Welcome to <u>E-XFL.COM</u>

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Discontinued at Digi-Key
Core Processor	CIP-51 8051
Core Size	8-Bit
Speed	72MHz
Connectivity	I ² C, SMBus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	28
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4.25K x 8
Voltage - Supply (Vcc/Vdd)	2.2V ~ 3.6V
Data Converters	A/D 20x14b; D/A 4x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	32-TQFP
Supplier Device Package	32-QFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/efm8lb12f64e-a-qfp32

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.4 Clocking

The CPU core and peripheral subsystem may be clocked by both internal and external oscillator resources. By default, the system clock comes up running from the 24.5 MHz oscillator divided by 8.

The clock control system offers the following features:

- · Provides clock to core and peripherals.
- 24.5 MHz internal oscillator (HFOSC0), accurate to ±2% over supply and temperature corners.
- 72 MHz internal oscillator (HFOSC1), accurate to ±2% over supply and temperature corners.
- 80 kHz low-frequency oscillator (LFOSC0).
- · External Crystal / RC / C Oscillator.
- · External CMOS clock input (EXTCLK).
- · Clock divider with eight settings for flexible clock scaling:
 - Divide the selected clock source by 1, 2, 4, 8, 16, 32, 64, or 128.
 - HFOSC0 and HFOSC1 include 1.5x pre-scalers for further flexibility.

3.5 Counters/Timers and PWM

Programmable Counter Array (PCA0)

The programmable counter array (PCA) provides multiple channels of enhanced timer and PWM functionality while requiring less CPU intervention than standard counter/timers. The PCA consists of a dedicated 16-bit counter/timer and one 16-bit capture/compare module for each channel. The counter/timer is driven by a programmable timebase that has flexible external and internal clocking options. Each capture/compare module may be configured to operate independently in one of five modes: Edge-Triggered Capture, Software Timer, High-Speed Output, Frequency Output, or Pulse-Width Modulated (PWM) Output. Each capture/compare module has its own associated I/O line (CEXn) which is routed through the crossbar to port I/O when enabled.

- · 16-bit time base
- · Programmable clock divisor and clock source selection
- · Up to six independently-configurable channels
- 8, 9, 10, 11 and 16-bit PWM modes (center or edge-aligned operation)
- Output polarity control
- Frequency output mode
- Capture on rising, falling or any edge
- Compare function for arbitrary waveform generation
- · Software timer (internal compare) mode
- · Can accept hardware "kill" signal from comparator 0 or comparator 1

Timers (Timer 0, Timer 1, Timer 2, Timer 3, Timer 4, and Timer 5)

Several counter/timers are included in the device: two are 16-bit counter/timers compatible with those found in the standard 8051, and the rest are 16-bit auto-reload timers for timing peripherals or for general purpose use. These timers can be used to measure time intervals, count external events and generate periodic interrupt requests. Timer 0 and Timer 1 are nearly identical and have four primary modes of operation. The other timers offer both 16-bit and split 8-bit timer functionality with auto-reload and capture capabilities.

Timer 0 and Timer 1 include the following features:

- Standard 8051 timers, supporting backwards-compatibility with firmware and hardware.
- Clock sources include SYSCLK, SYSCLK divided by 12, 4, or 48, the External Clock divided by 8, or an external pin.
- · 8-bit auto-reload counter/timer mode
- 13-bit counter/timer mode
- 16-bit counter/timer mode
- Dual 8-bit counter/timer mode (Timer 0)

Timer 2, Timer 3, Timer 4, and Timer 5 are 16-bit timers including the following features:

- · Clock sources for all timers include SYSCLK, SYSCLK divided by 12, or the External Clock divided by 8
- · LFOSC0 divided by 8 may be used to clock Timer 3 and Timer 4 in active or suspend/snooze power modes
- Timer 4 is a low-power wake source, and can be chained together with Timer 3
- 16-bit auto-reload timer mode
- Dual 8-bit auto-reload timer mode
- · External pin capture
- · LFOSC0 capture
- Comparator 0 capture
- Configurable Logic output capture

Watchdog Timer (WDT0)

The device includes a programmable watchdog timer (WDT) running off the low-frequency oscillator. A WDT overflow forces the MCU into the reset state. To prevent the reset, the WDT must be restarted by application software before overflow. If the system experiences a software or hardware malfunction preventing the software from restarting the WDT, the WDT overflows and causes a reset. Following a reset, the WDT is automatically enabled and running with the default maximum time interval. If needed, the WDT can be disabled by system software or locked on to prevent accidental disabling. Once locked, the WDT cannot be disabled until the next system reset. The state of the RST pin is unaffected by this reset.

The Watchdog Timer has the following features:

- · Programmable timeout interval
- · Runs from the low-frequency oscillator
- · Lock-out feature to prevent any modification until a system reset

3.6 Communications and Other Digital Peripherals

Universal Asynchronous Receiver/Transmitter (UART0)

UART0 is an asynchronous, full duplex serial port offering modes 1 and 3 of the standard 8051 UART. Enhanced baud rate support allows a wide range of clock sources to generate standard baud rates. Received data buffering allows UART0 to start reception of a second incoming data byte before software has finished reading the previous data byte.

The UART module provides the following features:

- · Asynchronous transmissions and receptions
- Baud rates up to SYSCLK/2 (transmit) or SYSCLK/8 (receive)
- 8- or 9-bit data
- · Automatic start and stop generation
- · Single-byte buffer on transmit and receive

Universal Asynchronous Receiver/Transmitter (UART1)

UART1 is an asynchronous, full duplex serial port offering a variety of data formatting options. A dedicated baud rate generator with a 16-bit timer and selectable prescaler is included, which can generate a wide range of baud rates. A received data FIFO allows UART1 to receive multiple bytes before data is lost and an overflow occurs.

UART1 provides the following features:

- · Asynchronous transmissions and receptions
- Dedicated baud rate generator supports baud rates up to SYSCLK/2 (transmit) or SYSCLK/8 (receive)
- 5, 6, 7, 8, or 9 bit data
- Automatic start and stop generation
- Automatic parity generation and checking
- · Single-byte buffer on transmit and receive
- Auto-baud detection
- · LIN break and sync field detection
- CTS / RTS hardware flow control

Serial Peripheral Interface (SPI0)

The serial peripheral interface (SPI) module provides access to a flexible, full-duplex synchronous serial bus. The SPI can operate as a master or slave device in both 3-wire or 4-wire modes, and supports multiple masters and slaves on a single SPI bus. The slave-select (NSS) signal can be configured as an input to select the SPI in slave mode, or to disable master mode operation in a multi-master environment, avoiding contention on the SPI bus when more than one master attempts simultaneous data transfers. NSS can also be configured as a firmware-controlled chip-select output in master mode, or disable to reduce the number of pins required. Additional general purpose port I/O pins can be used to select multiple slave devices in master mode.

- Supports 3- or 4-wire master or slave modes
- · Supports external clock frequencies up to 12 Mbps in master or slave mode
- · Support for all clock phase and polarity modes
- 8-bit programmable clock rate (master)
- Programmable receive timeout (slave)
- · Two byte FIFO on transmit and receive
- · Can operate in suspend or snooze modes and wake the CPU on reception of a byte
- · Support for multiple masters on the same data lines

System Management Bus / I2C (SMB0)

The SMBus I/O interface is a two-wire, bi-directional serial bus. The SMBus is compliant with the System Management Bus Specification, version 1.1, and compatible with the I²C serial bus.

The SMBus module includes the following features:

- · Standard (up to 100 kbps) and Fast (400 kbps) transfer speeds
- · Support for master, slave, and multi-master modes
- Hardware synchronization and arbitration for multi-master mode
- · Clock low extending (clock stretching) to interface with faster masters
- · Hardware support for 7-bit slave and general call address recognition
- Firmware support for 10-bit slave address decoding
- · Ability to inhibit all slave states
- Programmable data setup/hold times
- Transmit and receive buffers to help increase throughput in faster applications

4. Electrical Specifications

4.1 Electrical Characteristics

All electrical parameters in all tables are specified under the conditions listed in Table 4.1 Recommended Operating Conditions on page 13, unless stated otherwise.

Table 4.1. Recommended Operating Conditions

4.1.1 Recommended Operating Conditions

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Operating Supply Voltage on VDD	V _{DD}		2.2	_	3.6	V
Operating Supply Voltage on VIO ^{2,} 3	V _{IO}		TBD		V _{DD}	V
System Clock Frequency	f _{SYSCLK}		0	—	73.5	MHz
Operating Ambient Temperature	T _A		-40	—	105	°C
Noto:						•

Note:

1. All voltages with respect to GND

2. In certain package configurations, the VIO and VDD supplies are bonded to the same pin.

3. GPIO levels are undefined whenever VIO is less than 1 V.

4.1.2 Power Consumption

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Digital Core Supply Current						
Normal Mode-Full speed with code	I _{DD}	F _{SYSCLK} = 72 MHz ²	_	TBD	TBD	mA
executing from flash		F _{SYSCLK} = 24.5 MHz ²		4.5	TBD	mA
		F _{SYSCLK} = 1.53 MHz ²		615	TBD	μA
		F _{SYSCLK} = 80 kHz ³		155	TBD	μA
dle Mode-Core halted with periph-	I _{DD}	F _{SYSCLK} = 72 MHz ²		TBD	TBD	mA
erals running		F _{SYSCLK} = 24.5 MHz ²		2.8	TBD	mA
		F _{SYSCLK} = 1.53 MHz ²		455	TBD	μA
		F _{SYSCLK} = 80 kHz ³		145	TBD	μA
Suspend Mode-Core halted and	I _{DD}	LFO Running		125	TBD	μA
high frequency clocks stopped, Supply monitor off.		LFO Stopped		120	TBD	μA
Snooze Mode-Core halted and	I _{DD}	LFO Running		26	TBD	μA
high frequency clocks stopped. Regulator in low-power state, Sup- ply monitor off.		LFO Stopped	-	21	TBD	μΑ
Stop Mode—Core halted and all clocks stopped,Internal LDO On, Supply monitor off.	I _{DD}		_	120	TBD	μA
Shutdown Mode—Core halted and all clocks stopped,Internal LDO Off, Supply monitor off.	IDD		_	0.2	_	μA
Analog Peripheral Supply Currents						
High-Frequency Oscillator 0	I _{HFOSC0}	Operating at 24.5 MHz, $T_A = 25 \ ^{\circ}C$	_	55	_	μA
High-Frequency Oscillator 1	I _{HFOSC1}	Operating at 72 MHz, $T_A = 25 \ ^{\circ}C$	_	TBD		μA
ow-Frequency Oscillator	ILFOSC	Operating at 80 kHz,		5		μA
ADC0 High Speed Mode ⁴	I _{ADC}	T _A = 25 °C 1 Msps, 12-bit conversions		TBD	TBD	μA
		Normal bias settings				
		V _{DD} = 3.0 V				
ADC0 Low Power Mode ⁴	I _{ADC}	TBD	—	TBD	TBD	μA
nternal ADC0 Reference ⁵	I _{VREFFS}	Normal Power Mode	-	680	790	μA
		Low Power Mode		160	210	μA
On-chip Precision Reference	I _{VREFP}		_	75	_	μA

Table 4.2. Power Consumption

4.1.4 Flash Memory

Parameter	Symbol	Test Condition	Min	Тур	Max	Units
Write Time ^{1 ,2}	t _{WRITE}	One Byte,	19	20	21	μs
		F _{SYSCLK} = 24.5 MHz				
Erase Time ^{1,2}	t _{ERASE}	One Page,	5.2	5.35	5.5	ms
		F _{SYSCLK} = 24.5 MHz				
V _{DD} Voltage During Programming ³	V _{PROG}		2.2	_	3.6	V
Endurance (Write/Erase Cycles)	N _{WE}		20k	100k		Cycles

Table 4.4. Flash Memory

Note:

1. Does not include sequencing time before and after the write/erase operation, which may be multiple SYSCLK cycles.

2. The internal High-Frequency Oscillator 0 has a programmable output frequency, which is factory programmed to 24.5 MHz. If user firmware adjusts the oscillator speed, it must be between 22 and 25 MHz during any flash write or erase operation. It is recommended to write the HFO0CAL register back to its reset value when writing or erasing flash.

3. Flash can be safely programmed at any voltage above the supply monitor threshold (V_{VDDM}).

4. Data Retention Information is published in the Quarterly Quality and Reliability Report.

4.1.5 Power Management Timing

Table 4.5. Power Management Timing

Parameter	Symbol	Test Condition	Min	Тур	Max	Units
Idle Mode Wake-up Time	t _{IDLEWK}		2	_	3	SYSCLKs
Suspend Mode Wake-up Time	t _{SUS-}	SYSCLK = HFOSC0	_	170	_	ns
	PENDWK	CLKDIV = 0x00				
Snooze Mode Wake-up Time t _{SLEE}		SYSCLK = HFOSC0	—	12	—	μs
		CLKDIV = 0x00				

Table 4.9. ADC

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Resolution	N _{bits}	14 Bit Mode		14		Bits
		12 Bit Mode		12		Bits
		10 Bit Mode		10		Bits
Throughput Rate	f _S	14 Bit Mode	_		900	ksps
(High Speed Mode)		12 Bit Mode	_	—	1	Msps
		10 Bit Mode	_		1.125	Msps
Throughput Rate	f _S	14 Bit Mode	_	_	TBD	ksps
(Low Power Mode)		12 Bit Mode	_	_	TBD	ksps
		10 Bit Mode	_	_	TBD	ksps
Tracking Time	t _{TRK}	High Speed Mode	217.8 ¹	_	_	ns
		Low Power Mode	450	_	_	ns
Power-On Time	t _{PWR}		1.2	_	_	μs
SAR Clock Frequency	f _{SAR}	High Speed Mode	_	_	18.36	MHz
		Low Power Mode	_	_	TBD	MHz
Conversion Time ²	t _{CNV}	14-Bit Conversion,		0.81		μs
		SAR Clock =18 MHz,				
		System Clock = 72 MHz.				
		12-Bit Conversion,		0.7		
		SAR Clock =18 MHz,				
		System Clock = 72 MHz.				
		10-Bit Conversion,		0.59		μs
		SAR Clock =18 MHz,				
		System Clock = 72 MHz.				
Sample/Hold Capacitor	C _{SAR}	Gain = 1		5.2	_	pF
		Gain = 0.75	_	3.9	_	pF
		Gain = 0.5	_	2.6	_	pF
		Gain = 0.25	_	1.3	_	pF
Input Pin Capacitance	C _{IN}	High Quality Input		TBD	_	pF
		Normal Input	_	20	—	pF
Input Mux Impedance	R _{MUX}	High Quality Input	_	TBD	_	Ω
		Normal Input	_	550	_	Ω
Voltage Reference Range	V _{REF}		1	_	V _{IO}	V
Input Voltage Range ³		Gain = 1	0	_	V _{REF} / Gain	V

4.1.11 Temperature Sensor

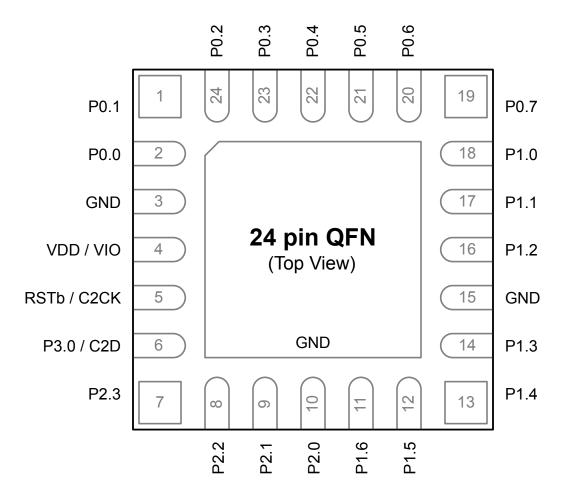
Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Uncalibrated Offset	V _{OFF}	T _A = 0 °C	—	TBD	_	mV
Uncalibrated Offset Error ¹	E _{OFF}	T _A = 0 °C	_	TBD	—	mV
Slope	М		_	2.83		mV/°C
Slope Error ¹	E _M		_	TBD	_	μV/°C
Linearity			—	TBD	—	°C
Turn-on Time			_	TBD	_	μs
Temp Sensor Error Using Typical		T = 0 °C to 70 °C	TBD	_	TBD	°C
Slope and Factory-Calibrated Off- set ^{2, 3}		T = -20 °C to 85 °C	-3	_	3	°C
		T = -40 °C to 105 °C	TBD	—	TBD	°C

Table 4.11. Temperature Sensor

Note:

1. Represents one standard deviation from the mean.

2. The factory-calibrated offset value is stored in the read-only area of flash in locations 0xFFD4 (low byte) and 0xFFD5 (high byte). The 14-bit result represents the output of the ADC when sampling the temp sensor using the 1.65 V internal voltage reference.


3. Temp sensor error is based upon characterization and is not tested across temperature in production. The values represent three standard deviations above and below the mean.

Pin Number	Pin Name	Description	Crossbar Capability	Additional Digital Functions	Analog Functions
1	P0.0	Multifunction I/O	Yes	P0MAT.0	VREF
				INT0.0	
				INT1.0	
				CLU0A.8	
				CLU2A.8	
				CLU3B.8	
2	VIO	I/O Supply Power Input			
3	VDD	Supply Power Input			
4	RSTb /	Active-low Reset /			
	C2CK	C2 Debug Clock			
5	P3.7 /	Multifunction I/O /			
	C2D	C2 Debug Data			
6	P3.4	Multifunction I/O			
7	P3.3	Multifunction I/O			DAC3
8	P3.2	Multifunction I/O			DAC2
9	P3.1	Multifunction I/O			DAC1
10	P3.0	Multifunction I/O			DAC0
11	P2.6	Multifunction I/O			ADC0.19
					CMP1P.8
					CMP1N.8
12	P2.5	Multifunction I/O		CLU3OUT	ADC0.18
					CMP1P.7
					CMP1N.7
13	P2.4	Multifunction I/O			ADC0.17
					CMP1P.6
					CMP1N.6
14	P2.3	Multifunction I/O	Yes	P2MAT.3	ADC0.16
				CLU1B.15	CMP1P.5
				CLU2B.15	CMP1N.5
				CLU3A.15	

Table 6.1. Pin Definitions for EFM8LB1x-QFN32

Pin Number	Pin Name	Description	Crossbar Capability	Additional Digital Functions	Analog Functions
22	P1.3	Multifunction I/O	Yes	P1MAT.3	ADC0.9
				CLU0B.13	
				CLU1B.11	
				CLU2B.11	
				CLU3A.13	
23	P1.2	Multifunction I/O	Yes	P1MAT.2	ADC0.8
				CLU0A.13	CMP0P.8
				CLU1A.11	CMP0N.8
				CLU2B.10	
				CLU3A.12	
				CLU3B.13	
24	P1.1	Multifunction I/O	Yes	P1MAT.1	ADC0.7
				CLU0B.12	CMP0P.7
				CLU1B.10	CMP0N.7
				CLU2A.11	
				CLU3B.12	
25	P1.0	Multifunction I/O	Yes	P1MAT.0	ADC0.6
				CLU1OUT	CMP0P.6
				CLU0A.12	CMP0N.6
				CLU1A.10	CMP1P.1
				CLU2A.10	CMP1N.1
26	P0.7	Multifunction I/O	Yes	P0MAT.7	ADC0.5
				INT0.7	CMP0P.5
				INT1.7	CMP0N.5
				CLU0B.11	CMP1P.0
				CLU1B.9	CMP1N.0
				CLU3A.11	
27	P0.6	Multifunction I/O	Yes	P0MAT.6	ADC0.4
				CNVSTR	CMP0P.4
				INT0.6	CMP0N.4
				INT1.6	
				CLU0A.11	
				CLU1B.8	
				CLU3A.10	

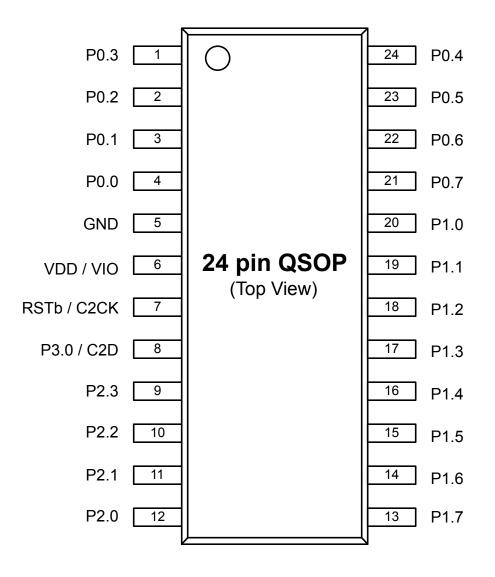

Pin Number	Pin Name	Description	Crossbar Capability	Additional Digital Functions	Analog Functions
25	P1.0	Multifunction I/O	Yes	P1MAT.0	ADC0.6
				CLU1OUT	CMP0P.6
				CLU0A.12	CMP0N.6
				CLU1A.10	CMP1P.1
				CLU2A.10	CMP1N.1
26	P0.7	Multifunction I/O	Yes	P0MAT.7	ADC0.5
				INT0.7	CMP0P.5
				INT1.7	CMP0N.5
				CLU0B.11	CMP1P.0
				CLU1B.9	CMP1N.0
				CLU3A.11	
27	P0.6	Multifunction I/O	Yes	P0MAT.6	ADC0.4
				CNVSTR	CMP0P.4
				INT0.6	CMP0N.4
				INT1.6	
				CLU0A.11	
				CLU1B.8	
				CLU3A.10	
28	P0.5	Multifunction I/O	Yes	P0MAT.5	ADC0.3
				INT0.5	CMP0P.3
				INT1.5	CMP0N.3
				UART0_RX	
				CLU0B.10	
				CLU1A.9	
29	P0.4	Multifunction I/O	Yes	P0MAT.4	ADC0.2
				INT0.4	CMP0P.2
				INT1.4	CMP0N.2
				UART0_TX	
				CLU0A.10	
				CLU1A.8	

Table 6.3. P	Pin Definitions	for EFM8LB1x-QF	N24
--------------	-----------------	-----------------	-----

Pin Number	Pin Name	Description	Crossbar Capability	Additional Digital Functions	Analog Functions
1	P0.1	Multifunction I/O	Yes	P0MAT.1	ADC0.0
				INT0.1	CMP0P.0
				INT1.1	CMP0N.0
				CLU0B.8	AGND
				CLU2A.9	
				CLU3B.9	

Table 6.4.	Pin Definitions	for EFM8LB1x-QSOP24
------------	-----------------	---------------------

Pin Number	Pin Name	Description	Crossbar Capability	Additional Digital Functions	Analog Functions
1	P0.3	Multifunction I/O	Yes	P0MAT.3	XTAL2
				EXTCLK	
				INT0.3	
				INT1.3	
				CLU0B.9	
				CLU2B.10	
				CLU3A.9	

Pin Number	Pin Name	Description	Crossbar Capability	Additional Digital Functions	Analog Functions
24	P0.4	Multifunction I/O	Yes	P0MAT.4	ADC0.2
				INT0.4	CMP0P.2
				INT1.4	CMP0N.2
				UART0_TX	
				CLU0A.10	
				CLU1A.8	

Dimension	Min	Тур	Мах			
Note:						
1. All dimensions shown are in millimeters (mm) unless otherwise noted.						
2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.						
3. This drawing conforms to JEDEC Solid State Outline MO-220.						
4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020C specification for Small Body Components.						

7.2 QFN32 PCB Land Pattern

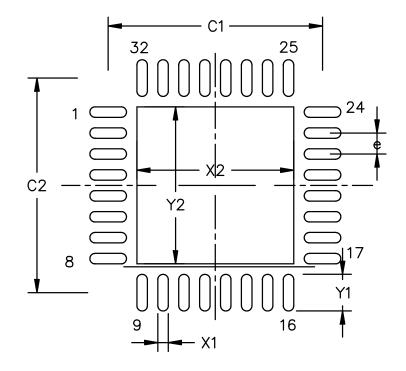


Figure 7.2. QFN32 PCB Land Pattern Drawing

Table 7.2. Q	FN32 PCB Land Pattern Dimensions
--------------	----------------------------------

Dimension	Min	Мах
C1	—	4.00
C2	—	4.00
X1	—	0.2
X2	_	2.8
Y1	—	0.75
Y2	—	2.8
е	_	0.4

8.2 QFP32 PCB Land Pattern

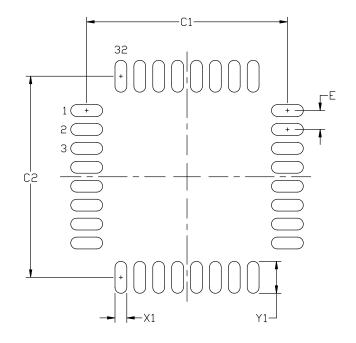


Figure 8.2. QFP32 PCB Land Pattern Drawing

Table 8.2.	QFP32 PCB La	and Pattern	Dimensions
------------	--------------	-------------	------------

Dimension	Min	Мах	
C1	8.40	8.50	
C2	8.40	8.50	
E	0.80 BSC		
X1	0.55		
Y1	1.5		

Note:

1. All dimensions shown are in millimeters (mm) unless otherwise noted.

2. This Land Pattern Design is based on the IPC-7351 guidelines.

3. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60 µm minimum, all the way around the pad.

4. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release.

5. The stencil thickness should be 0.125 mm (5 mils).

6. The ratio of stencil aperture to land pad size should be 1:1 for all perimeter pads.

7. A No-Clean, Type-3 solder paste is recommended.

8. The recommended card reflow profile is per the JEDEC/IPC J-STD-020C specification for Small Body Components.

9. QFN24 Package Specifications

9.1 QFN24 Package Dimensions

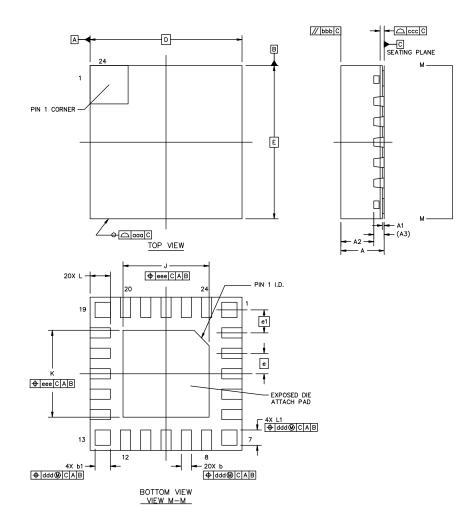


Figure 9.1. QFN24 Package Drawing

Table 9.1.	QFN24 Package Dimensions
------------	--------------------------

Dimension	Min	Тур	Мах
A	0.8	0.85	0.9
A1	0.00	_	0.05
A2	—	0.65	—
A3	0.203 REF		
b	0.15 0.2 0.25		
b1	0.25	0.3	0.35
D	3.00 BSC		
E	3.00 BSC		

10. QSOP24 Package Specifications

10.1 QSOP24 Package Dimensions

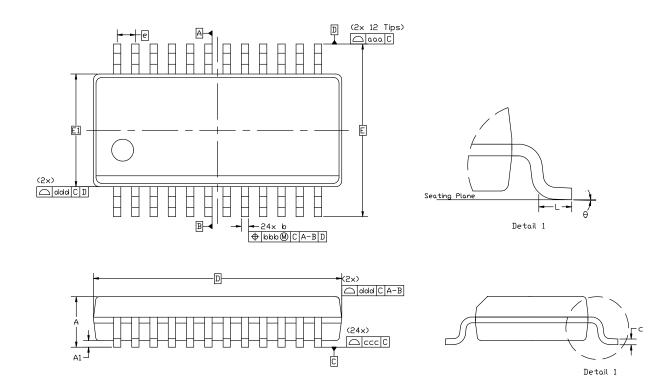


Figure 10.1. QSOP24 Package Drawing

Table 10.1. QSOP24 Package Dimensions

Dimension	Min	Тур	Мах
A	_	—	1.75
A1	0.10	—	0.25
b	0.20	_	0.30
С	0.10	_	0.25
D	8.65 BSC		
E	6.00 BSC		
E1	3.90 BSC		
е	0.635 BSC		
L	0.40 — 1.27		
theta	0°	—	8°

Figure 10.3. QSOP24 Package Marking

The package marking consists of:

- PPPPPPP The part number designation.
- TTTTTT A trace or manufacturing code.
- YY The last 2 digits of the assembly year.
- WW The 2-digit workweek when the device was assembled.
- # The device revision (A, B, etc.).