

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	180MHz
Connectivity	CANbus, EBI/EMI, I ² C, IrDA, LINbus, SAI, SD, SPDIF-Rx, SPI, UART/USART, USB, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, LVD, POR, PWM, WDT
Number of I/O	63
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	128K x 8
Voltage - Supply (Vcc/Vdd)	1.7V ~ 3.6V
Data Converters	A/D 14x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	81-UFBGA, WLCSP
Supplier Device Package	81-WLCSP (3.80x3.69)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f446mey6tr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

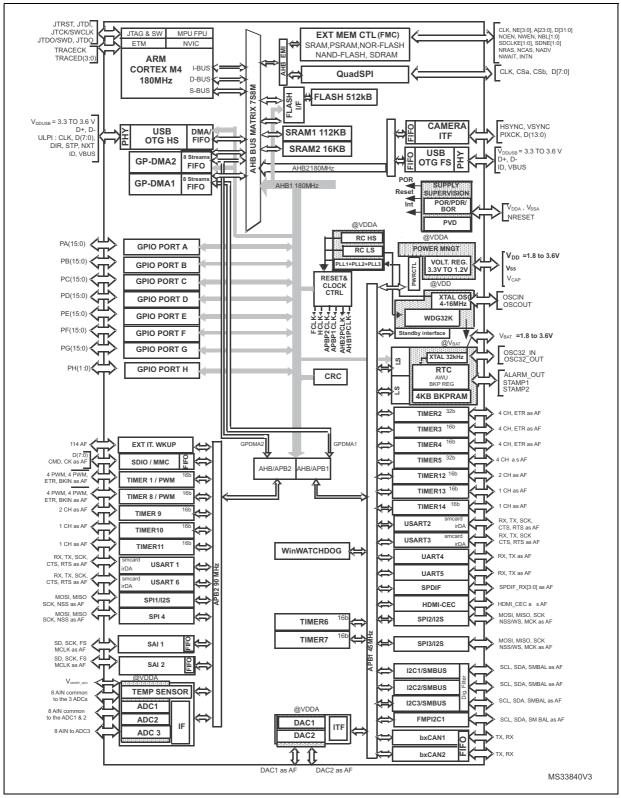


Figure 3. STM32F446xC/E block diagram

3.21.4 Independent watchdog

The independent watchdog is based on a 12-bit downcounter and 8-bit prescaler. It is clocked from an independent 32 kHz internal RC and as it operates independently from the main clock, it can operate in Stop and Standby modes. It can be used either as a watchdog to reset the device when a problem occurs, or as a free-running timer for application timeout management. It is hardware- or software-configurable through the option bytes.

3.21.5 Window watchdog

The window watchdog is based on a 7-bit downcounter that can be set as free-running. It can be used as a watchdog to reset the device when a problem occurs. It is clocked from the main clock. It has an early warning interrupt capability and the counter can be frozen in debug mode.

3.21.6 SysTick timer

This timer is dedicated to real-time operating systems, but could also be used as a standard downcounter. It features:

- A 24-bit downcounter
- Autoreload capability
- Maskable system interrupt generation when the counter reaches 0
- Programmable clock source.

3.22 Inter-integrated circuit interface (I²C)

Four I²C bus interfaces can operate in multimaster and slave modes. Three I²C can support the standard (up to 100 KHz) and fast (up to 400 KHz) modes.

One I²C can support the standard (up to 100 KHz), fast (up to 400 KHz) and fast mode plus (up to 1MHz) modes.

They (all I²C) support the 7/10-bit addressing mode and the 7-bit dual addressing mode (as slave).

A hardware CRC generation/verification is embedded.

They can be served by DMA and they support SMBus 2.0/PMBus.

The devices also include programmable analog and digital noise filters (see Table 7).

-	Analog filter	Digital filter
Pulse width of suppressed spikes		Programmable length from 1 to 15 I2C peripheral clocks

Table 7. Comparison of I2C analog and digital filters

The SPI interface can be configured to operate in TI mode for communications in master mode and slave mode.

3.25 HDMI (high-definition multimedia interface) consumer electronics control (CEC)

The devices embeds a HDMI-CEC controller that provides hardware support of consumer electronics control (CEC) (Appendix supplement 1 to the HDMI standard). This protocol provides high-level control functions between all audiovisual products in an environment. It is specified to operate at low speeds with minimum processing and memory overhead.

3.26 Inter-integrated sound (I²S)

Three standard I^2S interfaces (multiplexed with SPI1, SPI2 and SPI3) are available. They can be operated in master or slave mode, in simplex communication modes, and can be configured to operate with a 16-/32-bit resolution as an input or output channel. Audio sampling frequencies from 8 kHz up to 192 kHz are supported. When either or both of the I^2S interfaces is/are configured in master mode, the master clock can be output to the external DAC/CODEC at 256 times the sampling frequency.

All I2Sx can be served by the DMA controller.

3.27 SPDIF-RX Receiver Interface (SPDIFRX)

The SPDIF-RX peripheral, is designed to receive an S/PDIF flow compliant with IEC-60958 and IEC-61937. These standards support simple stereo streams up to high sample rate, and compressed multi-channel surround sound, such as those defined by Dolby or DTS (up to 5.1).

The main features of the SPDIF-RX are the following:

- Up to 4 inputs available
- Automatic symbol rate detection
- Maximum symbol rate: 12.288 MHz
- Stereo stream from 32 to 192 kHz supported
- Supports Audio IEC-60958 and IEC-61937, consumer applications
- Parity bit management
- Communication using DMA for audio samples
- Communication using DMA for control and user channel information
- Interrupt capabilities

The SPDIF-RX receiver provides all the necessary features to detect the symbol rate, and decode the incoming data stream.

The user can select the wanted SPDIF input, and when a valid signal will be available, the SPDIF-RX will re-sample the incoming signal, decode the Manchester stream, recognize frames, sub-frames and blocks elements. It delivers to the CPU decoded data, and associated status flags.

Additional logic functions embedded in the ADC interface allow:

- Simultaneous sample and hold
- Interleaved sample and hold

The ADC can be served by the DMA controller. An analog watchdog feature allows very precise monitoring of the converted voltage of one, some or all selected channels. An interrupt is generated when the converted voltage is outside the programmed thresholds.

To synchronize A/D conversion and timers, the ADCs could be triggered by any of TIM1, TIM2, TIM3, TIM4, TIM5, or TIM8 timer.

3.38 Temperature sensor

The temperature sensor has to generate a voltage that varies linearly with temperature. The conversion range is between 1.7 V and 3.6 V. The temperature sensor is internally connected to the same input channel as V_{BAT}, ADC1_IN18, which is used to convert the sensor output voltage into a digital value. When the temperature sensor and V_{BAT} conversion are enabled at the same time, only V_{BAT} conversion is performed.

As the offset of the temperature sensor varies from chip to chip due to process variation, the internal temperature sensor is mainly suitable for applications that detect temperature changes instead of absolute temperatures. If an accurate temperature reading is needed, then an external temperature sensor part should be used.

3.39 Digital-to-analog converter (DAC)

The two 12-bit buffered DAC channels can be used to convert two digital signals into two analog voltage signal outputs.

This dual digital Interface supports the following features:

- two DAC converters: one for each output channel
- 8-bit or 10-bit monotonic output
- left or right data alignment in 12-bit mode
- synchronized update capability
- noise-wave generation
- triangular-wave generation
- dual DAC channel independent or simultaneous conversions
- DMA capability for each channel
- external triggers for conversion
- input voltage reference V_{REF+}

Eight DAC trigger inputs are used in the device. The DAC channels are triggered through the timer update outputs that are also connected to different DMA streams.

3.40 Serial wire JTAG debug port (SWJ-DP)

The ARM SWJ-DP interface is embedded, and is a combined JTAG and serial wire debug port that enables either a serial wire debug or a JTAG probe to be connected to the target.

Debug is performed using 2 pins only instead of 5 required by the JTAG (JTAG pins could be re-use as GPIO with alternate function): the JTAG TMS and TCK pins are shared with SWDIO and SWCLK, respectively, and a specific sequence on the TMS pin is used to switch between JTAG-DP and SW-DP.

3.41 Embedded Trace Macrocell[™]

The ARM Embedded Trace Macrocell provides a greater visibility of the instruction and data flow inside the CPU core by streaming compressed data at a very high rate from the STM32F446xx through a small number of ETM pins to an external hardware trace port analyser (TPA) device. The TPA is connected to a host computer using USB, Ethernet, or any other high-speed channel. Real-time instruction and data flow activity can be recorded and then formatted for display on the host computer that runs the debugger software. TPA hardware is commercially available from common development tool vendors.

The Embedded Trace Macrocell operates with third party debugger software tools.

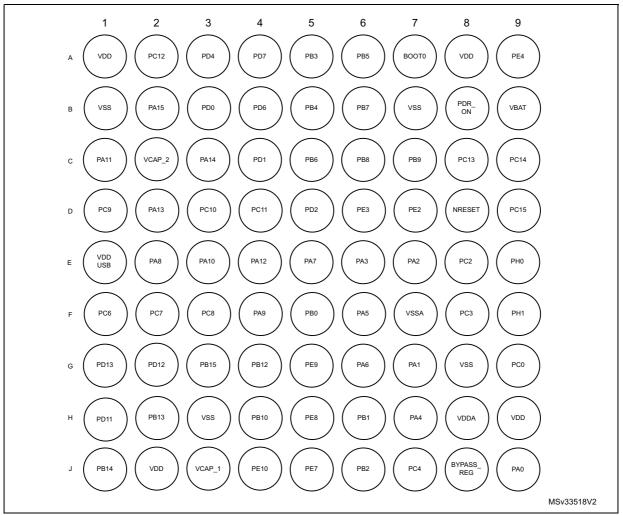


Figure 13. STM32F446xC/xE WLCSP81 ballout

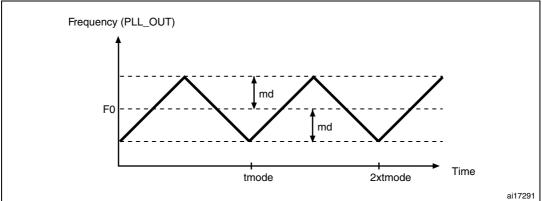
1. The above figure shows the package top view.

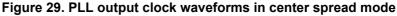
62/202

DocID027107 Rev 6

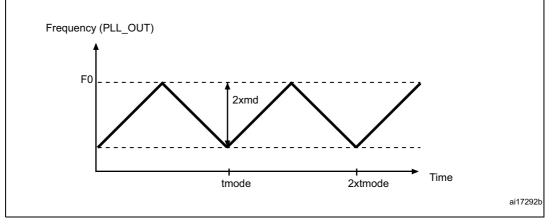
		AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7	AF8	AF9	AF10	AF11	AF12	AF13	AF14	AF15
Port	SYS	TIM1/2	TIM3/4/5	TIM8/9/ 10/11/ CEC	I2C1/2/3 /4/CEC	SPI1/2/3/ 4	SPI2/3/4/ SAI1	SPI2/3/ USART1/ 2/3/UART 5/SPDIFR X	SAI/ USART6/ UART4/5/ SPDIFRX	CAN1/2 TIM12/13/ 14/ QUADSPI	SAI2/ QUADSPI/ OTG2_HS/ OTG1_FS	OTG1_FS	FMC/ SDIO/ OTG2_FS	DCMI	-	SYS	
	PD0	-	-	-	-	-	SPI4_MISO	SPI3_ MOSI/ I2S3_SD	-	-	CAN1_RX	-	-	FMC_D2	-	-	EVEN OUT
	PD1	-	-	-	-	-	-	-	SPI2_NSS/ I2S2_WS	-	CAN1_TX	-	-	FMC_D3	-	-	EVEN OUT
	PD2	-	-	TIM3_ETR	-	-	-	-	-	UART5_RX	-	-	-	SDIO_CMD	DCMI_ D11	-	EVEN OUT
	PD3	TRACE D1	-	-	-	-	SPI2_SCK/ I2S2_CK	-	USART2_ CTS	-	QUADSPI_ CLK	-	-	FMC_CLK	DCMI_ D5	-	EVEN OUT
	PD4	-	-	-	-	-	-	-	USART2_ RTS	-	-	-	-	FMC_NOE	-	-	EVEN OUT
	PD5	-	-	-	-	-	-	-	USART2_ TX	-	-	-	-	FMC_NWE	-	-	EVEN OUT
	PD6	-	-	-	-	-	SPI3_ MOSI/ I2S3_SD	SAI1_ SD_A	USART2_ RX	-	-	-	-	FMC_ NWAIT	DCMI_ D10	-	EVEN OUT
rt D	PD7	-	-	-	-	-	-	-	USART2_ CK	SPDIF_ RX0	-	-	-	FMC_NE1	-	-	EVEN OUT
	PD8	-	-	-	-	-	-	-	USART3_ TX	SPDIF_ RX1	-	-	-	FMC_D13	-	-	EVEN OUT
	PD9	-	-	-	-	-	-	-	USART3_ RX	-	-	-	-	FMC_D14	-	-	EVEN OUT
	PD10	-	-	-	-	-	-	-	USART3_ CK	-	-	-	-	FMC_D15	-	-	EVEN OUT
	PD11	-	-	-	-	FMPI2C1 _SMBA	-	-	USART3_ CTS	-	QUADSPI_ BK1_IO0	SAI2_SD_A	-	FMC_A16	-	-	EVEN OUT
ţ	PD12	-	-	TIM4_CH1	-	FMPI2C1 _SCL	-	-	USART3_ RTS	-	QUADSPI_ BK1_IO1	SAI2_FS_A	-	FMC_A17	-	-	EVEN OUT
t	PD13	-	-	TIM4_CH2	-	FMPI2C1 _SDA	-	-	-	-	QUADSPI_ BK1_IO3	SAI2_SCK_A	-	FMC_A18	-	-	EVEN OUT
t	PD14	-	-	TIM4_CH3	-	FMPI2C1 _SCL	-	-	-	SAI2_ SCK_A	-	-	-	FMC_D0	-	-	EVEN OUT
	PD15	-	-	TIM4_CH4	-	FMPI2C1 _SDA	-	-	-	-	-	-	-	FMC_D1	-	-	EVEN OUT

Pinout and pin description


STM32F446xC/E


Figure 29 and *Figure 30* show the main PLL output clock waveforms in center spread and down spread modes, where:

F0 is f_{PLL_OUT} nominal.


 T_{mode} is the modulation period.

md is the modulation depth.

6.3.13 Memory characteristics

Flash memory

The characteristics are given at TA = - 40 to 105 $^{\circ}$ C unless otherwise specified. The devices are shipped to customers with the Flash memory erased.

Table 47. Flash memory characteristics

		-				
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
	Supply current	Write / Erase 8-bit mode, V_{DD} = 1.7 V	-	5	-	
I _{DD}		Write / Erase 16-bit mode, V_{DD} = 2.1 V	-	8	-	mA
		Write / Erase 32-bit mode, V_{DD} = 3.3 V	-	12	-	

Electrical characteristics

OSPEEDR y[1:0] bit value ⁽¹⁾	Symbol	Parameter	Conditions	Min	Тур	Мах	Unit								
value			C _L = 50 pF, V _{DD} ≥ 2.7 V	-	-	25									
		(3)	C _L = 50 pF, V _{DD} ≥ 1.8 V	-	-	12.5									
	_		C _L = 50 pF, V _{DD} ≥ 1.7 V	-	-	10	 								
	f _{max(IO)} out	Maximum frequency ⁽³⁾	C _L = 10 pF, V _{DD} ≥ 2.7 V	-	-	50	MHz								
04			C _L = 10 pF, V _{DD} ≥ 1.8 V	-	-	20									
01			C _L = 10 pF, V _{DD} ≥ 1.7 V	-	-	12.5	-								
			C _L = 50 pF, V _{DD} ≥ 2.7 V	-	-	10									
	t _{f(IO)out} /	Output high to low level fall	C _L = 10 pF, V _{DD} ≥ 2.7 V	-	-	6									
	t _{r(IO)out}	time and output low to high level rise time	C _L = 50 pF, V _{DD} ≥ 1.7 V	-	-	20	ns								
			C _L = 10 pF, V _{DD} ≥ 1.7 V	-	-	10									
			C _L = 40 pF, V _{DD} ≥ 2.7 V	-	-	50 ⁽⁴⁾									
	f _{max(IO)out}	Maximum frequency ⁽³⁾	C _L = 10 pF, V _{DD} ≥ 2.7 V	-	-	100 ⁽⁴⁾	MHz								
			C _L = 40 pF, V _{DD} ≥ 1.7 V	-	-	25									
			C _L = 10 pF, V _{DD} ≥ 1.8 V	-	-	50									
10			C _L = 10 pF, V _{DD} ≥ 1.7 V	-	-	42.5									
	t _{f(IO)out} / t _{r(IO)out}	Output high to low level fall time and output low to high level rise time	C _L = 40 pF, V _{DD} ≥2.7 V	-	-	6	ns								
			C _L = 10 pF, V _{DD} ≥ 2.7 V	-	-	4									
			C _L = 40 pF, V _{DD} ≥ 1.7 V	-	-	10									
			C _L = 10 pF, V _{DD} ≥ 1.7 V	-	-	6									
											C _L = 30 pF, V _{DD} ≥ 2.7 V	-	-	100 ⁽⁴⁾	
			C _L = 30 pF, V _{DD} ≥ 1.8 V	-	-	50	MHz								
	£	Maximum fraguescu (3)	C _L = 30 pF, V _{DD} ≥ 1.7 V	-	-	42.5									
	f _{max(IO)out}	Maximum frequency ⁽³⁾	C _L = 10 pF, V _{DD} ≥ 2.7 V	-	-	180 ⁽⁴⁾									
			C _L = 10 pF, V _{DD} ≥ 1.8 V	-	-	100									
44			C _L = 10 pF, V _{DD} ≥ 1.7 V	-	-	72.5									
11			C _L = 30 pF, V _{DD} ≥ 2.7 V	-	-	4									
			C _L = 30 pF, V _{DD} ≥1.8 V	-	-	6									
	t _{f(IO)out} /	Output high to low level fall	C _L = 30 pF, V _{DD} ≥1.7 V	-	-	7									
	t _{r(IO)out}	time and output low to high level rise time	C _L = 10 pF, V _{DD} ≥ 2.7 V	-	-	2.5	ns								
			C _L = 10 pF, V _{DD} ≥1.8 V	-	-	3.5									
			C _L = 10 pF, V _{DD} ≥1.7 V	-	-	4	1								
-	t _{EXTIpw}	Pulse width of external signals detected by the EXTI controller	-	10	-	-	ns								

Table 58. I/O AC characteristics⁽¹⁾⁽²⁾ (continued)

The I²C characteristics are described in *Table 61*. Refer also to *Section 6.3.17: I/O port characteristics* for more details on the input/output alternate function characteristics (SDA and SCL).

Symbol	Parameter		rd mode 1)(2)	Fast mod	e I ² C ⁽¹⁾⁽²⁾	Unit
		Min	Max	Min	Max	
t _{w(SCLL)}	SCL clock low time	4.7	-	1.3	-	μs
t _{w(SCLH)}	SCL clock high time	4.0	-	0.6	-	μο
t _{su(SDA)}	SDA setup time	250	-	100	-	
t _{h(SDA)}	SDA data hold time	-	3450 ⁽³⁾	-	900 ⁽⁴⁾	
t _{v(SDA, ACK)}	Data, ACK valid time	-	3.45	-	0.9	
t _{r(SDA)} t _{r(SCL)}	SDA and SCL rise time	-	1000	-	300	ns
t _{f(SDA)} t _{f(SCL)}	SDA and SCL fall time	-	300	-	300	
t _{h(STA)}	Start condition hold time	4.0	-	0.6	-	
t _{su(STA)}	Repeated Start condition setup time	4.7	-	0.6	-	μs
t _{su(STO)}	Stop condition setup time	4.0	-	0.6	-	μs
t _{w(STO:STA)}	Stop to Start condition time (bus free)	4.7	-	1.3	-	μs
t _{SP}	Pulse width of the spikes that are suppressed by the analog filter for standard and fast mode	-	-	0.05	0.09 ⁽⁵⁾	μs
Cb	Capacitive load for each bus line	-	400	-	400	pF

Table	61.	l ² C	characteristics
-------	-----	------------------	-----------------

1. Guaranteed based on test during characterization.

f_{PCLK1} must be at least 2 MHz to achieve standard mode I²C frequencies. It must be at least 4 MHz to achieve fast mode I²C frequencies, and a multiple of 10 MHz to reach the 400 kHz maximum I²C fast mode clock.

3. The device must internally provide a hold time of at least 300 ns for the SDA signal in order to bridge the undefined region of the falling edge of SCL.

4. The maximum data hold time has only to be met if the interface does not stretch the low period of SCL signal.

5. The minimum width of the spikes filtered by the analog filter is above $t_{SP}(max)$.

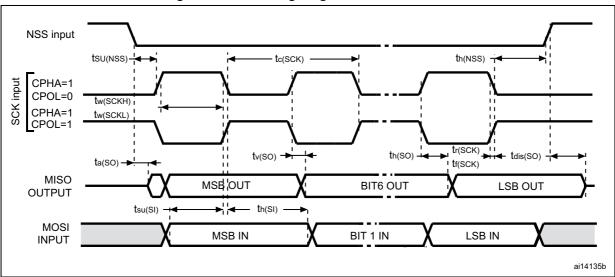
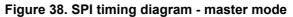
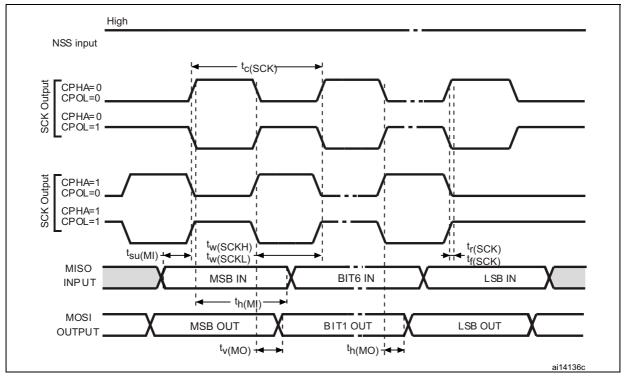




Figure 37. SPI timing diagram - slave mode and CPHA = 1

QSPI interface characteristics

Unless otherwise specified, the parameters given in *Table 64* for QSPI are derived from tests performed under the ambient temperature, f_{AHB} frequency and V_{DD} supply voltage conditions summarized in *Table 16*, with the following configuration:

- Output speed is set to OSPEEDRy[1:0] = 11
- Capacitive load C=20pF
- Measurement points are done at CMOS levels: 0.5VDD

Refer to Section 6.3.17: I/O port characteristics for more details on the input/output alternate function characteristics.

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
		Write mode 1.71 V≤V _{DD} ≤3.6 V Cload = 15 pF	-	-	90	
f _{SCK} 1/t _{c(SCK)}	QSPI clock frequency	Read mode 2.7V <vdd< 3.6v<br="">Cload = 15 pF</vdd<>	-	-	90	MHz
		1.71 V≤V _{DD} ≤3.6 V	-	-	48	
t _{w(CKH)}	QSPI clock high and low	_	(T _(CK) / 2) - 2	-	Т _(СК) / 2	
t _{w(CKL)}		-	T _(CK) / 2	-	(T _(CK) / 2) +2	
t _{s(IN)}	Data input setup time	-	2	-	-	ns
t _{h(IN)}	Data input hold time	-	4.5	-	-	115
t _{v(OUT)}	Data output valid time	-	-	1.5	3	
t _{h(OUT)}	Data output hold time	-	0	-	-	

Table 64. QSPI dynamic characteristics in SDR Mode⁽¹⁾

1. Guaranteed based on test during characterization.

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
		Write mode 1.71 V≤V _{DD} ≤3.6 V Cload = 15 pF	-	-	60	
f _{SCK} 1/t _{c(SCK)}	QSPI clock frequency	Read mode 2.7V <vdd< 3.6v<br="">Cload = 15 pF</vdd<>	-	-	60	MHz
		1.71 V≤V _{DD} ≤3.6 V	-	-	48	

Table 65. QSPI dynamic characteristics in DDR Mode⁽¹⁾

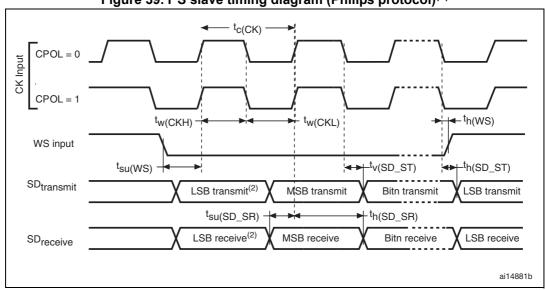
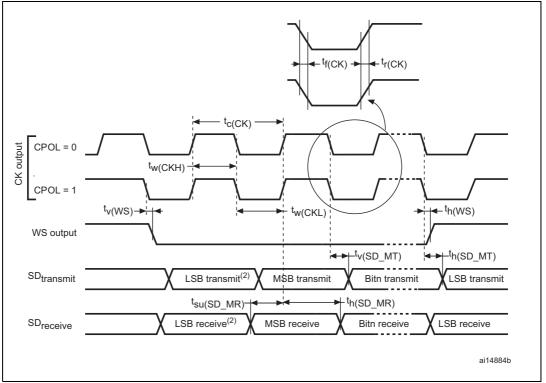
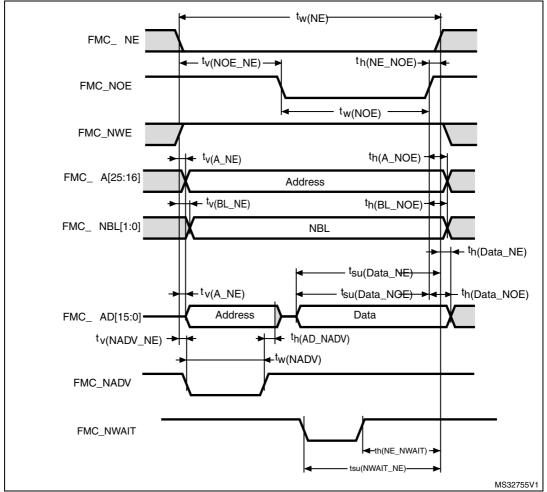



Figure 39. I²S slave timing diagram (Philips protocol)⁽¹⁾

1. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first byte.

Figure 40. I²S master timing diagram (Philips protocol)⁽¹⁾

1. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first byte.



	ittikar anningo			-
Symbol	Parameter	Min	Max	Unit
t _{w(NE)}	FMC_NE low time	8T _{HCLK} - 0.5	8T _{HCLK} + 1	
t _{w(NWE)}	FMC_NWE low time	6T _{HCLK} - 0.5	6T _{HCLK} + 1	ns
t _{su(NWAIT_NE)}	FMC_NWAIT valid before FMC_NEx high	6T _{HCLK} - 0.5	-	115
t _{h(NE_NWAIT)}	FMC_NEx hold time after FMC_NWAIT invalid	4T _{HCLK} + 2	-	

Table 89. Asynchronous non-multiplexed SRAM/PSRAM/NOR write - NWAIT timings $^{(1)(2)}$

1. C_L = 30 pF.

2. Guaranteed based on test during characterization.

Symbol	Parameter	Min	Max	Unit
t _{w(NE)}	FMC_NE low time	4T _{HCLK} - 2	4T _{HCLK} +0.5	
t _{v(NWE_NE)}	FMC_NEx low to FMC_NWE low	T _{HCLK}	T _{HCLK} + 0.5	
t _{w(NWE)}	FMC_NWE low time	2T _{HCLK}	2T _{HCLK} + 0.5	
t _{h(NE_NWE)}	FMC_NWE high to FMC_NE high hold time	T _{HCLK}	-	
t _{v(A_NE)}	FMC_NEx low to FMC_A valid	-	0	
t _{v(NADV_NE)}	FMC_NEx low to FMC_NADV low	0.5	1	
t _{w(NADV)}	FMC_NADV low time	T _{HCLK} -0.5	T _{HCLK} + 0.5	ns
t _{h(AD_NADV)}	FMC_AD(adress) valid hold time after FMC_NADV high)	T _{HCLK} -2	-	
t _{h(A_NWE)}	Address hold time after FMC_NWE high	T _{HCLK}	-	
t _{h(BL_NWE)}	FMC_BL hold time after FMC_NWE high	T _{HCLK} –2	-	
$t_{v(BL_NE)}$	FMC_NEx low to FMC_BL valid	-	2	
t _{v(Data_NADV)}	FMC_NADV high to Data valid	-	T _{HCLK} + 1.5	
t _{h(Data_NWE)}	Data hold time after FMC_NWE high	T _{HCLK} + 0.5	-	

 Table 92. Asynchronous multiplexed PSRAM/NOR write timings⁽¹⁾⁽²⁾

1. C_L = 30 pF.

2. Guaranteed based on test during characterization.

Symbol	Parameter Min		Max	Unit
t _{w(NE)}	FMC_NE low time	9T _{HCLK}	9T _{HCLK} + 0.5	
t _{w(NWE)}	FMC_NWE low time	7T _{HCLK}	7T _{HCLK} + 2	ns
t _{su(NWAIT_NE)}	FMC_NWAIT valid before FMC_NEx high	6T _{HCLK} + 1.5	-	
t _{h(NE_NWAIT)}	WAIT) FMC_NEx hold time after FMC_NWAIT 4T _{HCLK}		-	

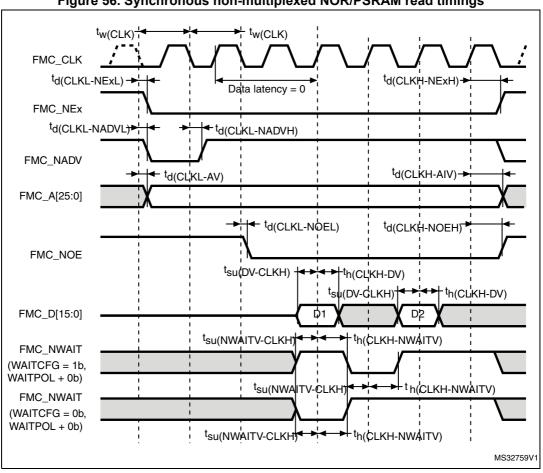
1. C_L = 30 pF.

2. Guaranteed based on test during characterization.

Synchronous waveforms and timings

Figure 54 through *Figure 57* represent synchronous waveforms and *Table 94* through *Table 97* provide the corresponding timings. The results shown in these tables are obtained with the following FMC configuration:

- BurstAccessMode = FMC_BurstAccessMode_Enable;
- MemoryType = FMC_MemoryType_CRAM;
- WriteBurst = FMC_WriteBurst_Enable;
- CLKDivision = 1; (0 is not supported, see the STM32F446 reference manual: RM0390)
- DataLatency = 1 for NOR Flash; DataLatency = 0 for PSRAM



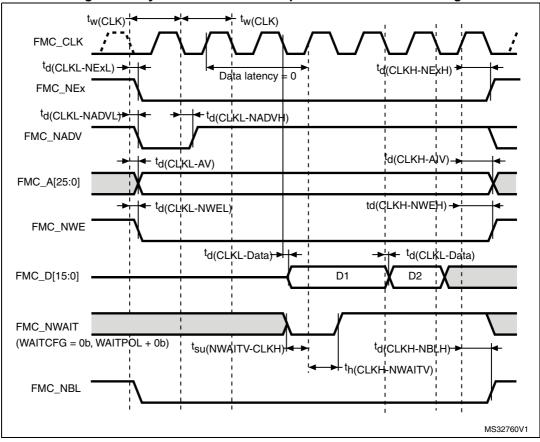

Figure 56. Synchronous non-multiplexed NOR/PSRAM read timings

Table 96. Synchronous non-multiplexed NOR/PSRAM read timings ⁽¹⁾

Symbol	Parameter	Min	Max	Unit
t _{w(CLK)}	FMC_CLK period	2T _{HCLK}	-	
t _(CLKL-NExL)	FMC_CLK low to FMC_NEx low (x=02)	-	2.5	
t _{d(CLKH-NExH)}	FMC_CLK high to FMC_NEx high (x= 02)	T _{HCLK} – 0.5	-	
t _{d(CLKL-NADVL)}	FMC_CLK low to FMC_NADV low	-	0	
t _{d(CLKL-NADVH)}	FMC_CLK low to FMC_NADV high	0	-	
t _{d(CLKL-AV)}	FMC_CLK low to FMC_Ax valid (x=1625)	-	2.5	
t _{d(CLKH-AIV)}	FMC_CLK high to FMC_Ax invalid (x=1625)	T _{HCLK}	-	ns
t _{d(CLKL-NOEL)}	FMC_CLK low to FMC_NOE low	-	2	
t _{d(CLKH-NOEH)}	FMC_CLK high to FMC_NOE high	T _{HCLK} – 0.5	-	
t _{su(DV-CLKH)}	FMC_D[15:0] valid data before FMC_CLK high	1	-	
t _{h(CLKH-DV)}	FMC_D[15:0] valid data after FMC_CLK high	3.5	-	
t _{su(NWAIT-CLKH)}	IT-CLKH) FMC_NWAIT valid before FMC_CLK high 1		-	
t _{h(CLKH-NWAIT)}	FMC_NWAIT valid after FMC_CLK high	3.5	-]

- 1. C_L = 30 pF.
- 2. Guaranteed based on test during characterization.

Symbol	Parameter	Min		Unit
t _{w(CLK)}	FMC_CLK period	2T _{HCLK} – 1	-	
t _{d(CLKL-NExL)}	FMC_CLK low to FMC_NEx low (x=02)	-	2.5	
t _{d(CLKH-NExH)}	FMC_CLK high to FMC_NEx high (x= 02)	T _{HCLK} – 0.5	-	
t _{d(CLKL-NADVL)}	FMC_CLK low to FMC_NADV low	-	2	
t _{d(CLKL-NADVH)}	FMC_CLK low to FMC_NADV high	0	-	
t _{d(CLKL-AV)}	V) FMC_CLK high to FMC_Ax invalid (x=1625) 0		2	
t _{d(CLKH-AIV)}			-	ns
t _{d(CLKL-NWEL)}			3	115
t _{d(CLKH-NWEH)}	WEH) FMC_CLK high to FMC_NWE high T _{HCLK} + 1		-	
t _{d(CLKL-Data)}	ata) FMC_D[15:0] valid data after FMC_CLK low -		2.5	
$t_{d(CLKL-NBLL)}$	LKL-NBLL) FMC_CLK low to FMC_NBL low		-	
t _{d(CLKH-NBLH)}	KH-NBLH) FMC_CLK high to FMC_NBL high T _{HCLK} +		-	
t _{su(NWAIT-CLKH)}	FMC_NWAIT valid before FMC_CLK high	1.5	-	
t _{h(CLKH-NWAIT)}	KH-NWAIT) FMC_NWAIT valid after FMC_CLK high 0		-	

Table 97. Synchronous non-multiplexed PSRAM write timings⁽¹⁾⁽²⁾

1. C_L = 30 pF.

2. Guaranteed based on test during characterization.

NAND controller waveforms and timings

Figure 58 through *Figure 61* represent synchronous waveforms, and *Table 98* and *Table 99* provide the corresponding timings. The results shown in this table are obtained with the following FMC configuration:

- COM.FSMC_SetupTime = 0x01;
- COM.FMC_WaitSetupTime = 0x03;
- COM.FMC_HoldSetupTime = 0x02;
- COM.FMC_HiZSetupTime = 0x01;
- ATT.FMC_SetupTime = 0x01;
- ATT.FMC_WaitSetupTime = 0x03;
- ATT.FMC_HoldSetupTime = 0x02;
- ATT.FMC_HiZSetupTime = 0x01;
- Bank = FMC_Bank_NAND;
- MemoryDataWidth = FMC_MemoryDataWidth_16b;
- ECC = FMC_ECC_Enable;
- ECCPageSize = FMC_ECCPageSize_512Bytes;
- TCLRSetupTime = 0;
- TARSetupTime = 0.

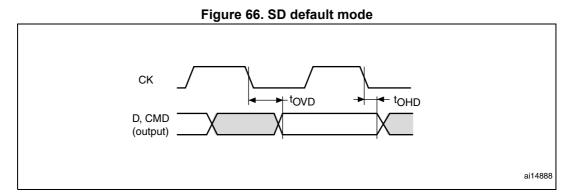
In all timing tables, the T_{HCLK} is the HCLK clock period.

Symbol	Parameter	Min	Мах	Unit
t _{w(SDCLK)}	FMC_SDCLK period	2T _{HCLK} -0.5	2T _{HCLK} +0.5	
t _{su(SDCLKH _Data)}	Data input setup time	1	-	
t _{h(SDCLKH_Data)}	Data input hold time	4	-	
t _{d(SDCLKL_Add)}	Address valid time	-	3	
t _{d(SDCLKL_SDNE)}	Chip select valid time	-	1.5	ns
t _{h(SDCLKL_SDNE)}	Chip select hold time	0	-	113
t _{d(SDCLKL_SDNRAS)}	SDNRAS valid time	-	1.5	
t _{h(SDCLKL_SDNRAS)}	SDNRAS hold time	0	-	
t _{d(SDCLKL_SDNCAS)}	SDNCAS valid time	-	0.5	
t _{h(SDCLKL_SDNCAS)}	SDNCAS hold time	0	-	

Table 100. SDRAM read timings⁽¹⁾⁽²⁾

1. CL = 30 pF on data and address lines. CL=15pF on FMC_SDCLK.

2. Guaranteed based on test during characterization.


Table 101. LPSDR SDRAM read timings⁽¹⁾⁽²⁾

Symbol	Parameter	Min	Мах	Unit
t _{w(SDCLK)}	FMC_SDCLK period	2T _{HCLK} - 0.5	2T _{HCLK} + 0.5	
t _{su(SDCLKH _Data)}	Data input setup time	1	-	
t _{h(SDCLKH_Data)}	Data input hold time	5	-	
t _{d(SDCLKL_Add)}	Address valid time	-	3	
t _{d(SDCLKL_SDNE)}	Chip select valid time	-	3	ns
t _{h(SDCLKL_SDNE)}	Chip select hold time	0	-	115
t _{d(SDCLKL_SDNRAS)}	SDNRAS valid time	-	2	
t _{h(SDCLKL_SDNRAS)}	SDNRAS hold time	0	-	
t _{d(SDCLKL_SDNCAS)}	SDNCAS valid time	-	2	
t _{h(SDCLKL_SDNCAS)}	SDNCAS hold time	0	-	

1. CL = 10 pF.

2. Guaranteed based on test during characterization.

	Table 105. Dynamic character	ristics: SD / MI	MC charact	teristics ⁽¹⁾⁽²	2)	
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{PP}	Clock frequency in data transfer mode	-	0	-	50	MHz
-	SDIO_CK/fPCLK2 frequency ratio	-	-	-	8/3	-
t _{W(CKL)}	Clock low time	fpp =50MHz	9.5	10.5	-	ne
t _{W(CKH)}	Clock high time	fpp =50MHz	8.5	9.5	-	ns ns
CMD, D inp	outs (referenced to CK) in MMC and SE) HS mode				
t _{ISU}	Input setup time HS	fpp =50MHz	1	-	-	
t _{IH}	Input hold time HS	fpp =50MHz	4.5	-	-	– ns
CMD, D ou	tputs (referenced to CK) in MMC and S	D HS mode				-
t _{OV}	Output valid time HS	fpp =50MHz	-	12.5	13	
t _{OH}	Output hold time HS	fpp =50MHz	11	-	-	ns
CMD, D inp	outs (referenced to CK) in SD default m	node				
t _{ISUD}	Input setup time SD	fpp =25MHz	2.5	-	-	
t _{IHD}	Input hold time SD	fpp =25MHz	5.5	-	-	ns
CMD, D ou	tputs (referenced to CK) in SD default	mode				
t _{OVD}	Output valid default time SD	fpp =24MHz	-	3.5	4	
t _{OHD}	Output hold default time SD	fpp =24MHz	2	-	-	ns

(4)(0)

1. Guaranteed based on test during characterization.

2. V_{DD} = 2.7 to 3.6 V.

