

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Details	
Product Status	Discontinued at Digi-Key
Core Processor	CIP-51 8051
Core Size	8-Bit
Speed	72MHz
Connectivity	I ² C, SMBus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	29
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1.25K x 8
Voltage - Supply (Vcc/Vdd)	2.2V ~ 3.6V
Data Converters	A/D 20x14b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	32-UFQFN Exposed Pad
Supplier Device Package	32-QFN (4x4)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/efm8lb10f16e-a-qfn32

1. Feature List

The EFM8LB1 device family are fully integrated, mixed-signal system-on-a-chip MCUs. Highlighted features are listed below.

- · Core:
 - · Pipelined CIP-51 Core
 - · Fully compatible with standard 8051 instruction set
 - 70% of instructions execute in 1-2 clock cycles
 - · 72 MHz maximum operating frequency
- · Memory:
 - Up to 64 kB flash memory (63 kB user-accessible), in-system re-programmable from firmware in 512-byte sectors
 - Up to 4352 bytes RAM (including 256 bytes standard 8051 RAM and 4096 bytes on-chip XRAM)
- Power:
 - · Internal LDO regulator for CPU core voltage
 - · Power-on reset circuit and brownout detectors
- I/O: Up to 29 total multifunction I/O pins:
 - · Up to 25 pins 5 V tolerant under bias
 - · Selectable state retention through reset events
 - · Flexible peripheral crossbar for peripheral routing
 - · 5 mA source, 12.5 mA sink allows direct drive of LEDs
- · Clock Sources:
 - Internal 72 MHz oscillator with accuracy of ±2%
 - Internal 24.5 MHz oscillator with ±2% accuracy
 - Internal 80 kHz low-frequency oscillator
 - · External CMOS clock option
 - · External crystal/RC/C Oscillator (up to 25 MHz)

- Analog:
 - 14/12/10-Bit Analog-to-Digital Converter (ADC)
 - Internal calibrated temperature sensor (±3 °C)
 - 4 x 12-Bit Digital-to-Analog Converters (DAC)
 - · 2 x Low-current analog comparators with adjustable refer-
- · Communications and Digital Peripherals:
 - · 2 x UART, up to 3 Mbaud
 - SPI™ Master / Slave, up to 12 Mbps
 - SMBus[™]/I2C[™] Master / Slave, up to 400 kbps
 - I²C High-Speed Slave, up to 3.4 Mbps
 - · 16-bit CRC unit, supporting automatic CRC of flash at 256byte boundaries
 - · 4 Configurable Logic Units
- · Timers/Counters and PWM:
 - 6-channel Programmable Counter Array (PCA) supporting PWM, capture/compare, and frequency output modes
 - 6 x 16-bit general-purpose timers
 - · Independent watchdog timer, clocked from the low frequency oscillator
- · On-Chip, Non-Intrusive Debugging
 - · Full memory and register inspection
 - Four hardware breakpoints, single-stepping

With on-chip power-on reset, voltage supply monitor, watchdog timer, and clock oscillator, the EFM8LB1 devices are truly standalone system-on-a-chip solutions. The flash memory is reprogrammable in-circuit, providing nonvolatile data storage and allowing field upgrades of the firmware. The on-chip debugging interface (C2) allows non-intrusive (uses no on-chip resources), full speed, in-circuit debugging using the production MCU installed in the final application. This debug logic supports inspection and modification of memory and registers, setting breakpoints, single stepping, and run and halt commands. All analog and digital peripherals are fully functional while debugging. Device operation is specified from 2.2 V up to a 3.6 V supply. Devices are AEC-Q100 qualified (pending) and available in 4x4 mm 32-pin QFN, 3x3 mm 24-pin QFN, 32-pin QFP, or 24-pin QSOP packages. All package options are lead-free and RoHS compliant.

Ordering Part Number	Flash Memory (kB)	RAM (Bytes)	Digital Port I/Os (Total)	ADC0 Channels	Voltage DACs	Comparator 0 Inputs	Comparator 1 Inputs	Pb-free (RoHS Compliant)	Temperature Range	Package
EFM8LB12F32E-A-QFN32	32	2304	29	20	4	10	9	Yes	-40 to +105 °C	QFN32
EFM8LB12F32E-A-QFP32	32	2304	28	20	4	10	9	Yes	-40 to +105 °C	QFP32
EFM8LB12F32E-A-QFN24	32	2304	20	12	4	6	6	Yes	-40 to +105 °C	QFN24
EFM8LB12F32E-A-QSOP24	32	2304	21	13	4	6	7	Yes	-40 to +105 °C	QSOP24
EFM8LB11F32E-A-QFN32	32	2304	29	20	2	10	9	Yes	-40 to +105 °C	QFN32
EFM8LB11F32E-A-QFP32	32	2304	28	20	2	10	9	Yes	-40 to +105 °C	QFP32
EFM8LB11F32E-A-QFN24	32	2304	20	12	2	6	6	Yes	-40 to +105 °C	QFN24
EFM8LB11F32E-A-QSOP24	32	2304	21	13	2	6	7	Yes	-40 to +105 °C	QSOP24
EFM8LB11F16E-A-QFN32	16	1280	29	20	2	10	9	Yes	-40 to +105 °C	QFN32
EFM8LB11F16E-A-QFP32	16	1280	28	20	2	10	9	Yes	-40 to +105 °C	QFP32
EFM8LB11F16E-A-QFN24	16	1280	20	12	2	6	6	Yes	-40 to +105 °C	QFN24
EFM8LB11F16E-A-QSOP24	16	1280	21	13	2	6	7	Yes	-40 to +105 °C	QSOP24
EFM8LB10F16E-A-QFN32	16	1280	29	20	0	10	9	Yes	-40 to +105 °C	QFN32
EFM8LB10F16E-A-QFP32	16	1280	28	20	0	10	9	Yes	-40 to +105 °C	QFP32
EFM8LB10F16E-A-QFN24	16	1280	20	12	0	6	6	Yes	-40 to +105 °C	QFN24
EFM8LB10F16E-A-QSOP24	16	1280	21	13	0	6	7	Yes	-40 to +105 °C	QSOP24

3.2 Power

All internal circuitry draws power from the VDD supply pin. External I/O pins are powered from the VIO supply voltage (or VDD on devices without a separate VIO connection), while most of the internal circuitry is supplied by an on-chip LDO regulator. Control over the device power can be achieved by enabling/disabling individual peripherals as needed. Each analog peripheral can be disabled when not in use and placed in low power mode. Digital peripherals, such as timers and serial buses, have their clocks gated off and draw little power when they are not in use.

Table 3.1. Power Modes

Power Mode	Details	Mode Entry	Wake-Up Sources
Normal	Core and all peripherals clocked and fully operational		
Idle	Core haltedAll peripherals clocked and fully operationalCode resumes execution on wake event	Set IDLE bit in PCON0	Any interrupt
Suspend	Core and peripheral clocks halted HFOSC0 and HFOSC1 oscillators stopped Regulator in normal bias mode for fast wake Timer 3 and 4 may clock from LFOSC0 Code resumes execution on wake event	1. Switch SYSCLK to HFOSC0 2. Set SUSPEND bit in PCON1	Timer 4 Event SPI0 Activity I2C0 Slave Activity Port Match Event Comparator 0 Rising Edge CLUn Interrupt-Enabled Event
Stop	 All internal power nets shut down Pins retain state Exit on any reset source	1. Clear STOPCF bit in REG0CN 2. Set STOP bit in PCON0	Any reset source
Snooze	Core and peripheral clocks halted HFOSC0 and HFOSC1 oscillators stopped Regulator in low bias current mode for energy savings Timer 3 and 4 may clock from LFOSC0 Code resumes execution on wake event	1. Switch SYSCLK to HFOSC0 2. Set SNOOZE bit in PCON1	Timer 4 Event SPI0 Activity I2C0 Slave Activity Port Match Event Comparator 0 Rising Edge CLUn Interrupt-Enabled Event
Shutdown	All internal power nets shut downPins retain stateExit on pin or power-on reset	1. Set STOPCF bit in REG0CN 2. Set STOP bit in PCON0	RSTb pin reset Power-on reset

3.3 I/O

Digital and analog resources are externally available on the device's multi-purpose I/O pins. Port pins P0.0-P2.3 can be defined as general-purpose I/O (GPIO), assigned to one of the internal digital resources through the crossbar or dedicated channels, or assigned to an analog function. Port pins P2.4 to P3.7 can be used as GPIO. Additionally, the C2 Interface Data signal (C2D) is shared with P3.0 or P3.7, depending on the package option.

The port control block offers the following features:

- Up to 29 multi-functions I/O pins, supporting digital and analog functions.
- · Flexible priority crossbar decoder for digital peripheral assignment.
- · Two drive strength settings for each port.
- State retention feature allows pins to retain configuration through most reset sources.
- Two direct-pin interrupt sources with dedicated interrupt vectors (INT0 and INT1).
- · Up to 24 direct-pin interrupt sources with shared interrupt vector (Port Match).

3.4 Clocking

The CPU core and peripheral subsystem may be clocked by both internal and external oscillator resources. By default, the system clock comes up running from the 24.5 MHz oscillator divided by 8.

The clock control system offers the following features:

- Provides clock to core and peripherals.
- 24.5 MHz internal oscillator (HFOSC0), accurate to ±2% over supply and temperature corners.
- 72 MHz internal oscillator (HFOSC1), accurate to ±2% over supply and temperature corners.
- 80 kHz low-frequency oscillator (LFOSC0).
- · External Crystal / RC / C Oscillator.
- · External CMOS clock input (EXTCLK).
- Clock divider with eight settings for flexible clock scaling:
 - Divide the selected clock source by 1, 2, 4, 8, 16, 32, 64, or 128.
 - HFOSC0 and HFOSC1 include 1.5x pre-scalers for further flexibility.

3.5 Counters/Timers and PWM

Programmable Counter Array (PCA0)

The programmable counter array (PCA) provides multiple channels of enhanced timer and PWM functionality while requiring less CPU intervention than standard counter/timers. The PCA consists of a dedicated 16-bit counter/timer and one 16-bit capture/compare module for each channel. The counter/timer is driven by a programmable timebase that has flexible external and internal clocking options. Each capture/compare module may be configured to operate independently in one of five modes: Edge-Triggered Capture, Software Timer, High-Speed Output, Frequency Output, or Pulse-Width Modulated (PWM) Output. Each capture/compare module has its own associated I/O line (CEXn) which is routed through the crossbar to port I/O when enabled.

- · 16-bit time base
- · Programmable clock divisor and clock source selection
- · Up to six independently-configurable channels
- 8, 9, 10, 11 and 16-bit PWM modes (center or edge-aligned operation)
- · Output polarity control
- · Frequency output mode
- · Capture on rising, falling or any edge
- · Compare function for arbitrary waveform generation
- · Software timer (internal compare) mode
- · Can accept hardware "kill" signal from comparator 0 or comparator 1

Universal Asynchronous Receiver/Transmitter (UART1)

UART1 is an asynchronous, full duplex serial port offering a variety of data formatting options. A dedicated baud rate generator with a 16-bit timer and selectable prescaler is included, which can generate a wide range of baud rates. A received data FIFO allows UART1 to receive multiple bytes before data is lost and an overflow occurs.

UART1 provides the following features:

- Asynchronous transmissions and receptions
- Dedicated baud rate generator supports baud rates up to SYSCLK/2 (transmit) or SYSCLK/8 (receive)
- 5, 6, 7, 8, or 9 bit data
- · Automatic start and stop generation
- · Automatic parity generation and checking
- · Single-byte buffer on transmit and receive
- · Auto-baud detection
- · LIN break and sync field detection
- · CTS / RTS hardware flow control

Serial Peripheral Interface (SPI0)

The serial peripheral interface (SPI) module provides access to a flexible, full-duplex synchronous serial bus. The SPI can operate as a master or slave device in both 3-wire or 4-wire modes, and supports multiple masters and slaves on a single SPI bus. The slave-select (NSS) signal can be configured as an input to select the SPI in slave mode, or to disable master mode operation in a multi-master environment, avoiding contention on the SPI bus when more than one master attempts simultaneous data transfers. NSS can also be configured as a firmware-controlled chip-select output in master mode, or disabled to reduce the number of pins required. Additional general purpose port I/O pins can be used to select multiple slave devices in master mode.

- Supports 3- or 4-wire master or slave modes
- · Supports external clock frequencies up to 12 Mbps in master or slave mode
- · Support for all clock phase and polarity modes
- 8-bit programmable clock rate (master)
- Programmable receive timeout (slave)
- · Two byte FIFO on transmit and receive
- Can operate in suspend or snooze modes and wake the CPU on reception of a byte
- Support for multiple masters on the same data lines

System Management Bus / I2C (SMB0)

The SMBus I/O interface is a two-wire, bi-directional serial bus. The SMBus is compliant with the System Management Bus Specification, version 1.1, and compatible with the I²C serial bus.

The SMBus module includes the following features:

- · Standard (up to 100 kbps) and Fast (400 kbps) transfer speeds
- · Support for master, slave, and multi-master modes
- · Hardware synchronization and arbitration for multi-master mode
- · Clock low extending (clock stretching) to interface with faster masters
- Hardware support for 7-bit slave and general call address recognition
- · Firmware support for 10-bit slave address decoding
- · Ability to inhibit all slave states
- · Programmable data setup/hold times
- Transmit and receive buffers to help increase throughput in faster applications

3.7 Analog

14/12/10-Bit Analog-to-Digital Converter (ADC0)

The ADC is a successive-approximation-register (SAR) ADC with 14-, 12-, and 10-bit modes, integrated track-and hold and a program-mable window detector. The ADC is fully configurable under software control via several registers. The ADC may be configured to measure different signals using the analog multiplexer. The voltage reference for the ADC is selectable between internal and external reference sources.

- · Up to 20 external inputs
- Single-ended 14-bit, 12-bit and 10-bit modes
- Supports an output update rate of up to 1 Msps in 12-bit mode
- Channel sequencer logic with direct-to-XDATA output transfers
- · Operation in a low power mode at lower conversion speeds
- Asynchronous hardware conversion trigger, selectable between software, external I/O and internal timer and configurable logic sources
- · Output data window comparator allows automatic range checking
- · Support for output data accumulation
- Conversion complete and window compare interrupts supported
- Flexible output data formatting
- Includes a fully-internal fast-settling 1.65 V reference and an on-chip precision 2.4 / 1.2 V reference, with support for using the supply as the reference, an external reference and signal ground
- · Integrated factory-calibrated temperature sensor

12-Bit Digital-to-Analog Converters (DAC0, DAC1, DAC2, DAC3)

The DAC modules are 12-bit Digital-to-Analog Converters with the capability to synchronize multiple outputs together. The DACs are fully configurable under software control. The voltage reference for the DACs is selectable between internal and external reference sources.

- · Voltage output with 12-bit performance
- Hardware conversion trigger, selectable between software, external I/O and internal timer and configurable logic sources
- · Outputs may be configured to persist through reset and maintain output state to avoid system disruption
- · Multiple DAC outputs can be synchronized together
- DAC pairs (DAC0 and 1 or DAC2 and 3) support complementary output waveform generation
- · Outputs may be switched between two levels according to state of configurable logic / PWM input trigger
- · Flexible input data formatting
- Supports references from internal supply, on-chip precision reference, or external VREF pin

Low Current Comparators (CMP0, CMP1)

An analog comparator is used to compare the voltage of two analog inputs, with a digital output indicating which input voltage is higher. External input connections to device I/O pins and internal connections are available through separate multiplexers on the positive and negative inputs. Hysteresis, response time, and current consumption may be programmed to suit the specific needs of the application.

The comparator includes the following features:

- Up to 10 (CMP0) or 9 (CMP1) external positive inputs
- Up to 10 (CMP0) or 9 (CMP1) external negative inputs
- · Additional input options:
 - Internal connection to LDO output
 - · Direct connection to GND
 - · Direct connection to VDD
 - · Dedicated 6-bit reference DAC
- · Synchronous and asynchronous outputs can be routed to pins via crossbar
- · Programmable hysteresis between 0 and ±20 mV
- Programmable response time
- · Interrupts generated on rising, falling, or both edges
- · PWM output kill feature

3.10 Bootloader

All devices come pre-programmed with a UART0 bootloader. This bootloader resides in the code security page, which is the last page of code flash; it can be erased if it is not needed.

The byte before the Lock Byte is the Bootloader Signature Byte. Setting this byte to a value of 0xA5 indicates the presence of the bootloader in the system. Any other value in this location indicates that the bootloader is not present in flash.

When a bootloader is present, the device will jump to the bootloader vector after any reset, allowing the bootloader to run. The bootloader then determines if the device should stay in bootload mode or jump to the reset vector located at 0x0000. When the bootloader is not present, the device will jump to the reset vector of 0x0000 after any reset.

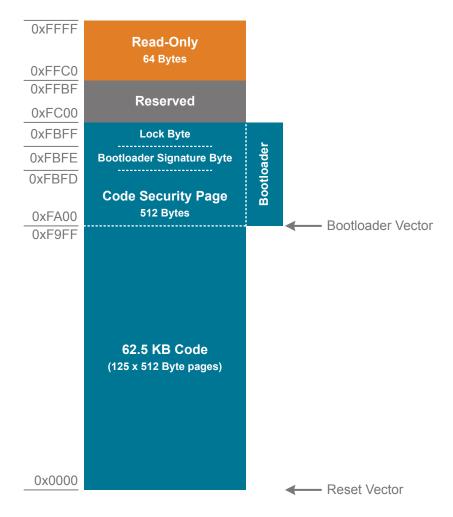


Figure 3.2. Flash Memory Map with Bootloader — 62.5 KB Devices

4.1.10 Voltage Reference

Table 4.10. Voltage Reference

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Internal Fast Settling Reference						
Output Voltage	V _{REFFS}	['] REFFS		1.65	1.68	V
(Full Temperature and Supply Range)						
Temperature Coefficient	TC _{REFFS}		_	50	_	ppm/°C
Turn-on Time	t _{REFFS}		_	_	1.5	μs
Power Supply Rejection	PSRR _{REF}		_	400	_	ppm/V
On-chip Precision Reference			I			
Valid Supply Range	V _{DD}	1.2 V Output	2.2	_	3.6	V
		2.4 V Output	2.7	_	3.6	V
Output Voltage	V _{REFP}	1.2 V Output, T = 25 °C	TBD	1.2	TBD	V
		2.4 V Output, T = 25 °C	TBD	2.4	TBD	V
Turn-on Time, settling to 0.5 LSB	t _{VREFP}	4.7 μF tantalum + 0.1 μF ceramic bypass on VREF pin	_	3	_	ms
		0.1 μF ceramic bypass on VREF pin	_	100	_	μs
Load Regulation	LR _{VREFP}	Load = 0 to 200 µA to GND	_	TBD	_	μV/μΑ
Load Capacitor	C _{VREFP}	Load = 0 to 200 µA to GND	0.1	_	_	μF
Short-circuit current	ISC _{VREFP}		_	_	8	mA
Power Supply Rejection	PSRR _{VRE}		_	TBD	_	ppm/V
External Reference		1	1	I	ı	
Input Current	I _{EXTREF}	ADC Sample Rate = 1 Msps; VREF = 3.0 V	_	5	_	μА

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Negative Hysteresis	HYS _{CP} -	CPHYN = 00	_	-1.5	_	mV
Mode 3 (CPMD = 11)		CPHYN = 01	_	-4	_	mV
		CPHYN = 10	_	-8	_	mV
		CPHYN = 11	_	-16	_	mV
Input Range (CP+ or CP-)	V _{IN}		-0.25	_	V _{IO} +0.25	V
Input Pin Capacitance	C _{CP}		_	7.5	_	pF
Internal Reference DAC Resolution	N _{bits}			6		bits
Common-Mode Rejection Ratio	CMRR _{CP}		_	70	_	dB
Power Supply Rejection Ratio	PSRR _{CP}		_	72	_	dB
Input Offset Voltage	V _{OFF}	T _A = 25 °C	-10	0	10	mV
Input Offset Tempco	TC _{OFF}		_	3.5	_	μV/°

4.1.14 Configurable Logic

Table 4.14. Configurable Logic

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Propagation Delay	t _{DLY}	Through single CLU	TBD	_	TBD	ns
Clocking Frequency	F _{CLK}	1 or 2 CLUs Cascaded	_	_	73.5	MHz
		3 or 4 CLUs Cascaded	_	_	36.75	MHz

4.2 Thermal Conditions

Table 4.16. Thermal Conditions

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Thermal Resistance	θ_{JA}	QFN24 Packages	_	TBD	_	°C/W
		QFN32 Packages	_	TBD	_	°C/W
		QFP32 Packages	_	80	_	°C/W
		QSOP24 Packages	_	65	_	°C/W

Note:

4.3 Absolute Maximum Ratings

Stresses above those listed in Table 4.17 Absolute Maximum Ratings on page 27 may cause permanent damage to the device. This is a stress rating only and functional operation of the devices at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability. For more information on the available quality and reliability data, see the Quality and Reliability Monitor Report at http://www.silabs.com/support/quality/pages/default.aspx.

Table 4.17. Absolute Maximum Ratings

Parameter	Symbol	Test Condition	Min	Max	Unit
Ambient Temperature Under Bias	T _{BIAS}		-55	125	°C
Storage Temperature	T _{STG}		-65	150	°C
Voltage on VDD	V_{DD}		GND-0.3	4.2	V
Voltage on VIO ²	V _{IO}		GND-0.3	V _{DD} +0.3	V
Voltage on I/O pins or RSTb, excluding	V _{IN}	V _{IO} > TBD V	GND-0.3	TBD	V
P2.0-P2.3 (QFN24 and QSOP24) or P3.0-P3.3 (QFN32 and QFP32)		V _{IO} < TBD V	GND-0.3	TBD	V
Voltage on P2.0-P2.3 (QFN24 and QSOP24) or P3.0-P3.3 (QFN32 and QFP32)	V _{IN}		GND-0.3	V _{DD} +0.3	V
Total Current Sunk into Supply Pin	I _{VDD}		_	400	mA
Total Current Sourced out of Ground Pin	I _{GND}		400	_	mA
Current Sourced or Sunk by any I/O Pin or RSTb	I _{IO}		-100	100	mA

Note:

- 1. Exposure to maximum rating conditions for extended periods may affect device reliability.
- 2. In certain package configurations, the VIO and VDD supplies are bonded to the same pin.

^{1.} Thermal resistance assumes a multi-layer PCB with any exposed pad soldered to a PCB pad.

Pin Number	Pin Name	Description	Crossbar Capability	Additional Digital Functions	Analog Functions
15	P2.2	Multifunction I/O	Yes	P2MAT.2	ADC0.15
				CLU2OUT	CMP1P.4
				CLU1A.15	CMP1N.4
				CLU2B.14	
				CLU3A.14	
16	P2.1	Multifunction I/O	Yes	P2MAT.1	ADC0.14
				I2C0_SCL	CMP1P.3
				CLU1B.14	CMP1N.3
				CLU2A.15	
				CLU3B.15	
17	P2.0	Multifunction I/O	Yes	P2MAT.0	CMP1P.2
				I2C0_SDA	CMP1N.2
				CLU1A.14	
				CLU2A.14	
				CLU3B.14	
18	P1.7	Multifunction I/O	Yes	P1MAT.7	ADC0.13
				CLU0B.15	CMP0P.9
				CLU1B.13	CMP0N.9
				CLU2A.13	
19	P1.6	Multifunction I/O	Yes	P1MAT.6	ADC0.12
				CLU0A.15	
				CLU1B.12	
				CLU2A.12	
20	P1.5	Multifunction I/O	Yes	P1MAT.5	ADC0.11
				CLU0B.14	
				CLU1A.13	
				CLU2B.13	
				CLU3B.11	
21	P1.4	Multifunction I/O	Yes	P1MAT.4	ADC0.10
				CLU0A.14	
				CLU1A.12	
				CLU2B.12	
				CLU3B.10	

Pin	Pin Name	Description	Crossbar Capability	Additional Digital	Analog Functions
Number				Functions	
6	P3.7 /	Multifunction I/O /			
	C2D	C2 Debug Data			
7	P3.3	Multifunction I/O			DAC3
8	P3.2	Multifunction I/O			DAC2
9	P3.1	Multifunction I/O			DAC1
10	P3.0	Multifunction I/O			DAC0
11	P2.6	Multifunction I/O			ADC0.19
					CMP1P.8
					CMP1N.8
12	P2.5	Multifunction I/O		CLU3OUT	ADC0.18
					CMP1P.7
					CMP1N.7
13	P2.4	Multifunction I/O			ADC0.17
					CMP1P.6
					CMP1N.6
14	P2.3	Multifunction I/O	Yes	P2MAT.3	ADC0.16
				CLU1B.15	CMP1P.5
				CLU2B.15	CMP1N.5
				CLU3A.15	
15	P2.2	Multifunction I/O	Yes	P2MAT.2	ADC0.15
				CLU2OUT	CMP1P.4
				CLU1A.15	CMP1N.4
				CLU2B.14	
				CLU3A.14	
16	P2.1	Multifunction I/O	Yes	P2MAT.1	ADC0.14
				I2C0_SCL	CMP1P.3
				CLU1B.14	CMP1N.3
				CLU2A.15	
				CLU3B.15	
17	P2.0	Multifunction I/O	Yes	P2MAT.0	CMP1P.2
				I2C0_SDA	CMP1N.2
				CLU1A.14	
				CLU2A.14	
				CLU3B.14	

Pin	Pin Name	Description	Crossbar Capability	Additional Digital Functions	Analog Functions
Number 12	P1.5	Multifunction I/O	Yes	P1MAT.5	ADC0.10
				CLU2OUT	CMP1P.4
				CLU0B.14	CMP1N.4
				CLU1A.13	
				CLU2B.13	
				CLU3B.11	
13	P1.4	Multifunction I/O	Yes	P1MAT.4	ADC0.9
				12C0_SCL	CMP1P.3
				CLU0A.14	CMP1N.3
				CLU1A.12	
				CLU2B.12	
				CLU3B.10	
14	P1.3	Multifunction I/O	Yes	P1MAT.3	CMP1P.2
				I2C0_SDA	CMP1N.2
				CLU0B.13	
				CLU1B.11	
				CLU2B.11	
				CLU3A.13	
15	GND	Ground			
16	P1.2	Multifunction I/O	Yes	P1MAT.2	ADC0.8
				CLU0A.13	
				CLU1A.11	
				CLU2B.10	
				CLU3A.12	
				CLU3B.13	
17	P1.1	Multifunction I/O	Yes	P1MAT.1	ADC0.7
				CLU0B.12	
				CLU1B.10	
				CLU2A.11	
				CLU3B.12	
18	P1.0	Multifunction I/O	Yes	P1MAT.0	ADC0.6
				CLU0A.12	
				CLU1A.10	
				CLU2A.10	

6.4 EFM8LB1x-QSOP24 Pin Definitions

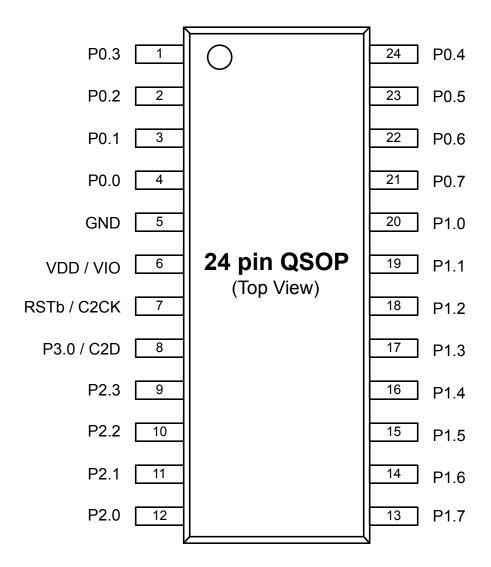


Figure 6.4. EFM8LB1x-QSOP24 Pinout

Table 6.4. Pin Definitions for EFM8LB1x-QSOP24

Pin Number	Pin Name	Description	Crossbar Capability	Additional Digital Functions	Analog Functions
1	P0.3	Multifunction I/O	Yes	P0MAT.3	XTAL2
				EXTCLK	
				INT0.3	
				INT1.3	
				CLU0B.9	
				CLU2B.10	
				CLU3A.9	

Pin Number	Pin Name	Description	Crossbar Capability	Additional Digital Functions	Analog Functions
18	P1.2	Multifunction I/O	Yes	P1MAT.2	ADC0.8
				CLU0A.13	
				CLU1A.11	
				CLU2B.10	
				CLU3A.12	
				CLU3B.13	
19	P1.1	Multifunction I/O	Yes	P1MAT.1	ADC0.7
				CLU0B.12	
				CLU1B.10	
				CLU2A.11	
				CLU3B.12	
20	P1.0	Multifunction I/O	Yes	P1MAT.0	ADC0.6
				CLU0A.12	
				CLU1A.10	
				CLU2A.10	
21	P0.7	Multifunction I/O	Yes	P0MAT.7	ADC0.5
				INT0.7	CMP0P.5
				INT1.7	CMP0N.5
				CLU1OUT	CMP1P.1
				CLU0B.11	CMP1N.1
				CLU1B.9	
				CLU3A.11	
22	P0.6	Multifunction I/O	Yes	P0MAT.6	ADC0.4
				CNVSTR	CMP0P.4
				INT0.6	CMP0N.4
				INT1.6	CMP1P.0
				CLU0A.11	CMP1N.0
				CLU1B.8	
				CLU3A.10	
23	P0.5	Multifunction I/O	Yes	P0MAT.5	ADC0.3
				INT0.5	CMP0P.3
				INT1.5	CMP0N.3
				UART0_RX	
				CLU0B.10	
				CLU1A.9	

8. QFP32 Package Specifications

8.1 QFP32 Package Dimensions

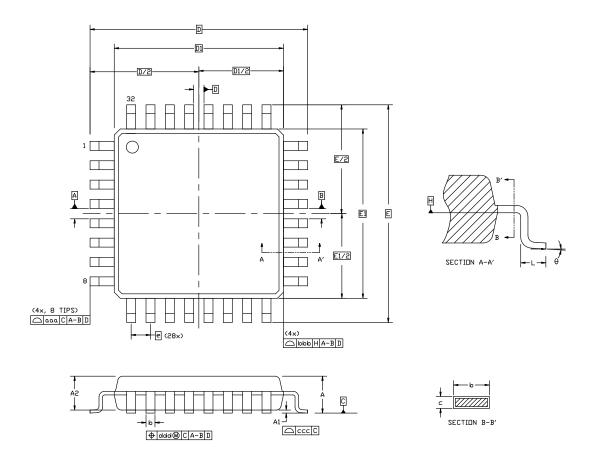


Figure 8.1. QFP32 Package Drawing

Table 8.1. QFP32 Package Dimensions

Dimension	Min	Тур	Max
А	_	_	1.20
A1	0.05	_	0.15
A2	0.95	1.00	1.05
b	0.30	0.37	0.45
С	0.09	_	0.20
D	9.00 BSC		
D1	7.00 BSC		
е	0.80 BSC		
E	9.00 BSC		
E1	7.00 BSC		
L	0.50	0.60	0.70

Dimension	Min	Тур	Max
е	0.40 BSC		
e1	0.45 BSC		
J	1.60	1.70	1.80
К	1.60	1.70	1.80
L	0.35	0.40	0.45
L1	0.25	0.30	0.35
aaa	_	0.10	_
bbb	_	0.10	_
ccc	_	0.08	_
ddd	_	0.1	_
eee	_	0.1	_

Note:

- 1. All dimensions shown are in millimeters (mm) unless otherwise noted.
- 2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.
- 3. This drawing conforms to JEDEC Solid State Outline MO-248 but includes custom features which are toleranced per supplier designation.
- 4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.

9.2 QFN24 PCB Land Pattern

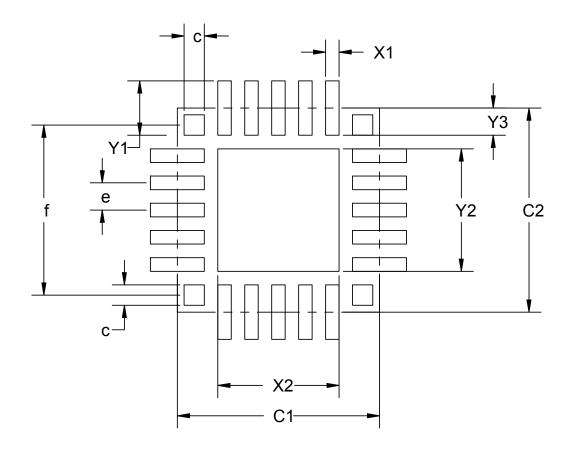


Figure 9.2. QFN24 PCB Land Pattern Drawing

Table 9.2. QFN24 PCB Land Pattern Dimensions

Dimension	Min	Max	
C1	3.00		
C2	3.00		
е	0.4 REF		
X1	0.20		
X2	1.80		
Y1	0.80		
Y2	1.80		
Y3	0.4		
f	2.50 REF		
С	0.25 0.35		

Dimension Min Max

Note:

- 1. All dimensions shown are in millimeters (mm) unless otherwise noted.
- 2. Dimensioning and Tolerancing is per the ANSI Y14.5M-1994 specification.
- 3. This Land Pattern Design is based on the IPC-SM-782 guidelines.
- 4. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60 μm minimum, all the way around the pad.
- 5. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release.
- 6. The stencil thickness should be 0.125 mm (5 mils).
- 7. The ratio of stencil aperture to land pad size should be 1:1 for all perimeter pads.
- 8. A 2 x 1 array of 1.20 mm x 0.95 mm openings on a 1.15 mm pitch should be used for the center pad.
- 9. A No-Clean, Type-3 solder paste is recommended.
- 10. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.

9.3 QFN24 Package Marking

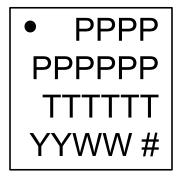


Figure 9.3. QFN24 Package Marking

The package marking consists of:

- PPPPPPP The part number designation.
- TTTTTT A trace or manufacturing code.
- YY The last 2 digits of the assembly year.
- WW The 2-digit workweek when the device was assembled.
- # The device revision (A, B, etc.).

Dimension	Min	Тур	Max
aaa		0.20	
bbb		0.18	
ccc		0.10	
ddd		0.10	

Note:

- 1. All dimensions shown are in millimeters (mm) unless otherwise noted.
- 2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.
- 3. This drawing conforms to JEDEC outline MO-137, variation AE.
- 4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.