

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Details	
Product Status	Discontinued at Digi-Key
Core Processor	CIP-51 8051
Core Size	8-Bit
Speed	72MHz
Connectivity	I ² C, SMBus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	20
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1.25K x 8
Voltage - Supply (Vcc/Vdd)	2.2V ~ 3.6V
Data Converters	A/D 12x14b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	24-VFQFN Exposed Pad
Supplier Device Package	24-QFN (3x3)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/efm8lb11f16e-a-qfn24

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1. Feature List

The EFM8LB1 device family are fully integrated, mixed-signal system-on-a-chip MCUs. Highlighted features are listed below.

- · Core:
 - · Pipelined CIP-51 Core
 - · Fully compatible with standard 8051 instruction set
 - 70% of instructions execute in 1-2 clock cycles
 - · 72 MHz maximum operating frequency
- · Memory:
 - Up to 64 kB flash memory (63 kB user-accessible), in-system re-programmable from firmware in 512-byte sectors
 - Up to 4352 bytes RAM (including 256 bytes standard 8051 RAM and 4096 bytes on-chip XRAM)
- Power:
 - · Internal LDO regulator for CPU core voltage
 - · Power-on reset circuit and brownout detectors
- I/O: Up to 29 total multifunction I/O pins:
 - · Up to 25 pins 5 V tolerant under bias
 - · Selectable state retention through reset events
 - · Flexible peripheral crossbar for peripheral routing
 - · 5 mA source, 12.5 mA sink allows direct drive of LEDs
- · Clock Sources:
 - Internal 72 MHz oscillator with accuracy of ±2%
 - Internal 24.5 MHz oscillator with ±2% accuracy
 - Internal 80 kHz low-frequency oscillator
 - · External CMOS clock option
 - · External crystal/RC/C Oscillator (up to 25 MHz)

- Analog:
 - 14/12/10-Bit Analog-to-Digital Converter (ADC)
 - Internal calibrated temperature sensor (±3 °C)
 - 4 x 12-Bit Digital-to-Analog Converters (DAC)
 - · 2 x Low-current analog comparators with adjustable refer-
- · Communications and Digital Peripherals:
 - · 2 x UART, up to 3 Mbaud
 - SPI™ Master / Slave, up to 12 Mbps
 - SMBus[™]/I2C[™] Master / Slave, up to 400 kbps
 - I²C High-Speed Slave, up to 3.4 Mbps
 - · 16-bit CRC unit, supporting automatic CRC of flash at 256byte boundaries
 - · 4 Configurable Logic Units
- · Timers/Counters and PWM:
 - 6-channel Programmable Counter Array (PCA) supporting PWM, capture/compare, and frequency output modes
 - 6 x 16-bit general-purpose timers
 - · Independent watchdog timer, clocked from the low frequency oscillator
- · On-Chip, Non-Intrusive Debugging
 - · Full memory and register inspection
 - Four hardware breakpoints, single-stepping

With on-chip power-on reset, voltage supply monitor, watchdog timer, and clock oscillator, the EFM8LB1 devices are truly standalone system-on-a-chip solutions. The flash memory is reprogrammable in-circuit, providing nonvolatile data storage and allowing field upgrades of the firmware. The on-chip debugging interface (C2) allows non-intrusive (uses no on-chip resources), full speed, in-circuit debugging using the production MCU installed in the final application. This debug logic supports inspection and modification of memory and registers, setting breakpoints, single stepping, and run and halt commands. All analog and digital peripherals are fully functional while debugging. Device operation is specified from 2.2 V up to a 3.6 V supply. Devices are AEC-Q100 qualified (pending) and available in 4x4 mm 32-pin QFN, 3x3 mm 24-pin QFN, 32-pin QFP, or 24-pin QSOP packages. All package options are lead-free and RoHS compliant.

3.4 Clocking

The CPU core and peripheral subsystem may be clocked by both internal and external oscillator resources. By default, the system clock comes up running from the 24.5 MHz oscillator divided by 8.

The clock control system offers the following features:

- Provides clock to core and peripherals.
- 24.5 MHz internal oscillator (HFOSC0), accurate to ±2% over supply and temperature corners.
- 72 MHz internal oscillator (HFOSC1), accurate to ±2% over supply and temperature corners.
- 80 kHz low-frequency oscillator (LFOSC0).
- · External Crystal / RC / C Oscillator.
- · External CMOS clock input (EXTCLK).
- Clock divider with eight settings for flexible clock scaling:
 - Divide the selected clock source by 1, 2, 4, 8, 16, 32, 64, or 128.
 - HFOSC0 and HFOSC1 include 1.5x pre-scalers for further flexibility.

3.5 Counters/Timers and PWM

Programmable Counter Array (PCA0)

The programmable counter array (PCA) provides multiple channels of enhanced timer and PWM functionality while requiring less CPU intervention than standard counter/timers. The PCA consists of a dedicated 16-bit counter/timer and one 16-bit capture/compare module for each channel. The counter/timer is driven by a programmable timebase that has flexible external and internal clocking options. Each capture/compare module may be configured to operate independently in one of five modes: Edge-Triggered Capture, Software Timer, High-Speed Output, Frequency Output, or Pulse-Width Modulated (PWM) Output. Each capture/compare module has its own associated I/O line (CEXn) which is routed through the crossbar to port I/O when enabled.

- · 16-bit time base
- · Programmable clock divisor and clock source selection
- · Up to six independently-configurable channels
- 8, 9, 10, 11 and 16-bit PWM modes (center or edge-aligned operation)
- · Output polarity control
- · Frequency output mode
- · Capture on rising, falling or any edge
- · Compare function for arbitrary waveform generation
- · Software timer (internal compare) mode
- · Can accept hardware "kill" signal from comparator 0 or comparator 1

3.10 Bootloader

All devices come pre-programmed with a UART0 bootloader. This bootloader resides in the code security page, which is the last page of code flash; it can be erased if it is not needed.

The byte before the Lock Byte is the Bootloader Signature Byte. Setting this byte to a value of 0xA5 indicates the presence of the bootloader in the system. Any other value in this location indicates that the bootloader is not present in flash.

When a bootloader is present, the device will jump to the bootloader vector after any reset, allowing the bootloader to run. The bootloader then determines if the device should stay in bootload mode or jump to the reset vector located at 0x0000. When the bootloader is not present, the device will jump to the reset vector of 0x0000 after any reset.

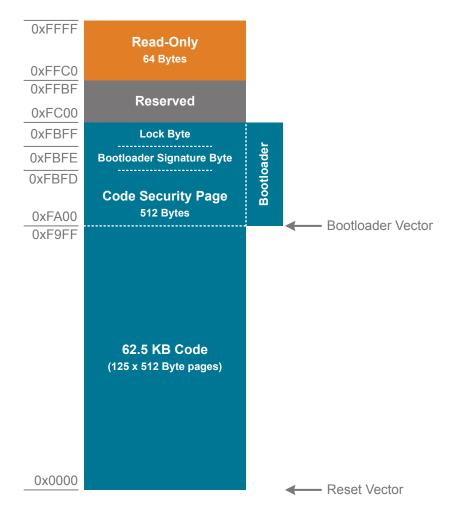


Figure 3.2. Flash Memory Map with Bootloader — 62.5 KB Devices

4.1.2 Power Consumption

Table 4.2. Power Consumption

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Digital Core Supply Current						
Normal Mode-Full speed with code	I _{DD}	F _{SYSCLK} = 72 MHz ²	_	TBD	TBD	mA
executing from flash		F _{SYSCLK} = 24.5 MHz ²	_	4.5	TBD	mA
		F _{SYSCLK} = 1.53 MHz ²	_	615	TBD	μA
		F _{SYSCLK} = 80 kHz ³	_	155	TBD	μA
Idle Mode-Core halted with periph-	I _{DD}	F _{SYSCLK} = 72 MHz ²	_	TBD	TBD	mA
erals running		F _{SYSCLK} = 24.5 MHz ²	_	2.8	TBD	mA
		F _{SYSCLK} = 1.53 MHz ²	_	455	TBD	μA
		F _{SYSCLK} = 80 kHz ³	_	145	TBD	μA
Suspend Mode-Core halted and	I _{DD}	LFO Running	_	125	TBD	μA
nigh frequency clocks stopped, Supply monitor off.		LFO Stopped	_	120	TBD	μA
Snooze Mode-Core halted and	I _{DD}	LFO Running	_	26	TBD	μA
nigh frequency clocks stopped. Regulator in low-power state, Sup- oly monitor off.		LFO Stopped	_	21	TBD	μА
Stop Mode—Core halted and all clocks stopped,Internal LDO On, Supply monitor off.	I _{DD}		_	120	TBD	μA
Shutdown Mode—Core halted and all clocks stopped,Internal LDO Off, Supply monitor off.	I _{DD}		_	0.2	_	μА
Analog Peripheral Supply Currents	1			1	1	
High-Frequency Oscillator 0	I _{HFOSC0}	Operating at 24.5 MHz, T _A = 25 °C	_	55	_	μА
High-Frequency Oscillator 1	I _{HFOSC1}	Operating at 72 MHz,	_	TBD	_	μA
ng	111 0301	T _A = 25 °C				,
_ow-Frequency Oscillator	I _{LFOSC}	Operating at 80 kHz,		5	_	μA
		T _A = 25 °C				
ADC0 High Speed Mode ⁴	I _{ADC}	1 Msps, 12-bit conversions	_	TBD	TBD	μA
		Normal bias settings				
		V _{DD} = 3.0 V				
ADC0 Low Power Mode ⁴	I _{ADC}	TBD	_	TBD	TBD	μA
nternal ADC0 Reference ⁵	I _{VREFFS}	Normal Power Mode	_	680	790	μA
		Low Power Mode	_	160	210	μA
On-chip Precision Reference	I _{VREFP}		_	75	_	μΑ

4.1.9 ADC

Table 4.9. ADC

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Resolution	N _{bits}	14 Bit Mode		14		Bits
		12 Bit Mode		12		
		10 Bit Mode		10		Bits
Throughput Rate	f _S	14 Bit Mode	_	_	900	ksps
(High Speed Mode)		12 Bit Mode	_	_	1	Msps
		10 Bit Mode	_	_	1.125	Msps
Throughput Rate	f _S	14 Bit Mode	_	_	TBD	ksps
(Low Power Mode)		12 Bit Mode	_	_	TBD	ksps
		10 Bit Mode	_	_	TBD	ksps
Tracking Time	t _{TRK}	High Speed Mode	217.8 ¹	_	_	ns
		Low Power Mode	450	_	_	ns
Power-On Time	t _{PWR}		1.2	_	_	μs
SAR Clock Frequency	f _{SAR}	High Speed Mode	_	_	18.36	MHz
		Low Power Mode	_	_	TBD	MHz
Conversion Time ²	t _{CNV}	14-Bit Conversion,		0.81		μs
		SAR Clock =18 MHz,				
		System Clock = 72 MHz.				
		12-Bit Conversion,		0.7		
		SAR Clock =18 MHz,				
		System Clock = 72 MHz.				
		10-Bit Conversion,		0.59		μs
		SAR Clock =18 MHz,				
		System Clock = 72 MHz.				
Sample/Hold Capacitor	C _{SAR}	Gain = 1	_	5.2	_	pF
		Gain = 0.75	_	3.9	_	pF
		Gain = 0.5	_	2.6	_	pF
		Gain = 0.25	_	1.3	_	pF
Input Pin Capacitance	C _{IN}	High Quality Input	_	TBD	_	pF
		Normal Input	_	20	_	pF
Input Mux Impedance	R _{MUX}	High Quality Input		TBD	_	Ω
		Normal Input	_	550	_	Ω
Voltage Reference Range	V _{REF}		1		V _{IO}	V
Input Voltage Range ³	V _{IN}	Gain = 1	0	_	V _{REF} / Gain	V

4.1.13 Comparators

Table 4.13. Comparators

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Response Time, CPMD = 00	t _{RESP0}	+100 mV Differential	_	100	_	ns
(Highest Speed)		-100 mV Differential	_	150	_	ns
Response Time, CPMD = 11 (Low-	t _{RESP3}	+100 mV Differential	_	1.5	_	μs
est Power)		-100 mV Differential	_	3.5	_	μs
Positive Hysteresis	HYS _{CP+}	CPHYP = 00	_	0.4	_	mV
Mode 0 (CPMD = 00)		CPHYP = 01	_	8	_	mV
		CPHYP = 10	_	16	_	mV
		CPHYP = 11	_	32	_	mV
Negative Hysteresis	HYS _{CP} -	CPHYN = 00	_	-0.4	_	mV
Mode 0 (CPMD = 00)		CPHYN = 01	_	-8	_	mV
		CPHYN = 10	_	-16	_	mV
		CPHYN = 11	_	-32	_	mV
Positive Hysteresis	HYS _{CP+}	CPHYP = 00	_	0.5	_	mV
Mode 1 (CPMD = 01)		CPHYP = 01	_	6	_	mV
		CPHYP = 10	_	12	_	mV
		CPHYP = 11	_	24	_	mV
Negative Hysteresis	HYS _{CP} -	CPHYN = 00	_	-0.5	_	mV
Mode 1 (CPMD = 01)		CPHYN = 01	_	-6	_	mV
		CPHYN = 10	_	-12	_	mV
		CPHYN = 11	_	-24	_	mV
Positive Hysteresis	HYS _{CP+}	CPHYP = 00	_	0.7	_	mV
Mode 2 (CPMD = 10)		CPHYP = 01	_	4.5	_	mV
		CPHYP = 10	_	9	_	mV
		CPHYP = 11	_	18	_	mV
Negative Hysteresis	HYS _{CP} -	CPHYN = 00	_	-0.6	_	mV
Mode 2 (CPMD = 10)		CPHYN = 01	_	-4.5	_	mV
		CPHYN = 10	_	-9	_	mV
		CPHYN = 11	_	-18	_	mV
Positive Hysteresis	HYS _{CP+}	CPHYP = 00	_	1.5	_	mV
Mode 3 (CPMD = 11)		CPHYP = 01	_	4	_	mV
		CPHYP = 10	_	8	_	mV
		CPHYP = 11	_	16	_	mV

6. Pin Definitions

6.1 EFM8LB1x-QFN32 Pin Definitions

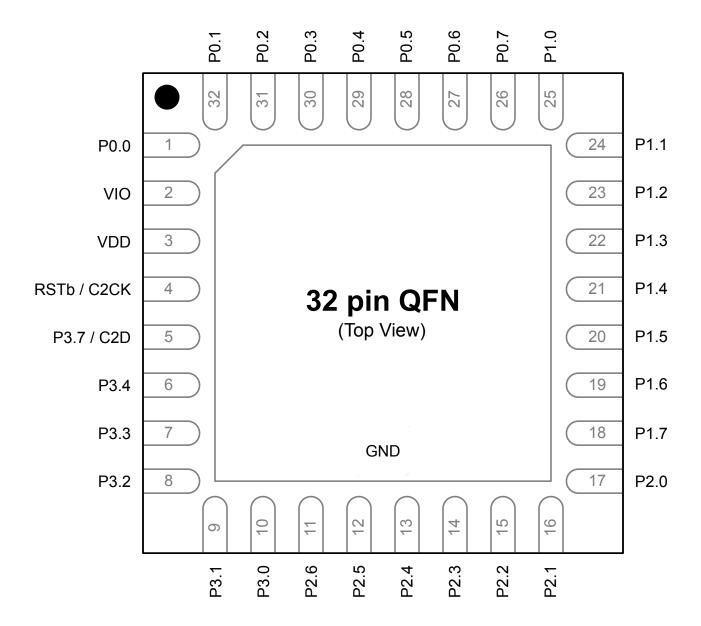


Figure 6.1. EFM8LB1x-QFN32 Pinout

Table 6.1. Pin Definitions for EFM8LB1x-QFN32

Pin Number	Pin Name	Description	Crossbar Capability	Additional Digital Functions	Analog Functions
1	P0.0	Multifunction I/O	Yes	P0MAT.0	VREF
				INT0.0	
				INT1.0	
				CLU0A.8	
				CLU2A.8	
				CLU3B.8	
2	VIO	I/O Supply Power Input			
3	VDD	Supply Power Input			
4	RSTb /	Active-low Reset /			
	C2CK	C2 Debug Clock			
5	P3.7 /	Multifunction I/O /			
	C2D	C2 Debug Data			
6	P3.4	Multifunction I/O			
7	P3.3	Multifunction I/O			DAC3
8	P3.2	Multifunction I/O			DAC2
9	P3.1	Multifunction I/O			DAC1
10	P3.0	Multifunction I/O			DAC0
11	P2.6	Multifunction I/O			ADC0.19
					CMP1P.8
					CMP1N.8
12	P2.5	Multifunction I/O		CLU3OUT	ADC0.18
					CMP1P.7
					CMP1N.7
13	P2.4	Multifunction I/O			ADC0.17
					CMP1P.6
					CMP1N.6
14	P2.3	Multifunction I/O	Yes	P2MAT.3	ADC0.16
				CLU1B.15	CMP1P.5
				CLU2B.15	CMP1N.5
				CLU3A.15	

Pin Number	Pin Name	Description	Crossbar Capability	Additional Digital Functions	Analog Functions
28	P0.5	Multifunction I/O	Yes	P0MAT.5	ADC0.3
				INT0.5	CMP0P.3
				INT1.5	CMP0N.3
				UART0_RX	
				CLU0B.10	
				CLU1A.9	
29	P0.4	Multifunction I/O	Yes	P0MAT.4	ADC0.2
				INT0.4	CMP0P.2
				INT1.4	CMP0N.2
				UART0_TX	
				CLU0A.10	
				CLU1A.8	
30	P0.3	Multifunction I/O	Yes	P0MAT.3	XTAL2
				EXTCLK	
				INT0.3	
				INT1.3	
				CLU0B.9	
				CLU2B.10	
				CLU3A.9	
31	P0.2	Multifunction I/O	Yes	P0MAT.2	XTAL1
				INT0.2	ADC0.1
				INT1.2	CMP0P.1
				CLU0OUT	CMP0N.1
				CLU0A.9	
				CLU2B.8	
				CLU3A.8	
32	P0.1	Multifunction I/O	Yes	P0MAT.1	ADC0.0
				INT0.1	CMP0P.0
				INT1.1	CMP0N.0
				CLU0B.8	AGND
				CLU2A.9	
				CLU3B.9	
Center	GND	Ground			

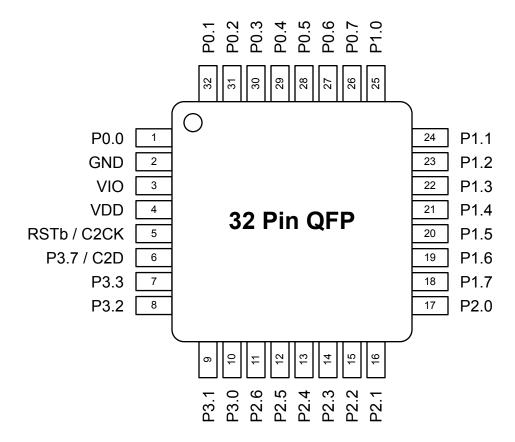


Figure 6.2. EFM8LB1x-QFP32 Pinout

Table 6.2. Pin Definitions for EFM8LB1x-QFP32

Pin Number	Pin Name	Description	Crossbar Capability	Additional Digital Functions	Analog Functions
1	P0.0	Multifunction I/O	Yes	P0MAT.0	VREF
				INT0.0	
				INT1.0	
				CLU0A.8	
				CLU2A.8	
				CLU3B.8	
2	GND	Ground			
3	VIO	I/O Supply Power Input			
4	VDD	Supply Power Input			
5	RSTb /	Active-low Reset /			
	C2CK	C2 Debug Clock			

6.4 EFM8LB1x-QSOP24 Pin Definitions

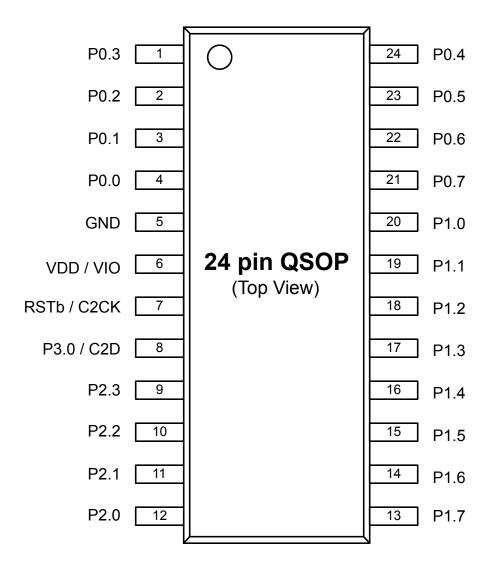


Figure 6.4. EFM8LB1x-QSOP24 Pinout

Table 6.4. Pin Definitions for EFM8LB1x-QSOP24

Pin Number	Pin Name	Description	Crossbar Capability	Additional Digital Functions	Analog Functions
1	P0.3	Multifunction I/O	Yes	P0MAT.3	XTAL2
				EXTCLK	
				INT0.3	
				INT1.3	
				CLU0B.9	
				CLU2B.10	
				CLU3A.9	

Pin Number	Pin Name	Description	Crossbar Capability	Additional Digital Functions	Analog Functions
2	P0.2	Multifunction I/O	Yes	P0MAT.2	XTAL1
				INT0.2	ADC0.1
				INT1.2	CMP0P.1
				CLU0OUT	CMP0N.1
				CLU0A.9	
				CLU2B.8	
				CLU3A.8	
3	P0.1	Multifunction I/O	Yes	P0MAT.1	ADC0.0
				INT0.1	CMP0P.0
				INT1.1	CMP0N.0
				CLU0B.8	AGND
				CLU2A.9	
				CLU3B.9	
4	P0.0	Multifunction I/O	Yes	P0MAT.0	VREF
				INT0.0	
				INT1.0	
				CLU0A.8	
				CLU2A.8	
				CLU3B.8	
5	GND	Ground			
6	VDD / VIO	Supply Power Input			
7	RSTb /	Active-low Reset /			
	C2CK	C2 Debug Clock			
8	P3.0 /	Multifunction I/O /			
	C2D	C2 Debug Data			
9	P2.3	Multifunction I/O	Yes	P2MAT.3	DAC3
				CLU1B.15	
				CLU2B.15	
				CLU3A.15	
10	P2.2	Multifunction I/O	Yes	P2MAT.2	DAC2
				CLU1A.15	
				CLU2B.14	
				CLU3A.14	

Pin Number	Pin Name	Description	Crossbar Capability	Additional Digital Functions	Analog Functions
24	P0.4	Multifunction I/O	Yes	P0MAT.4	ADC0.2
				INT0.4	CMP0P.2
				INT1.4	CMP0N.2
				UART0_TX	
				CLU0A.10	
				CLU1A.8	

8.2 QFP32 PCB Land Pattern

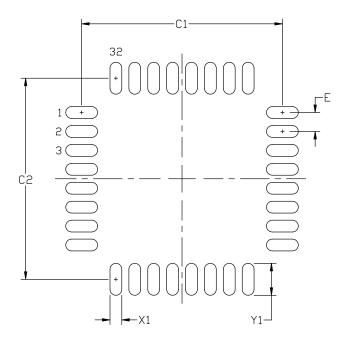


Figure 8.2. QFP32 PCB Land Pattern Drawing

Table 8.2. QFP32 PCB Land Pattern Dimensions

Dimension	Min	Мах			
C1	8.40	8.50			
C2	8.40	8.50			
Е	0.80 BSC				
X1	0.55				
Y1	1.5				

Note:

- 1. All dimensions shown are in millimeters (mm) unless otherwise noted.
- 2. This Land Pattern Design is based on the IPC-7351 guidelines.
- 3. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be $60 \mu m$ minimum, all the way around the pad.
- 4. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release.
- 5. The stencil thickness should be 0.125 mm (5 mils).
- 6. The ratio of stencil aperture to land pad size should be 1:1 for all perimeter pads.
- 7. A No-Clean, Type-3 solder paste is recommended.
- 8. The recommended card reflow profile is per the JEDEC/IPC J-STD-020C specification for Small Body Components.

8.3 QFP32 Package Marking

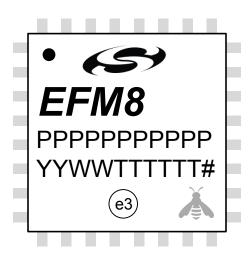


Figure 8.3. QFP32 Package Marking

The package marking consists of:

- PPPPPPP The part number designation.
- TTTTTT A trace or manufacturing code.
- YY The last 2 digits of the assembly year.
- WW The 2-digit workweek when the device was assembled.
- # The device revision (A, B, etc.).

9. QFN24 Package Specifications

9.1 QFN24 Package Dimensions

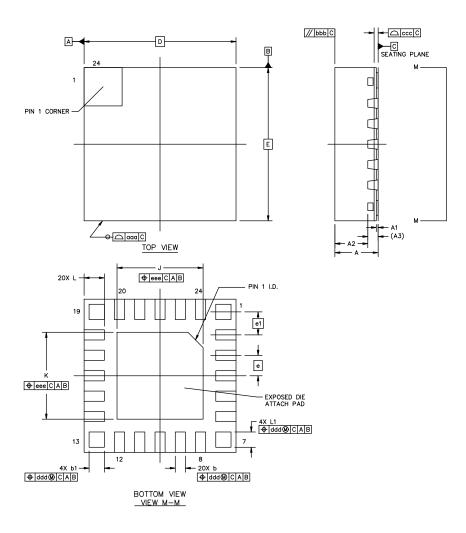


Figure 9.1. QFN24 Package Drawing

Table 9.1. QFN24 Package Dimensions

Dimension	Min	Тур	Max		
А	0.8	0.85	0.9		
A1	0.00	_	0.05		
A2	_	0.65	_		
A3	0.203 REF				
b	0.15	0.2	0.25		
b1	0.25 0.3 0.35				
D	3.00 BSC				
Е		3.00 BSC			

9.2 QFN24 PCB Land Pattern

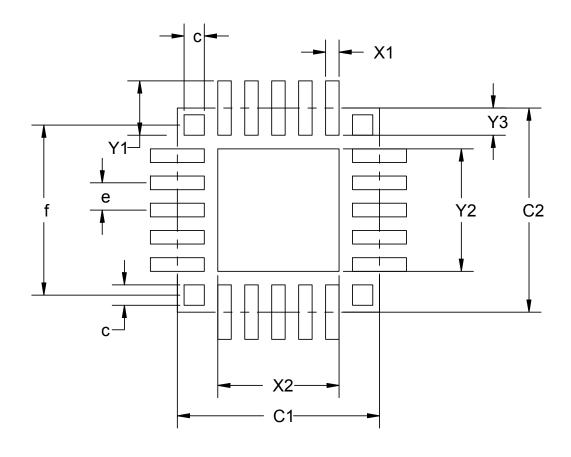


Figure 9.2. QFN24 PCB Land Pattern Drawing

Table 9.2. QFN24 PCB Land Pattern Dimensions

Dimension	Min	Max	
C1	3.00		
C2	3.00		
е	0.4 REF		
X1	0.20		
X2	1.80		
Y1	0.80		
Y2	1.80		
Y3	0.4		
f	2.50 REF		
С	0.25	0.35	

10. QSOP24 Package Specifications

10.1 QSOP24 Package Dimensions

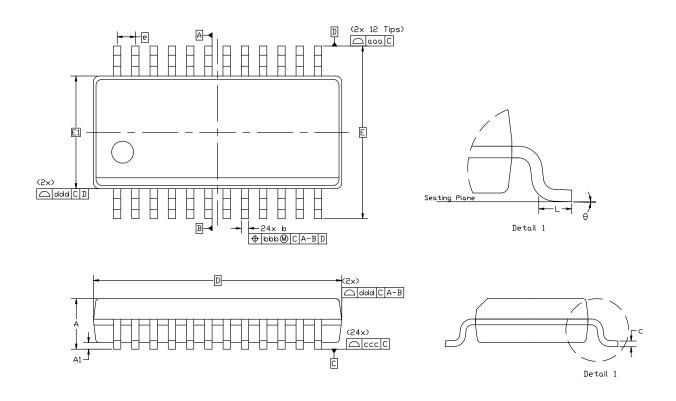


Figure 10.1. QSOP24 Package Drawing

Table 10.1. QSOP24 Package Dimensions

Dimension	Min	Тур	Max
A	_	_	1.75
A1	0.10	_	0.25
b	0.20	_	0.30
С	0.10	_	0.25
D	8.65 BSC		
Е	6.00 BSC		
E1	3.90 BSC		
е	0.635 BSC		
L	0.40	_	1.27
theta	0°	_	8°

10.2 QSOP24 PCB Land Pattern

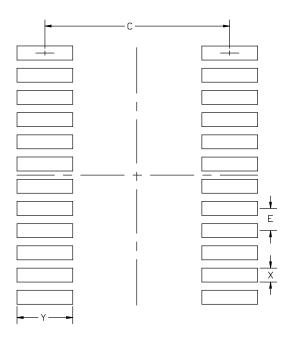


Figure 10.2. QSOP24 PCB Land Pattern Drawing

Table 10.2. QSOP24 PCB Land Pattern Dimensions

Dimension	Min	Мах	
С	5.20	5.30	
Е	0.635 BSC		
Х	0.30	0.40	
Y	1.50	1.60	

Note:

- 1. All dimensions shown are in millimeters (mm) unless otherwise noted.
- 2. This land pattern design is based on the IPC-7351 guidelines.
- 3. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60 μ m minimum, all the way around the pad.
- 4. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release.
- 5. The stencil thickness should be 0.125 mm (5 mils).
- 6. The ratio of stencil aperture to land pad size should be 1:1 for all perimeter pads.
- 7. A No-Clean, Type-3 solder paste is recommended.
- 8. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.

10.3 QSOP24 Package Marking

Figure 10.3. QSOP24 Package Marking

The package marking consists of:

- PPPPPPP The part number designation.
- TTTTTT A trace or manufacturing code.
- YY The last 2 digits of the assembly year.
- WW The 2-digit workweek when the device was assembled.
- # The device revision (A, B, etc.).