application, it uses strong internal pull-ups when emitting 1s. During accesses to external data memory that use 8-bit addresses (MOV @Ri), port 2 emits the contents of the P2
111370TxD (P3.1): Serial output port12148IINTO (P3.2): External interrupt13159IINTT (P3.3): External interrupt141610IT0 (P3.4): Timer 0 external input151711IT1 (P3.5): Timer 1 external input1618120WR (P3.6): External data memory write strobe1719130RD (P3.7): External data memory read strobeRST9104IReset: A high on this pin for two machine cycles while the oscillator is running, resets the device. An internal diffused resistor to V _{SS} permits a power-on reset using only an external capacitor to V _{CC} .ALE3033270Address Latch Enable: Output pulse for latching the low byte of the address during an access to external memory. In normal operation, ALE is emitted at a constant rate of 1/6 the oscillator frequency, and can be used for external timing or clocking. Note that one ALE pulse is skipped during each access to external data memory. PSEN is activated twice each machine cycle, except that two PSEN activations are skipped during each access to external program memory. PSEN is sactivated twice each machine cycle, except that two PSEN activations are skipped during each access to external program memory. PSEN is not activated twice each machine cycle, except that two PSEN activations are skipped during each access to external program memory. PSEN is not activated twice each machine cycle, except that two PSEN activations are skipped during each access to external data memory. PSEN is not activated twice each machine cycle, except that two PSEN activations are skipped during each access to external data memory. PSEN is not	P3.0–P3.7	10–17			I/O	inputs. Port 3 pins that have 1s written to them are pulled high by the internal pull-ups and can be used as inputs. As inputs, port 3 pins that are externally being pulled low will source current because of the pull-ups. (See DC Electrical Characteristics: $I_{\rm IL}$). Port 3 also serves
121481INTO (P3.2): External interrupt131591INTT (P3.3): External interrupt1416101T0 (P3.4): Time 0 external input1517111T1 (P3.5): Timer 1 external input161812OWR (P3.6): External data memory write strobeRST91041Reset: A high on this pin for two machine cycles while the oscillator is running, resets the device. An internal diffused resistor to VSS permits a power-on reset using only an external capacitor to VCC.ALE303327OAddress Latch Enable: Output pulse for latching the low byte of the address during an access to external memory. In normal operation, ALE is emitted at a constant rate of 1/6 the oscillator frequency, and can be used for external dating or clocking. Note that one ALE pulse is skipped during each access to external data memory. PSEN is activated twice each machine cycle, except that two PSEN activations are skipped during each access to external program memory. When the 80C31/32 is executing code from the external program memory. PSEN is activated twice each external data memory. PSEN is not activated during fetches from internal program memory.EA/Vpp3135291External Access Enable/Programming Supply Voltage: EA must be externally held low to enable the device to fetch code from external program memory locations 0000H to 0FFFH.XTAL11921151Crystal 1: Input to the inverting oscillator amplifier and input to the internal clock generator circuits.		10	11	5	I	RxD (P3.0): Serial input port
13159IINTT (P3.3): External interrupt141610IT0 (P3.4): Timer 0 external input151711IT1 (P3.5): Timer 1 external input161812OWR (P3.6): External data memory write strobe171913ORD (P3.7): External data memory read strobeRST9104IReset: A high on this pin for two machine cycles while the oscillator is running, resets the device. An internal diffused resistor to V _{SS} permits a power-on reset using only an external capacitor to V _{CC} .ALE303327OAddress Latch Enable: Output pulse for latching the low byte of the address during an access to external memory. In normal operation, ALE is emitted at a constant rate of 1/6 the oscillator frequency, and can be used for external data memory. ALE can be disabled by setting SFR auxiliary.0. With this bit set, ALE will be active only during a MOVX instruction.PSEN293226OProgram Store Enable: The read strobe to external program memory. When the 80C31/32 is executing code from the external program memory. When the 80C31/32 is executing code from the external program memory. When the 80C31/32 is executing code from the external program memory. Dis activated twice each machine cycle, except that two PSEN activated during fetches from internal program memory.EAVvpP313529IExternal Access Enable/Programming Supply Voltage: EA must be externally held low to enable the device to fetch code from external program memory locations 0000H to OFFFH.XTAL1192115ICrystal 1: Input to the inverting oscillator amplifier and inp		11	13	7	0	
141610IT0 (P3.4): Timer 0 external input151711IT1 (P3.5): Timer 1 external input161812OWR (P3.6): External data memory write strobeRST9104IReset: A high on this pin for two machine cycles while the oscillator is running, resets the device. An internal diffused resistor to V _{SS} permits a power-on reset using only an external capacitor to V _{CC} .ALE303327OAddress Latch Enable: Output pulse for latching the low byte of the address during an access to external memory. In normal operation, ALE is emitted at a constant rate of 1/6 the oscillator figure, with this bit set, ALE will be active only during a MOVX instruction.PSEN293226OProgram Store Enable: The read strobe to external program memory, PSEN is activated during each access to external data memory. PSEN is not activated during fetches from internal program memory.EA/V _{PP} 313529IExternal Access Enable/Programming Supply Voltage: EA must be externally held low to enable the device to fetch code from external program memory locations 0000H to OFFFH.XTAL1192115ICrystal 1: Input to the inverting oscillator amplifier and input to the internal clock generator				-	I	
151711IT1 (P3.5): Timer 1 external input WR (P3.6): External data memory write strobe RD (P3.7): External data memory write strobeRST9104IReset: A high on this pin for two machine cycles while the oscillator is running, resets the device. An internal diffused resistor to V _{SS} permits a power-on reset using only an external capacitor to V _{CC} .ALE303327OAddress Latch Enable: Output pulse for latching the low byte of the address during an access to external memory. In normal operation, ALE is emitted at a constant rate of 1/6 the oscillator frequency, and can be used for external timing or clocking. Note that one ALE pulse is skipped during each access to external data memory. ALE can be disabled by setting SFR auxiliary.O. With this bit set, ALE will be active only during a MOVX instruction.PSEN293226OProgram Store Enable: The read strobe to external program memory. When the 80C31/32 is executing code from the external program memory. PSEN is activated twice each machine cycle, except that two PSEN activations are skipped during each access to external data memory. PSEN is not activated during fetches from internal program memory.EA/V _{PP} 313529IExternal Access Enable/Programming Supply Voltage: EA must be externally held low to enable the device to fetch code from external program memory locations 0000H to OFFFH.XTAL1192115ICrystal 1: Input to the inverting oscillator amplifier and input to the internal clock generator circuits.			-	, i		
1618120WR (P3.6): External data memory write strobe RD (P3.7): External data memory write strobeRST9104IReset: A high on this pin for two machine cycles while the oscillator is running, resets the device. An internal diffused resistor to V _{SS} permits a power-on reset using only an external capacitor to V _{CC} .ALE303327OAddress Latch Enable: Output pulse for latching the low byte of the address during an access to external memory. In normal operation, ALE is emitted at a constant rate of 1/6 the oscillator frequency, and can be used for external timing or clocking. Note that one ALE pulse is skipped during each access to external atta memory. ALE can be disabled by setting SFR auxiliary.O. With this bit set, ALE will be active only during a MOVX instruction.PSEN293226OProgram Store Enable: The read strobe to external program memory. When the 80C31/32 is executing code from the external program memory. PSEN is activated twice each machine cycle, except that two PSEN activations are skipped during each access to external data memory. PSEN is not activated during fetches from internal program memory.EA/V _{PP} 313529IExternal Access Enable/Programming Supply Voltage: EA must be externally held low to enable the device to fetch code from external program memory locations 0000H to OFFFH.XTAL1192115ICrystal 1: Input to the inverting oscillator amplifier and input to the internal clock generator circuits.						
171913ORD (P3.7): External data memory read strobeRST91041Reset: A high on this pin for two machine cycles while the oscillator is running, resets the device. An internal diffused resistor to V _{SS} permits a power-on reset using only an external capacitor to V _{CC} .ALE303327OAddress Latch Enable: Output pulse for latching the low byte of the address during an access to external memory. In normal operation, ALE is emitted at a constant rate of 1/6 the oscillator frequency, and can be used for external timing or clocking. Note that one ALE pulse is skipped during each access to external data memory. ALE can be disabled by setting SFR auxiliary.O. With this bit set, ALE will be active only during a MOVX instruction.PSEN293226OProgram Store Enable: The read strobe to external program memory. When the 80C31/32 is executing code from the external program memory. PSEN is activated twice each machine cycle, except that two PSEN activations are skipped during each access to external data memory. PSEN is not activated during fetches from internal program memory.EA/V _{PP} 313529IExternal Access Enable/Programming Supply Voltage: EA must be externally held low to enable the device to fetch code from external program memory locations 0000H to OFFFH.XTAL1192115ICrystal 1: Input to the inverting oscillator amplifier and input to the internal clock generator circuits.						
RST9104IReset: A high on this pin for two machine cycles while the oscillator is running, resets the device. An internal diffused resistor to V _{SS} permits a power-on reset using only an external capacitor to V _{CC} .ALE303327OAddress Latch Enable: Output pulse for latching the low byte of the address during an access to external memory. In normal operation, ALE is emitted at a constant rate of 1/6 the oscillator frequency, and can be used for external timing or clocking. Note that one ALE pulse is skipped during each access to external data memory. ALE can be disabled by setting SFR auxiliary.0. With this bit set, ALE will be active only during a MOVX instruction.PSEN293226OProgram Store Enable: The read strobe to external program memory. When the 80C31/32 is executing code from the external program memory, PSEN is activated twice each machine cycle, except that two PSEN activations are skipped during each access to external data memory. PSEN is not activated twice each machine cycle, except that two PSEN is not activated from internal program memory.EA/V _{PP} 313529IExternal Access Enable/Programming Supply Voltage: EA must be externally held low to enable the device to fetch code from external program memory locations 0000H to OFFFH.XTAL1192115ICrystal 1: Input to the inverting oscillator amplifier and input to the internal clock generator circuits.						
PSEN293226OProgram Store Enable: The read strobe to external program memory. When the 80C31/32 is executing code from the external program memory. PSEN is activated twice each machine cycle, except that two PSEN activations are skipped during each access to external data memory. PSEN is activated twice each machine cycle, except that two PSEN activated during fetches from internal program memory.EA/VPP313529IExternal Access Enable/Programming Supply Voltage: EA must be externally held low to enable the device to fetch code from external program memory locations 0000H to 0FFFH.XTAL1192115ICrystal 1: Input to the inverting oscillator amplifier and input to the internal clock generator	RST		-		-	Reset: A high on this pin for two machine cycles while the oscillator is running, resets the device. An internal diffused resistor to V _{SS} permits a power-on reset using only an external
EA/VPP313529IExternal Access Enable/Programming Supply Voltage: EA must be externally held low to enable the device to fetch code from external program memory locations 0000H to 0FFFH.XTAL1192115ICrystal 1: Input to the inverting oscillator amplifier and input to the internal clock generator circuits.	ALE	30	33	27	0	access to external memory. In normal operation, ALE is emitted at a constant rate of 1/6 the oscillator frequency, and can be used for external timing or clocking. Note that one ALE pulse is skipped during each access to external data memory. ALE can be disabled by
XTAL1192115Ito enable the device to fetch code from external program memory locations 0000H to 0FFFH.XTAL1192115ICrystal 1: Input to the inverting oscillator amplifier and input to the internal clock generator circuits.	PSEN	29	32	26	Ο	is executing code from the external program memory, <u>PSEN</u> is activated twice each machine cycle, except that two <u>PSEN</u> activations are skipped during each access to
circuits.	EA/V _{PP}	31	35	29	I	to enable the device to fetch code from external program memory locations 0000H to
XTAL2 18 20 14 O Crystal 2: Output from the inverting oscillator amplifier.	XTAL1	19	21	15	I	
	XTAL2	18	20	14	0	Crystal 2: Output from the inverting oscillator amplifier.

NOTE:

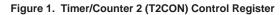
To avoid "latch-up" effect at power-on, the voltage on any pin at any time must not be higher than V_{CC} + 0.5 V or V_{SS} – 0.5 V, respectively.

Table 1. 8XC51/80C31 Special Function Registers

		DIRECT	BIT	ADDRES	S. SYMR	OL. OR A	LTERNATI	VE POR		ION	RESET
SYMBOL	DESCRIPTION	ADDRESS	MSB	, BBREO	, o i iiiD	-, on A				LSB	VALUE
ACC*	Accumulator	E0H	E7	E6	E5	E4	E3	E2	E1	E0	00H
AUXR#	Auxiliary	8EH	_	-		_	-	-	-	AO	xxxxxx0B
AUXR1#	Auxiliary 1	A2H	_	_	_	_	WUPD ²	0	_	DPS	xxx000x0B
B*	B register	F0H	F7	F6	F5	F4	F3	F2	F1	F0	00H
DPTR:	Data Pointer (2 bytes)										
DPH	Data Pointer High	83H									00H
DPL	Data Pointer Low	82H									00H
			AF	AE	AD	AC	AB	AA	A9	A8	
IE*	Interrupt Enable	A8H	EA	-	ET2	ES	ET1	EX1	ET0	EX0	0x000000E
			BF	BE	BD	BC	BB	BA	B9	B8	1
IP*	Interrupt Priority	B8H	-	-	PT2	PS	PT1	PX1	PT0	PX0	XX000000E
			B7	B6	B5	B4	B3	B2	B1	B0]
IPH#	Interrupt Priority High	B7H	-	-	PT2H	PSH	PT1H	PX1H	PT0H	PX0H	XX000000E
			87	86	85	84	83	82	81	80]
P0*	Port 0	80H	AD7	AD6	AD5	AD4	AD3	AD2	AD1	AD0	FFH
			97	96	95	94	93	92	91	90	
P1*	Port 1	90H	-	-	-	-	-	-	T2EX	T2	FFH
			A7	A6	A5	A4	A3	A2	A1	A0	
P2*	Port 2	A0H	AD15	AD14	AD13	AD12	AD11	AD10	AD9	AD8	FFH
			B7	B6	B5	B4	B3	B2	B1	B0	
P3*	Port 3	B0H	RD	WR	T1	Т0	INT1	INT0	TxD	RxD	FFH
PCON#1	Power Control	87H	SMOD1	SMOD0	_	POF	GF1	GF0	PD	IDL	00xx0000E
			D7	D6	D5	D4	D3	D2	D1	D0	
PSW*	Program Status Word	DOH	CY	AC	F0	RS1	RS0	OV	-	P	000000x0E
RACAP2H#	Timer 2 Capture High	СВН		-	-			-			00H
RACAP2L#	Timer 2 Capture Low	CAH									00H
SADDR#	Slave Address	A9H									00H
SADEN#	Slave Address Mask	B9H									00H
SBUF	Serial Data Buffer	99H									XXXXXXXB
			9F	9E	9D	9C	9B	9A	99	98	
SCON*	Serial Control	98H	SM0/FE	SM1	SM2	REN	TB8	RB8	TI	RI	00H
SP	Stack Pointer	81H									07H
			8F	8E	8D	8C	8B	8A	89	88	
TCON*	Timer Control	88H	TF1	TR1	TF0	TR0	IE1	IT1	IE0	IT0	00H
			CF	CE	CD	CC	СВ	CA	C9	C8	
T2CON*	Timer 2 Control	C8H	TF2	EXF2	RCLK	TCLK	EXEN2	TR2	C/T2	CP/RL2	00H
T2MOD#	Timer 2 Mode Control	C9H	-	-	-	-	-	-	T2OE	DCEN	XXXXXX00B
TH0	Timer High 0	8CH									00H
TH1	Timer High 1	8DH									00H
TH2#	Timer High 2	CDH									00H
TL0	Timer Low 0	8AH									00H
TL1	Timer Low 1	8BH									00H
TL2#	Timer Low 2	CCH	0.475	_		140		<u>₹</u>		140	00H
TMOD	Timer Mode	89H	GATE	C/T	M1	M0	GATE	C/T	M1	MO	00H

NOTE:

Unused register bits that are not defined should not be set by the user's program. If violated, the device could function incorrectly. * SFRs are bit addressable.


SFRs are modified from or added to the 80C51 SFRs.

- Reserved bits.

1. Reset value depends on reset source.

2. Not available on 80C31.

	(M	ISB)							(LSB)	
		TF2	EXF2	RCLK	TCLK	EXEN2	TR2	C/T2	CP/RL2	
Symbol	Position	n Nai	me and Sig	nificance						
TF2	T2CON.		ner 2 overflo en either RC			overflow and	d must be cl	eared by sc	oftware. TF2	will not be set
EXF2	T2CON.	EX	EN2 = 1. Wł	nen Timer 2 e. EXF2 mu	interrupt is st be cleare	enabled, EX	$F2 = 1$ will ϕ	cause the C		tion on T2EX and to the Timer 2 t in up/down
RCLK	T2CON.		eceive clock flag. When set, causes the serial port to use Timer 2 overflow pulses for its receive clock modes 1 and 3. RCLK = 0 causes Timer 1 overflow to be used for the receive clock.							
TCLK	T2CON.								ow pulses fo transmit cloc	r its transmit clock k.
EXEN2	T2CON.	trar		EX if Timer						of a negative ses Timer 2 to
TR2	T2CON.	.2 Sta	rt/stop contr	ol for Timer	2. A logic 1	starts the til	mer.			
C/T2	T2CON.	.1 Tim		nternal time	r (OSĆ/12)	alling edge t	riggered).			
CP/RL2	T2CON.	clea	ared, auto-re	eloads will o nen either R	ccur either	with Timer 2	overflows of	or negative t	ransitions at	ced to auto-reload
										SU00728

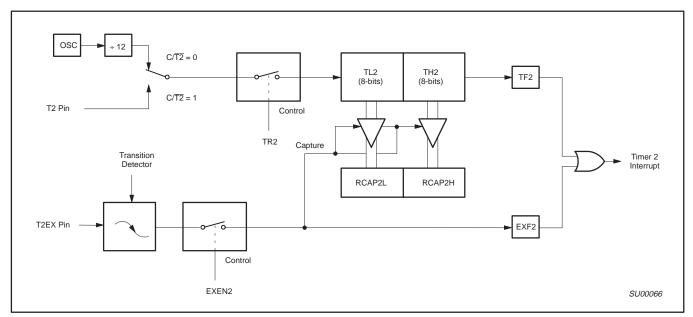
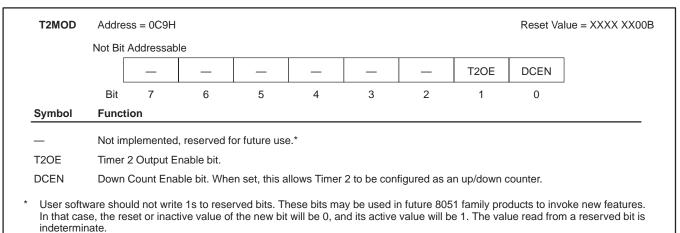
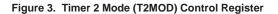




Figure 2. Timer 2 in Capture Mode

80C31/80C32

SU00729

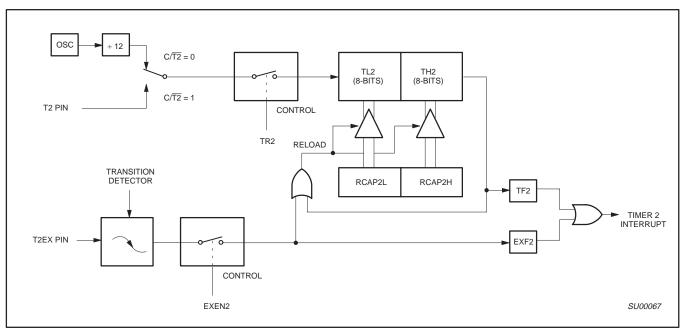


Figure 4. Timer 2 in Auto-Reload Mode (DCEN = 0)

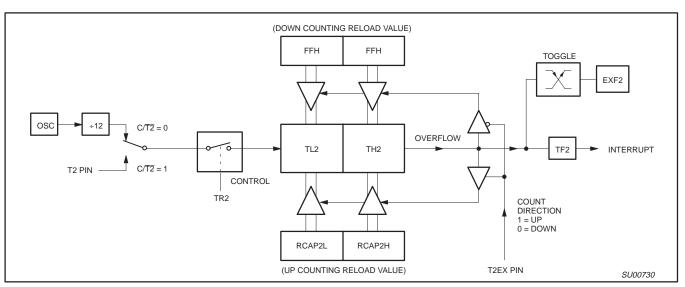


Figure 5. Timer 2 Auto Reload Mode (DCEN = 1)

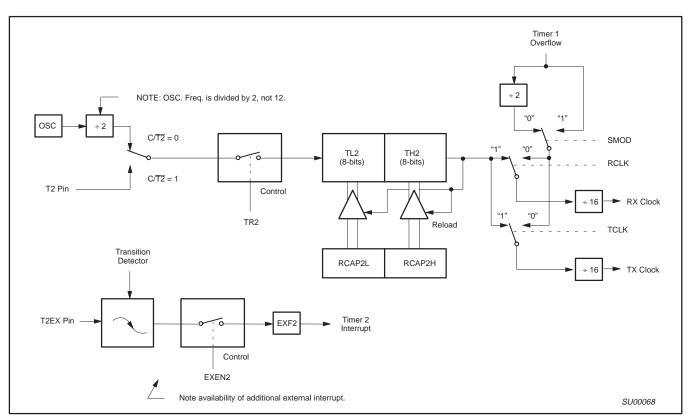


Figure 6. Timer 2 in Baud Rate Generator Mode

Baud Rate Generator Mode

Bits TCLK and/or RCLK in T2CON (Table 3) allow the serial port transmit and receive baud rates to be derived from either Timer 1 or Timer 2. When TCLK= 0, Timer 1 is used as the serial port transmit baud rate generator. When TCLK= 1, Timer 2 is used as the serial port transmit baud rate generator. RCLK has the same effect for the serial port receive baud rate. With these two bits, the serial port can have different receive and transmit baud rates – one generated by Timer 1, the other by Timer 2.

Figure 6 shows the Timer 2 in baud rate generation mode. The baud rate generation mode is like the auto-reload mode, in that a rollover in TH2 causes the Timer 2 registers to be reloaded with the 16-bit value in registers RCAP2H and RCAP2L, which are preset by software.

The baud rates in modes 1 and 3 are determined by Timer 2's overflow rate given below:

Modes 1 and 3 Baud Rates =
$$\frac{\text{Timer 2 Overflow Rate}}{16}$$

The timer can be configured for either "timer" or "counter" operation. In many applications, it is configured for "timer" operation ($C/T2^*=0$). Timer operation is different for Timer 2 when it is being used as a baud rate generator.

Usually, as a timer it would increment every machine cycle (i.e., 1/12 the oscillator frequency). As a baud rate generator, it increments every state time (i.e., 1/2 the oscillator frequency). Thus the baud rate formula is as follows:

Modes 1 and 3 Baud Rates =

Oscillator Frequency [32 × [65536 - (RCAP2H, RCAP2L)]]

Where: (RCAP2H, RCAP2L)= The content of RCAP2H and RCAP2L taken as a 16-bit unsigned integer.

The Timer 2 as a baud rate generator mode shown in Figure 6, is valid only if RCLK and/or TCLK = 1 in T2CON register. Note that a rollover in TH2 does not set TF2, and will not generate an interrupt. Thus, the Timer 2 interrupt does not have to be disabled when Timer 2 is in the baud rate generator mode. Also if the EXEN2 (T2 external enable flag) is set, a 1-to-0 transition in T2EX (Timer/counter 2 trigger input) will set EXF2 (T2 external flag) but will not cause a reload from (RCAP2H, RCAP2L) to (TH2,TL2). Therefore when Timer 2 is in use as a baud rate generator, T2EX can be used as an additional external interrupt, if needed.

When Timer 2 is in the baud rate generator mode, one should not try to read or write TH2 and TL2. As a baud rate generator, Timer 2 is incremented every state time (osc/2) or asynchronously from pin T2;

under these conditions, a read or write of TH2 or TL2 may not be accurate. The RCAP2 registers may be read, but should not be written to, because a write might overlap a reload and cause write and/or reload errors. The timer should be turned off (clear TR2) before accessing the Timer 2 or RCAP2 registers.

Table 4 shows commonly used baud rates and how they can be obtained from Timer 2.

Baud Rate	Osc Freg	Tim	er 2
Bauu Kale	OSC Freq	RCAP2H	RCAP2L
375 K	12 MHz	FF	FF
9.6 K	12 MHz	FF	D9
2.8 K	12 MHz	FF	B2
2.4 K	12 MHz	FF	64
1.2 K	12 MHz	FE	C8
300	12 MHz	FB	1E
110	12 MHz	F2	AF
300	6 MHz	FD	8F
110	6 MHz	F9	57

Table 4. Timer 2 Generated Commonly Used Baud Rates

Summary Of Baud Rate Equations

Timer 2 is in baud rate generating mode. If Timer 2 is being clocked through pin T2(P1.0) the baud rate is:

Baud Rate = $\frac{\text{Timer 2 Overflow Rate}}{16}$

If Timer 2 is being clocked internally, the baud rate is:

Baud Rate =
$$\frac{f_{OSC}}{[32 \times [65536 - (RCAP2H, RCAP2L)]]}$$

Where f_{OSC}= Oscillator Frequency

To obtain the reload value for RCAP2H and RCAP2L, the above equation can be rewritten as:

RCAP2H, RCAP2L =
$$65536 - \left(\frac{f_{OSC}}{32 \times Baud Rate}\right)$$

Timer/Counter 2 Set-up

Except for the baud rate generator mode, the values given for T2CON do not include the setting of the TR2 bit. Therefore, bit TR2 must be set, separately, to turn the timer on. See Table 5 for set-up of Timer 2 as a timer. Also see Table 6 for set-up of Timer 2 as a counter.

80C31/80C32

and 1 and exclude Slave 2 use address 1110 0100, since it is necessary to make bit 2 = 1 to exclude slave 2.

The Broadcast Address for each slave is created by taking the logical OR of SADDR and SADEN. Zeros in this result are trended as don't-cares. In most cases, interpreting the don't-cares as ones, the broadcast address will be FF hexadecimal.

Upon reset SADDR (SFR address 0A9H) and SADEN (SFR address 0B9H) are leaded with 0s. This produces a given address of all "don't cares" as well as a Broadcast address of all "don't cares". This effectively disables the Automatic Addressing mode and allows the microcontroller to use standard 80C51 type UART drivers which do not make use of this feature.

	S	CON Add	ress = 98H						F	Reset Value = 0000 0000B
	Bit Ad	dressable								
		SM0/FE	SM1	SM2	REN	TB8	RB8	ті	RI	
	Bit:	7 (SMOD0 =)	6 0/1)*	5	4	3	2	1	0	
Symbol	Fund	tion								
FE						hen an inval MOD0 bit mu				t is not cleared by valid e FE bit.
SM0	Seria	I Port Mode	e Bit 0, (SM	DD0 must :	= 0 to acce	ess bit SM0)				
SM1	Seria SM0	l Port Mode SM1	e Bit 1 Mode	Descr	iption	Baud Rate	**			
	0	0	0	shift re	egister	f _{OSC} /12				
	0	1	1	8-bit U		variable				
	1 1	0 1	2 3	9-bit U 9-bit U		f _{OSC} /64 or t variable	OSC/32			
SM2	recei In Mo	ved 9th dat ode 1, if SM	a bit (RB8) i	s 1, indicat RI will not b	ting an ado e activated	dress, and the	e received	byte is a G	iven or Bro	ot be set unless the adcast Address. e received byte is a
REN	Enab	les serial re	eception. Se	t by softwa	are to enab	le reception.	Clear by s	oftware to	disable rec	eption.
TB8	The 9	9th data bit	that will be	ransmitted	l in Modes	2 and 3. Set	or clear by	software a	as desired.	
RB8			3, the 9th da is not used.		was receiv	ved. In Mode	1, if SM2 =	= 0, RB8 is	the stop bit	t that was received.
ті	Trans other	smit interrup modes, in	ot flag. Set b any serial tr	oy hardwar ansmissior	e at the en n. Must be	d of the 8th I cleared by s	oit time in N oftware.	lode 0, or a	at the begir	nning of the stop bit in the
RI						d of the 8th b see SM2). M				ough the stop bit time in
TE:	ed at PCON									

Figure 7. SCON: Serial Port Control Register

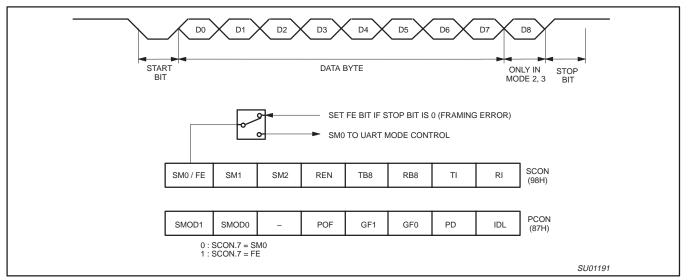


Figure 8. UART Framing Error Detection

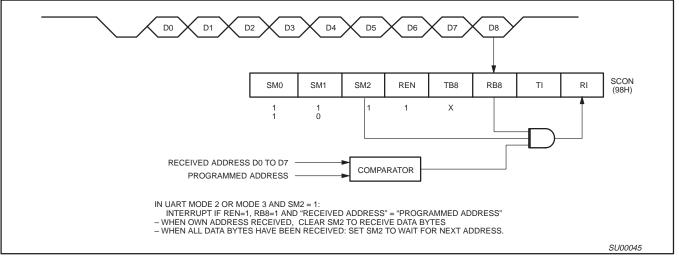


Figure 9. UART Multiprocessor Communication, Automatic Address Recognition

80C31/80C32

Interrupt Priority Structure

The 80C31 and 80C32 have a 6-source four-level interrupt structure. They are the IE, IP and IPH. (See Figures 10, 11, and 12.) The IPH (Interrupt Priority High) register that makes the four-level interrupt structure possible. The IPH is located at SFR address B7H. The structure of the IPH register and a description of its bits is shown in Figure 12.

The function of the IPH SFR is simple and when combined with the IP SFR determines the priority of each interrupt. The priority of each interrupt is determined as shown in the following table:

PRIORI	TY BITS	
IPH.x	IP.x	
0	0	Level 0 (lowest priority)
0	1	Level 1
1	0	Level 2
1	1	Level 3 (highest priority)

An interrupt will be serviced as long as an interrupt of equal or higher priority is not already being serviced. If an interrupt of equal or higher level priority is being serviced, the new interrupt will wait until it is finished before being serviced. If a lower priority level interrupt is being serviced, it will be stopped and the new interrupt serviced. When the new interrupt is finished, the lower priority level interrupt that was stopped will be completed.

Table 7.Interrupt Table

SOURCE	POLLING PRIORITY	REQUEST BITS	HARDWARE CLEAR?	VECTOR ADDRESS
X0	1	IE0	N (L) ¹ Y (T) ²	03H
ТО	2	TP0	Y	0BH
X1	3	IE1	N (L) Y (T)	13H
T1	4	TF1	Y	1BH
SP	5	RI, TI	N	23H
T2	6	TF2, EXF2	Ν	2BH

NOTES:

1. L = Level activated

2. T = Transition activated

		7	6	5	4	3	2	1	0
	IE (0A8H)	EA	—	ET2	ES	ET1	EX1	ET0	EX0
			Bit = 1 en Bit = 0 dis	ables the i ables it.	nterrupt.				
BIT	SYMBOL	FUNC	TION						
IE.7	EA						disabled. enable bit.		each inte
IE.6	_	Not im	plemente	d. Reserv	ed for futu	ire use.			
IE.5	ET2	Timer	2 interrup	t enable b	it.				
IE.4	ES	Serial	Port inter	upt enabl	e bit.				
IE.3	ET1	Timer	1 interrup	t enable b	it.				
IE.2	EX1	Exterr	al interru	ot 1 enable	e bit.				
IE.1	ET0	Timer	0 interrup	t enable b	it.				
IE.0	EX0	Exterr	al interru	ot 0 enable	e bit.				

Figure 10. IE Registers

DC ELECTRICAL CHARACTERISTICS

 $T_{amb} = 0^{\circ}C$ to +70°C or -40°C to +85°C, $V_{CC} = 2.7$ V to 5.5 V, $V_{SS} = 0$ V (16 MHz devices)

0/4/2 0/	212111222	TEST		LIMITS		
SYMBOL	PARAMETER	CONDITIONS	MIN	TYP ¹	MAX	
M		4.0 V < V _{CC} < 5.5 V	-0.5		0.2 V _{CC} -0.1	V
V _{IL}	Input low voltage	2.7 V <v<sub>CC< 4.0 V</v<sub>	-0.5		0.7	V
V _{IH}	Input high voltage (ports 0, 1, 2, 3, EA)		0.2 V _{CC} +0.9		V _{CC} +0.5	V
V _{IH1}	Input high voltage, XTAL1, RST		0.7 V _{CC}		V _{CC} +0.5	V
V _{OL}	Output low voltage, ports 1, 2, 8	$V_{CC} = 2.7 V$ $I_{OL} = 1.6 mA^2$			0.4	V
V _{OL1}	Output low voltage, port 0, ALE, PSEN ^{8, 7}	$V_{CC} = 2.7 V$ $I_{OL} = 3.2 mA^2$			0.4	V
	Output high voltage, ports 1, 2, 3 ³	V _{CC} = 2.7 V I _{OH} = -20 μA	V _{CC} – 0.7			V
V _{OH}	Output high voltage, ports 1, 2, 3 °	V _{CC} = 4.5 V I _{OH} = -30 μA	V _{CC} – 0.7			V
V _{OH1}	Output high voltage (port 0 in external bus mode), ALE ⁹ , PSEN ³	V _{CC} = 2.7 V I _{OH} = -3.2 mA	V _{CC} – 0.7			V
I _{IL}	Logical 0 input current, ports 1, 2, 3	V _{IN} = 0.4 V	-1		-50	μΑ
I _{TL}	Logical 1-to-0 transition current, ports 1, 2, 3 ⁶	V _{IN} = 2.0 V See note 4			-650	μA
ILI	Input leakage current, port 0	$0.45 < V_{IN} < V_{CC} - 0.3$			±10	μΑ
I _{CC}	Power supply current (see Figure 21): Active mode @ 16 MHz Idle mode @ 16 MHz Power-down mode or clock stopped (see Figure 25 for conditions)	See note 5 T _{amb} = 0°C to 70°C T _{amb} = -40°C to +85°C		3	50 75	μΑ μΑ μΑ μΑ
R _{RST}	Internal reset pull-down resistor		40		225	kΩ
C _{IO}	Pin capacitance ¹⁰ (except EA)				15	pF

NOTES:

1. Typical ratings are not guaranteed. The values listed are at room temperature, 5 V.

Capacitive loading on ports 0 and 2 may cause spurious noise to be superimposed on the Vols of ALE and ports 1 and 3. The noise is due to external bus capacitance discharging into the port 0 and port 2 pins when these pins make 1-to-0 transitions during bus operations. In the worst cases (capacitive loading > 100 pF), the noise pulse on the ALE pin may exceed 0.8 V. In such cases, it may be desirable to qualify ALE with a Schmitt Trigger, or use an address latch with a Schmitt Trigger STROBE input. IoL can exceed these conditions provided that no single output sinks more than 5 mA and no more than two outputs exceed the test conditions

3. Capacitive loading on ports 0 and 2 may cause the V_{OH} on ALE and PSEN to momentarily fall below the V_{CC} -0.7 specification when the address bits are stabilizing.

Pins of ports 1, 2 and 3 source a transition current when they are being externally driven from 1 to 0. The transition current reaches its 4. maximum value when V_{IN} is approximately 2 V.

See Figures 22 through 25 for I_{CC} test conditions. 5.

Active mode: $I_{CC} = 0.9 \times FREQ. + 1.1 mA$

- Idle mode: $I_{CC} = 0.18 \times FREQ. +1.01 \text{ mA}$; See Figure 21. 6. This value applies to $T_{amb} = 0^{\circ}C$ to $+70^{\circ}C$. For $T_{amb} = -40^{\circ}C$ to $+85^{\circ}C$, $I_{TL} = -750 \text{ }\mu\text{A}$.
- Load capacitance for port 0, ALE, and PSEN = 100 pF, load capacitance for all other outputs = 80 pF. 7.
- 8. Under steady state (non-transient) conditions, I_{OL} must be externally limited as follows:
 - Maximum IOL per port pin: 15 mA (*NOTE: This is 85°C specification.) 26 mA
 - Maximum IOL per 8-bit port:
 - Maximum total I_{OL} for all outputs: 71 mA

If IOL exceeds the test condition, VOL may exceed the related specification. Pins are not guaranteed to sink current greater than the listed test conditions.

9. ALE is tested to V_{OH1}, except when ALE is off then V_{OH} is the voltage specification.

10. Pin capacitance is characterized but not tested. Pin capacitance is less than 25 pF.

DC ELECTRICAL CHARACTERISTICS

 $T_{amb} = 0^{\circ}C$ to +70°C or -40°C to +85°C, 33 MHz devices; 5 V ±10%; V_{SS} = 0 V

	DADAMETED	TEST		LIMITS		
SYMBOL	PARAMETER	CONDITIONS	MIN	TYP ¹	MAX	
V _{IL}	Input low voltage	4.5 V < V _{CC} < 5.5 V	-0.5		0.2 V _{CC} -0.1	V
V _{IH}	Input high voltage (ports 0, 1, 2, 3, EA)		0.2 V _{CC} +0.9		V _{CC} +0.5	V
V _{IH1}	Input high voltage, XTAL1, RST		0.7 V _{CC}		V _{CC} +0.5	V
V _{OL}	Output low voltage, ports 1, 2, 3 ⁸	V _{CC} = 4.5 V I _{OL} = 1.6mA ²			0.4	V
V _{OL1}	Output low voltage, port 0, ALE, PSEN 7, 8	$V_{CC} = 4.5 V$ $I_{OL} = 3.2mA^2$			0.4	V
V _{OH}	Output high voltage, ports 1, 2, 3 ³	$V_{CC} = 4.5 V$ $I_{OH} = -30 \mu A$	V _{CC} – 0.7			V
V _{OH1}	Output high voltage (port 0 in external bus mode), ALE ⁹ , PSEN ³	V _{CC} = 4.5 V I _{OH} = -3.2mA	V _{CC} – 0.7			V
IIL	Logical 0 input current, ports 1, 2, 3	V _{IN} = 0.4 V	-1		-50	μΑ
I _{TL}	Logical 1-to-0 transition current, ports 1, 2, 3 ⁶	V _{IN} = 2.0 V See note 4			-650	μA
ILI	Input leakage current, port 0	$0.45 < V_{IN} < V_{CC} - 0.3$			±10	μΑ
I _{CC}	Power supply current (see Figure 21): Active mode (see Note 5) Idle mode (see Note 5)	See note 5				
	Power-down mode or clock stopped (see Fig- ure 25 for conditions)	$T_{amb} = 0^{\circ}C \text{ to } 70^{\circ}C$ $T_{amb} = -40^{\circ}C \text{ to } +85^{\circ}C$		3	50 75	μΑ μΑ
R _{RST}	Internal reset pull-down resistor		40		225	kΩ
C _{IO}	Pin capacitance ¹⁰ (except EA)				15	pF

NOTES:

1. Typical ratings are not guaranteed. The values listed are at room temperature, 5 V.

Capacitive loading on ports 0 and 2 may cause spurious noise to be superimposed on the Vols of ALE and ports 1 and 3. The noise is due to external bus capacitance discharging into the port 0 and port 2 pins when these pins make 1-to-0 transitions during bus operations. In the worst cases (capacitive loading > 100 pF), the noise pulse on the ALE pin may exceed 0.8 V. In such cases, it may be desirable to qualify ALE with a Schmitt Trigger, or use an address latch with a Schmitt Trigger STROBE input. IOL can exceed these conditions provided that no single output sinks more than 5mA and no more than two outputs exceed the test conditions.

3. Capacitive loading on ports 0 and 2 may cause the V_{OH} on ALE and PSEN to momentarily fall below the V_{CC}-0.7 specification when the address bits are stabilizing.

Pins of ports 1, 2 and 3 source a transition current when they are being externally driven from 1 to 0. The transition current reaches its maximum value when V_{IN} is approximately 2 V.

- 5. See Figures 22 through 25 for I_{CC} test conditions.
- Active mode: I_{CC(MAX)} = 0.9 × FREQ. + 1.1 mA Idle mode: I_{CC(MAX)} = 0.18 × FREQ. +1.0 mA; See Figure 21.
 6. This value applies to T_{amb} = 0°C to +70°C. For T_{amb} = -40°C to +85°C, I_{TL} = -750 μA.

Load capacitance for port 0, ALE, and PSEN = 100 pF, load capacitance for all other outputs = 80 pF.
 Under steady state (non-transient) conditions, I_{OL} must be externally limited as follows:

Maximum IOL per port pin: 15 mA (*NOTE: This is 85°C specification.)

Maximum IOL per 8-bit port: 26 mA

Maximum total I_{OL} for all outputs: 71 mA

If IOL exceeds the test condition, VOL may exceed the related specification. Pins are not guaranteed to sink current greater than the listed test conditions.

ALE is tested to V_{OH1} , except when ALE is off then V_{OH} is the voltage specification.

10. Pin capacitance is characterized but not tested. Pin capacitance is less than 25 pF. Pin capacitance of ceramic package is less than 15 pF (except EA is 25 pF).

80C31/80C32

80C51 8-bit microcontroller family 128/256 byte RAM ROMless low voltage (2.7V-5.5V), low power, high speed (33 MHz)

AC ELECTRICAL CHARACTERISTICS

 $T_{amb} = 0^{\circ}C$ to +70°C or -40°C to +85°C, $V_{CC} = +2.7$ V to +5.5 V, $V_{SS} = 0$ V^{1, 2, 3}

			16 MHz	CLOCK	VARIABL	E CLOCK	
SYMBOL	FIGURE	PARAMETER	MIN	MAX	MIN	MAX	υνιτ
1/t _{CLCL}	14	Oscillator frequency ⁵ Speed versions :S			3.5	16	MHz
t _{LHLL}	14	ALE pulse width	85		2t _{CLCL} -40		ns
t _{AVLL}	14	Address valid to ALE low	22		t _{CLCL} -40		ns
t _{LLAX}	14	Address hold after ALE low	32	1	t _{CLCL} -30		ns
t _{LLIV}	14	ALE low to valid instruction in		150		4t _{CLCL} -100	ns
t _{LLPL}	14	ALE low to PSEN low	32	1	t _{CLCL} -30		ns
t _{PLPH}	14	PSEN pulse width	142	1	3t _{CLCL} -45		ns
t _{PLIV}	14	PSEN low to valid instruction in		82		3t _{CLCL} -105	ns
t _{PXIX}	14	Input instruction hold after PSEN	0	1	0		ns
t _{PXIZ}	14	Input instruction float after PSEN		37		t _{CLCL} -25	ns
t _{AVIV} ⁴	14	Address to valid instruction in		207		5t _{CLCL} -105	ns
t _{PLAZ}	14	PSEN low to address float		10		10	ns
Data Memo	ory	•		•	•	•	
t _{RLRH}	15, 16	RD pulse width	275		6t _{CLCL} -100		ns
twlwh	15, 16	WR pulse width	275		6t _{CLCL} -100		ns
t _{RLDV}	15, 16	RD low to valid data in		147		5t _{CLCL} -165	ns
t _{RHDX}	15, 16	Data hold after RD	0		0		ns
t _{RHDZ}	15, 16	Data float after RD		65		2t _{CLCL} -60	ns
t _{LLDV}	15, 16	ALE low to valid data in		350		8t _{CLCL} -150	ns
t _{AVDV}	15, 16	Address to valid data in		397		9t _{CLCL} -165	ns
t _{LLWL}	15, 16	ALE low to RD or WR low	137	239	3t _{CLCL} -50	3t _{CLCL} +50	ns
t _{AVWL}	15, 16	Address valid to WR low or RD low	122		4t _{CLCL} -130		ns
t _{QVWX}	15, 16	Data valid to WR transition	13		t _{CLCL} -50		ns
tWHQX	15, 16	Data hold after WR	13		t _{CLCL} -50		ns
t _{QVWH}	16	Data valid to WR high	287		7t _{CLCL} -150		ns
t _{RLAZ}	15, 16	RD low to address float		0		0	ns
twhlh	15, 16	RD or WR high to ALE high	23	103	t _{CLCL} -40	t _{CLCL} +40	ns
External C	lock		-		•	•	
t _{CHCX}	18	High time	20		20	t _{CLCL} -t _{CLCX}	ns
t _{CLCX}	18	Low time	20	1	20	t _{CLCL} -t _{CHCX}	ns
t _{CLCH}	18	Rise time		20		20	ns
t _{CHCL}	18	Fall time		20		20	ns
Shift Regis	ster				•	•	•
t _{XLXL}	17	Serial port clock cycle time	750		12t _{CLCL}		ns
t _{QVXH}	17	Output data setup to clock rising edge	492	1	10t _{CLCL} -133		ns
t _{XHQX}	17	Output data hold after clock rising edge	8		2t _{CLCL} -117		ns
t _{XHDX}	17	Input data hold after clock rising edge	0		0		ns
t _{XHDV}	17	Clock rising edge to input data valid	-	492		10t _{CLCL} -133	ns

NOTES:

Parameters are valid over operating temperature range unless otherwise specified.
 Load capacitance for port 0, ALE, and PSEN = 100 pF, load capacitance for all other outputs = 80 pF.

3. Interfacing the 80C31 and 80C32 to devices with float times up to 45ns is permitted. This limited bus contention will not cause damage to Port 0 drivers.

4. See application note AN457 for external memory interface.

5. Parts are guaranteed to operate down to 0 Hz. When an external clock source is used, the RST pin should be held high for a minimum of 20 µs for power-on or wakeup from power down.

AC ELECTRICAL CHARACTERISTICS

 T_{amb} = 0°C to +70°C or –40°C to +85°C, V_{CC} = 5 V ±10%, V_{SS} = 0 V^{1, 2, 3}

				E CLOCK ⁴			
SYMBOL			16 MHz	33 MHz	CLOCK		
	FIGURE	PARAMETER	MIN	MAX	MIN	MAX	UNIT
tLHLL	14	ALE pulse width	2t _{CLCL} -40		21		ns
t _{AVLL}	14	Address valid to ALE low	t _{CLCL} -25		5		ns
t _{LLAX}	14	Address hold after ALE low	t _{CLCL} -25				ns
t _{LLIV}	14	ALE low to valid instruction in		4t _{CLCL} -65		55	ns
t _{LLPL}	14	ALE low to PSEN low	t _{CLCL} -25		5		ns
t _{PLPH}	14	PSEN pulse width	3t _{CLCL} -45		45		ns
t _{PLIV}	14	PSEN low to valid instruction in		3t _{CLCL} –60		30	ns
t _{PXIX}	14	Input instruction hold after PSEN	0		0		ns
t _{PXIZ}	14	Input instruction float after PSEN		t _{CLCL} –25	1	5	ns
t _{AVIV}	14	Address to valid instruction in		5t _{CLCL} –80	1	70	ns
t _{PLAZ}	14	PSEN low to address float		10		10	ns
Data Memor	У		•				·
t _{RLRH}	15, 16	RD pulse width	6t _{CLCL} -100		82		ns
t _{WLWH}	15, 16	WR pulse width	6t _{CLCL} -100		82		ns
t _{RLDV}	15, 16	RD low to valid data in		5t _{CLCL} –90		60	ns
t _{RHDX}	15, 16	Data hold after RD	0		0		ns
t _{RHDZ}	15, 16	Data float after RD		2t _{CLCL} -28		32	ns
t _{LLDV}	15, 16	ALE low to valid data in		8t _{CLCL} -150		90	ns
t _{AVDV}	15, 16	Address to valid data in		9t _{CLCL} -165		105	ns
t _{LLWL}	15, 16	ALE low to RD or WR low	3t _{CLCL} -50	3t _{CLCL} +50	40	140	ns
t _{AVWL}	15, 16	Address valid to WR low or RD low	4t _{CLCL} -75		45		ns
t _{QVWX}	15, 16	Data valid to WR transition	t _{CLCL} -30		0		ns
tWHQX	15, 16	Data hold after WR	t _{CLCL} -25		5		ns
t _{QVWH}	16	Data valid to WR high	7t _{CLCL} -130		80		ns
t _{RLAZ}	15, 16	RD low to address float		0		0	ns
tWHLH	15, 16	RD or WR high to ALE high	t _{CLCL} -25	t _{CLCL} +25	5	55	ns
External Clo			0101	OLOL	1		<u> </u>
t _{CHCX}	18	High time	0.38t _{CLCL}	t _{CLCL} -t _{CLCX}			ns
tCLCX	18	Low time	0.38t _{CLCL}				ns
t _{CLCH}	18	Rise time		5			ns
t _{CHCL}	18	Fall time		5			ns
Shift Regist	er						
t _{XLXL}	17	Serial port clock cycle time	12t _{CLCL}		360		ns
t _{QVXH}	17	Output data setup to clock rising edge	10t _{CLCL} -133		167		ns
t _{XHQX}	17	Output data hold after clock rising edge	2t _{CLCL} -80		1		ns
t _{XHDX}	17	Input data hold after clock rising edge	0		0		ns
t _{XHDV}	17	Clock rising edge to input data valid	1	10t _{CLCL} -133		167	ns

NOTES:

1. Parameters are valid over operating temperature range unless otherwise specified.

2. Load capacitance for port 0, ALE, and PSEN = 100 pF, load capacitance for all other outputs = 80 pF.

3. Interfacing the 80C31 and 80C32 to devices with float times up to 45ns is permitted. This limited bus contention will not cause damage to Port 0 drivers.

4. Variable clock is specified for oscillator frequencies greater than 16 MHz to 33 MHz. For frequencies equal or less than 16 MHz, see 16 MHz "AC Electrical Characteristics", page 23.

5. Parts are guaranteed to operate down to 0 Hz. When an external clock source is used, the RST pin should be held high for a minimum of 20 μs for power-on or wakeup from power down.

EXPLANATION OF THE AC SYMBOLS

Each timing symbol has five characters. The first character is always 't' (= time). The other characters, depending on their positions, indicate the name of a signal or the logical status of that signal. The designations are:

- A Address
- $C \ Clock$
- D Input data
- H Logic level high
- I Instruction (program memory contents)
- L Logic level low, or ALE

- P PSEN
- Q Output data
- R RD signal
- t Time
- V Valid
- $W-\overline{WR}$ signal
- X No longer a valid logic level
- Z Float



Figure 14. External Program Memory Read Cycle

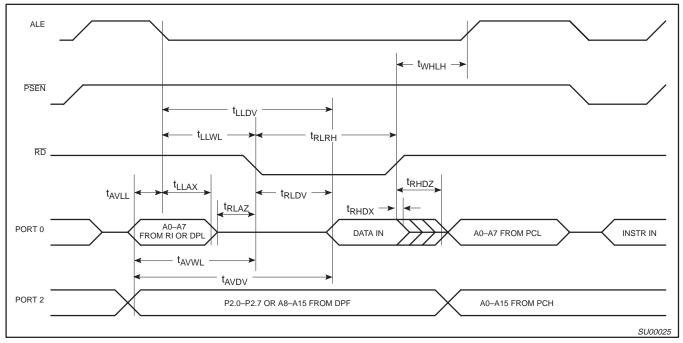



Figure 15. External Data Memory Read Cycle

Product specification

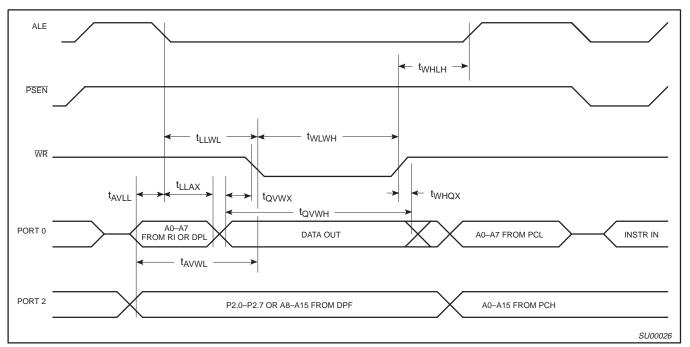


Figure 16. External Data Memory Write Cycle

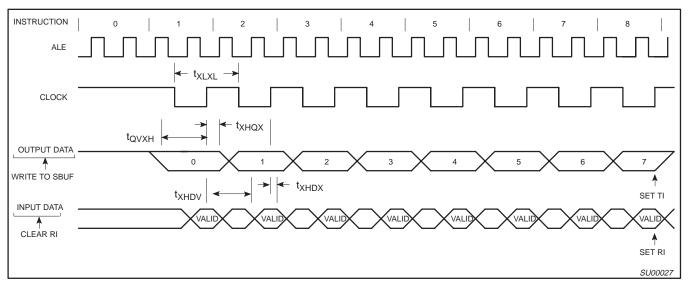


Figure 17. Shift Register Mode Timing

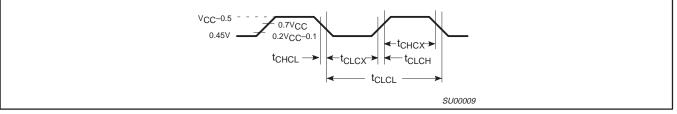
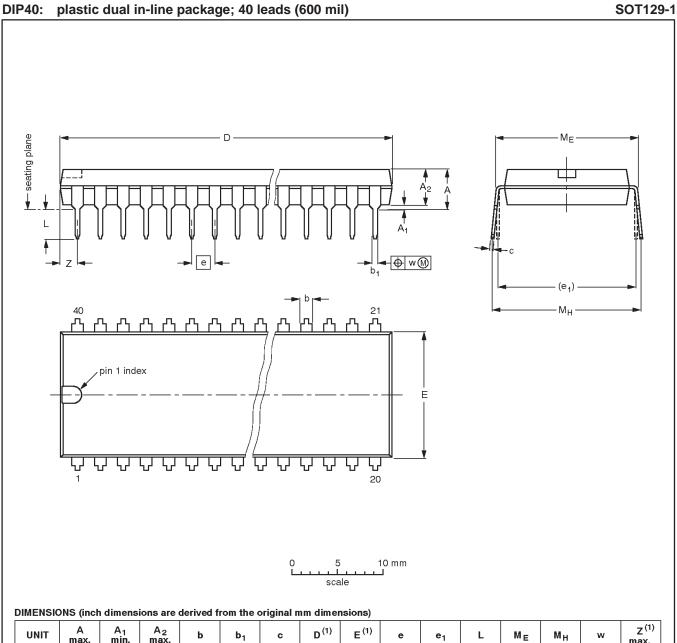
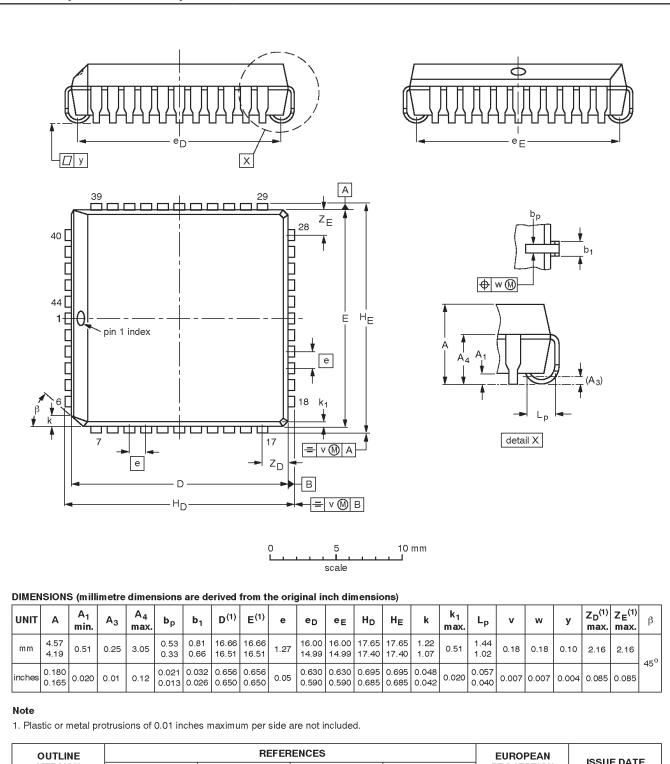



Figure 18. External Clock Drive

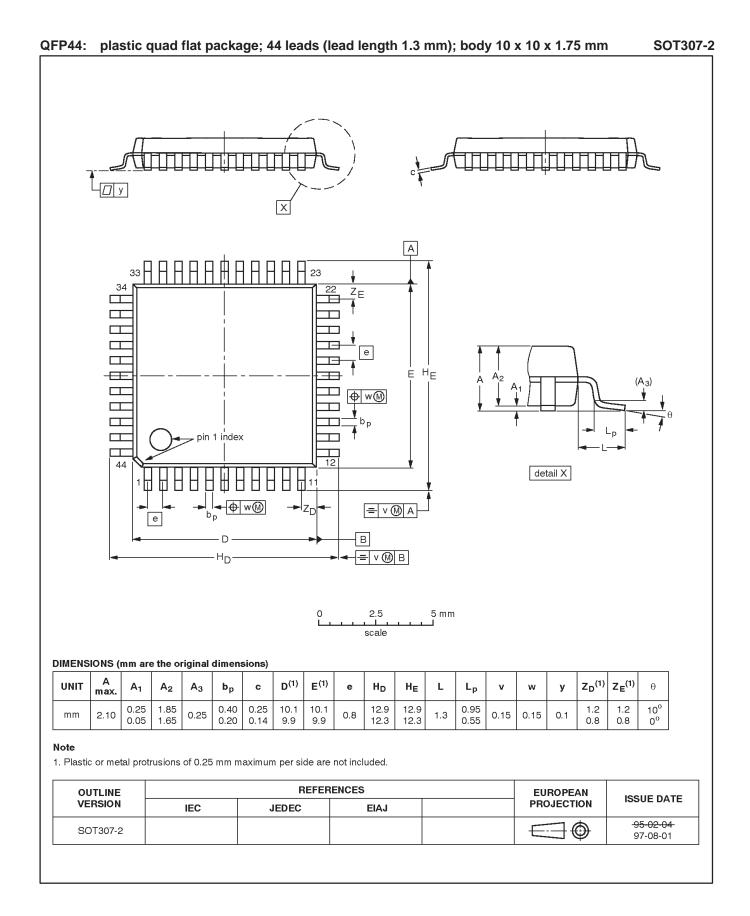
80C31/80C32

UN	IIT	max.	min.	max.	b	b ₁	с	D ⁽¹⁾	E ⁽¹⁾	е	e ₁	L	ME	М _Н	w	max.
m	m	4.7	0.51	4.0	1.70 1.14	0.53 0.38	0.36 0.23	52.50 51.50	14.1 13.7	2.54	15.24	3.60 3.05	15.80 15.24	17.42 15.90	0.254	2.25
incl	nes	0.19	0.020	0.16	0.067 0.045	0.021 0.015	0.014 0.009	2.067 2.028	0.56 0.54	0.10	0.60	0.14 0.12	0.62 0.60	0.69 0.63	0.01	0.089

Note


1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.

OUTLINE		REFER	ENCES	EUROPEAN	ISSUE DATE	
VERSION	IEC	JEDEC	EIAJ	PROJECTION	1550E DATE	
SOT129-1	051G08	MO-015	SC-511-40		-95-01-14 99-12-27	


80C31/80C32

SOT187-2

	OUTLINE		REFEF	ENCES		EUROPEAN	ISSUE DATE	
	VERSION	IEC	JEDEC	EIAJ		PROJECTION	1550E DATE	
	SOT187-2	112E10	MO-047				97-12-16 99-12-27	

