

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	180MHz
Connectivity	CANbus, EBI/EMI, I ² C, IrDA, LINbus, SAI, SD, SPDIF-Rx, SPI, UART/USART, USB, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, LVD, POR, PWM, WDT
Number of I/O	50
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	•
RAM Size	128K x 8
Voltage - Supply (Vcc/Vdd)	1.7V ~ 3.6V
Data Converters	A/D 16x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f446rct6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Figure 6. Power supply supervisor interconnection with internal reset OFF

The V_{DD} specified threshold, below which the device must be maintained under reset, is 1.7 V.

A comprehensive set of power-saving mode allows to design low-power applications.

When the internal reset is OFF, the following integrated features are no more supported:

- The integrated power-on reset (POR) / power-down reset (PDR) circuitry is disabled
- The brownout reset (BOR) circuitry must be disabled
- The embedded programmable voltage detector (PVD) is disabled
- V_{BAT} functionality is no more available and V_{BAT} pin should be connected to V_{DD}.

All packages, except for the LQFP100/LQFP64, allow to disable the internal reset through the PDR_ON signal.

3.17 Voltage regulator

The regulator has four operating modes:

- Regulator ON
 - Main regulator mode (MR)
 - Low power regulator (LPR)
 - Power-down
- Regulator OFF

3.17.1 Regulator ON

On packages embedding the BYPASS_REG pin, the regulator is enabled by holding BYPASS_REG low. On all other packages, the regulator is always enabled.

Figure 8. Startup in regulator OFF: slow V_{DD} slope power-down reset risen after V_{CAP 1}/V_{CAP 2} stabilization

1. This figure is valid whatever the internal reset mode (ON or OFF).

Figure 9. Startup in regulator OFF mode: fast V_{DD} slope power-down reset risen before V_{CAP_1}/V_{CAP_2} stabilization

1. This figure is valid whatever the internal reset mode (ON or OFF).

3.17.3 Regulator ON/OFF and internal reset ON/OFF availability

Table 4. Regulator ON/OFF and internal reset ON/OFF availability

Package	Regulator ON	Regulator OFF	Internal reset ON	Internal reset OFF
LQFP64 LQFP100	Yes	No	Yes	No

Additional logic functions embedded in the ADC interface allow:

- Simultaneous sample and hold
- Interleaved sample and hold

The ADC can be served by the DMA controller. An analog watchdog feature allows very precise monitoring of the converted voltage of one, some or all selected channels. An interrupt is generated when the converted voltage is outside the programmed thresholds.

To synchronize A/D conversion and timers, the ADCs could be triggered by any of TIM1, TIM2, TIM3, TIM4, TIM5, or TIM8 timer.

3.38 Temperature sensor

The temperature sensor has to generate a voltage that varies linearly with temperature. The conversion range is between 1.7 V and 3.6 V. The temperature sensor is internally connected to the same input channel as V_{BAT}, ADC1_IN18, which is used to convert the sensor output voltage into a digital value. When the temperature sensor and V_{BAT} conversion are enabled at the same time, only V_{BAT} conversion is performed.

As the offset of the temperature sensor varies from chip to chip due to process variation, the internal temperature sensor is mainly suitable for applications that detect temperature changes instead of absolute temperatures. If an accurate temperature reading is needed, then an external temperature sensor part should be used.

3.39 Digital-to-analog converter (DAC)

The two 12-bit buffered DAC channels can be used to convert two digital signals into two analog voltage signal outputs.

This dual digital Interface supports the following features:

- two DAC converters: one for each output channel
- 8-bit or 10-bit monotonic output
- left or right data alignment in 12-bit mode
- synchronized update capability
- noise-wave generation
- triangular-wave generation
- dual DAC channel independent or simultaneous conversions
- DMA capability for each channel
- external triggers for conversion
- input voltage reference V_{REF+}

Eight DAC trigger inputs are used in the device. The DAC channels are triggered through the timer update outputs that are also connected to different DMA streams.

3.40 Serial wire JTAG debug port (SWJ-DP)

The ARM SWJ-DP interface is embedded, and is a combined JTAG and serial wire debug port that enables either a serial wire debug or a JTAG probe to be connected to the target.

DocID027107 Rev 6

Name	Abbreviation	Definition				
Pin name	Unless otherwise reset is the same	specified in brackets below the pin name, the pin function during and after as the actual pin name				
	S	Supply pin				
Pin type	I	Input only pin				
	I/O	Input / output pin				
	FT	5 V tolerant I/O				
	FTf	5V tolerant IO, I2C FM+ option				
I/O structure	ТТа	3.3 V tolerant I/O directly connected to ADC				
	В	Dedicated BOOT0 pin				
	RST	Bidirectional reset pin with weak pull-up resistor				
Notes	Unless otherwise	specified by a note, all I/Os are set as floating inputs during and after reset				
Alternate functions	Functions selected	d through GPIOx_AFR registers				
Additional functions	Functions directly	selected/enabled through peripheral registers				

Table 9. Legend/abbreviations used in the pinout table

	Pi	n Nun	nber							
LQFP64	LQFP100	WLCSP 81	UFBGA144	LQFP144	Pin name (function after reset)	Pin type	I/O structure Notes		Alternate functions	Additional functions
-	1	D7	A3	1	PE2	I/O	FT	-	TRACECLK, SPI4_SCK, SAI1_MCLK_A, QUADSPI_BK1_IO2, FMC_A23, EVENTOUT	-
-	2	D6	A2	2	PE3	I/O	FT	-	TRACED0, SAI1_SD_B, FMC_A19, EVENTOUT	-
-	3	A9	B2	3	PE4	I/O	FT	-	TRACED1, SPI4_NSS, SAI1_FS_A, FMC_A20, DCMI_D4, EVENTOUT	-
-	4	-	В3	4	PE5	I/O	FT	-	TRACED2, TIM9_CH1, SPI4_MISO, SAI1_SCK_A, FMC_A21, DCMI_D6, EVENTOUT	-

Table 10. STM32F446xx pin and ball descriptions

	Pi	n Nun	nber							
LQFP64	LQFP100	WLCSP 81	UFBGA144	LQFP144	Pin name (function after reset)	Pin type	I/O structure	Notes	Alternate functions	Additional functions
-	61	-	K11	85	PD14	I/O	FTf	-	TIM4_CH3, FMPI2C1_SCL, SAI2_SCK_A, FMC_D0, EVENTOUT	-
-	62	-	K12	86	PD15	I/O	FTf	-	TIM4_CH4, FMPI2C1_SDA, FMC_D1, EVENTOUT	-
-	-	-	J12	87	PG2	I/O	FT	I	FMC_A12, EVENTOUT	-
-	-	-	J11	88	PG3	I/O	FT	-	FMC_A13, EVENTOUT	-
-	-	-	J10	89	PG4	I/O	FT	-	FMC_A14/FMC_BA0, EVENTOUT	-
-	-	-	H12	90	PG5	I/O	FT	-	FMC_A15/FMC_BA1, EVENTOUT	-
-	-	-	H11	91	PG6	I/O	FT	-	QUADSPI_BK1_NCS, DCMI_D12, EVENTOUT	-
-	-	-	H10	92	PG7	I/O	FT	-	USART6_CK, FMC_INT, DCMI_D13, EVENTOUT	-
-	-	-	G11	93	PG8	I/O	FT	-	SPDIFRX_IN2, USART6_RTS, FMC_SDCLK, EVENTOUT	-
-	-	-	-	94	VSS	S	-	-	-	-
-	-	-	F10	-	VDD	S	-	-	-	-
-	-	E1	C11	95	VDDUSB	S	-	-	-	-
37	63	F1	G12	96	PC6	I/O	FTf	-	TIM3_CH1, TIM8_CH1, FMPI2C1_SCL, I2S2_MCK, USART6_TX, SDIO_D6, DCMI_D0, EVENTOUT	-
38	64	F2	F12	97	PC7	I/O	FTf	-	TIM3_CH2, TIM8_CH2, FMPI2C1_SDA, SPI2_SCK/I2S2_CK, I2S3_MCK, SPDIFRX_IN1, USART6_RX, SDIO_D7, DCMI_D1, EVENTOUT	-
39	65	F3	F11	98	PC8	I/O	FT	-	TRACED0, TIM3_CH3, TIM8_CH3, UART5_RTS, USART6_CK, SDIO_D0, DCMI_D2, EVENTOUT	-

Table 10. STM32F446xx pin and ball descriptions (continued)

	Piı	n Nun	nber							
LQFP64	LQFP100	WLCSP 81	UFBGA144	LQFP144	Pin name (function after reset)	Pin type	I/O structure	Notes	Alternate functions	Additional functions
63	99	B7	E6	-	VSS	S	-	-	-	-
-	-	B8	E5	143	PDR_ON	S	-	-	-	-
64	100	A8	F5	144	VDD	S	-	-	-	-

1. PA11, PA12, PB14 and PB15 I/Os are supplied by VDDUSB

		Conditions				Max ⁽²⁾		
Symbol	Parameter		f _{HCLK} (MHz)	Тур	T _A = 25 °C	T _A = 85 °C	T _A = 105 °C	Unit
			180	72	83.0 ⁽⁵⁾	100.0	110.0 ⁽⁵⁾	
			168	65	71.0	95.3	101.0	
			150	59	63.6	85.4	100.8	
		External clock, PLL ON, all peripherals enabled ⁽³⁾⁽⁴⁾	144 ⁽⁶⁾	54	58.4	78.8	91.2	
			120	40	44.9	62.1	73.2	
			90	30	35.3	50.7	60.0	
			60	21	25.5	39.2	46.8	
			30	12	16.2	28.1	36.0	
			25	10	14.41	26.17	32.4	
			16	6	11.4	23.1	25.2	
	Supply current in RUN mode	HSI, PLL OFF, all peripherals enabled	8	3	9.5	20.3	22.5	
			4	2.3	8.3	18.9	21.1	
			2	1.8	7.7	18.1	20.5	m۸
'DD		External clock,	180	32	42.0 ⁽⁵⁾	59.0	75.0 ⁽⁵⁾	ni v
			168	29	35.5	51.4	55.7	
			150	26	31.5	47.8	51.9	
			144 ⁽⁶⁾	24	29.2	44.7	48.6	
		PLL ON, all Peripherals	120	18	23.3	36.8	40.4	
		disabled ⁽³⁾	90	14	19.0	31.8	35.1	
			60	10	14.7	26.9	29.9	
			30	6	10.7	22.1	24.9	
			25	5	9.96	21.24	24.02	
			16	3	8.7	18.9	21.9	
		HSI, PLL OFF,	8	2	8.1	17.8	20.9	
		disabled ⁽³⁾	4	1.7	7.64	17.23	20.32	
			2	1.4	7.4	16.94	20.03	

Table 23. Typical and maximum current consumption in Run mode, code with data processing running from Flash memory (ART accelerator enabled except prefetch) or RAM⁽¹⁾

1. Code and data processing running from SRAM1 using boot pins.

2. Guaranteed based on test during characterization.

3. When analog peripheral blocks such as ADCs, DACs, HSE, LSE, HSI, or LSI are ON, an additional power consumption should be considered.

4. When the ADC is ON (ADON bit set in the ADC_CR2 register), add an additional power consumption of 1.6 mA per ADC for the analog part.

5. Tested in production.

6. Overdrive OFF

DocID027107 Rev 6

Symbol Parameter		Conditions		fHCLK (MHz)					
	Parameter				Тур	T _A = 25 °C	T _A = 25 °C	T _A = 25 °C	Unit
				180	51.2	59.00	77.25	102.00	
		all peripherals enabled		168 ⁽²⁾	46.8	53.94	66.48	79.40	
				150	42.2	49.26	60.84	73.41	
			External clock, PLL ON, Flash on	144 ⁽²⁾	38.6	45.37	55.47	66.96	
				120	29.3	35.70	42.49	51.46	
	Supply current in Sleep			90	22.8	29.17	34.78	43.12	
IDD				60	16.3	22.41	27.12	34.83	mA
	mode			30	10.1	16.03	19.72	26.86	
				25	9.0	14.92	18.41	25.38	
				16	6.5	13.10	15.1	22.3	
			HSI, PLL	8	5.2	12.31	13.5	20.4	
			on on	4	4.5	11.63	12.5	19.3	
				2	4.1	11.23	12.0	18.8	

Table 20. Typical and maximum current consumption in dicep mode	Table 26. Typ	ical and maximum	current consum	ption in Sle	ep mode ⁽¹⁾
---	---------------	------------------	----------------	--------------	------------------------

		Conditions		fHCLK (MHz)					
Symbol	Parameter				Тур	T _A = 25 °C	T _A = 25 °C	T _A = 25 °C	Unit
		HSI, PLL off, all peripherals disabled	Flash on	16	3.89	4.93	11.72	18.54	
				8	2.45	3.29	11.66	18.46	
Supply current ir				4	1.69	2.56	11.60	18.40	
				2	1.28	2.22	11.57	18.37	
	Supply current in		Flash in Deep Power Down mode	16	1.0	6.65	16.54	19.50	~^
				8	0.9	6.93	16.48	19.45	
טטו	Sleep			4	0.9	6.90	16.43	19.39	ШA
	mode			2	0.9	6.88	16.41	19.37	
				16	1.0	6.7	16.5	19.5	
			Flash in STOP mode	8	0.9	6.9	16.5	19.5	
				4	0.9	6.9	16.4	19.4	
				2	0.9	6.9	16.4	19.4	

Table 26. Typical and maximum current consumption in Sleep mode⁽¹⁾ (continued)

1. Guaranteed based on test during characterization unless otherwise specified.

2. Overdrive OFF

Symbol	Parameter	Conditions	f _{HCLK} (MHz)	Тур	T _A = 25 °C	T _A = 85 °C	T _A = 105 °C	Unit
			168	65.11	70.0	79.7	90.0	
			150	58.31	62.8	73.4	79.9	
			144	53.14	57.1	69.9	75.3	
		All Peripherals	120	39.58	47.2	60.7	71.4	
	Supply current in Run mode from V _{DD} supply	enabled	90	29.99	34.70	45.23	49.34	
			60	20.37	25.2	35.2	38.2	
			30	11.37	12.9	28.4	33.2	
			25	9.65	10.9	17.8	24.3	m۸
DD			168	29.74	32.43	42.4	48.5	-
			150	25.81	29.12	39.4	43.8	
			144	24.57	26.61	36.0	41.9	
		All Peripherals	120	17.69	22.09	32.9	40.8	
		disabled	90	13.58	15.92	30.0	36.5	
			60	9.41	11.05	24.4	30.2	
			30	5.44	6.64	15.0	22.0	
			25	4.73	5.72	12.57	19.06	

Table 30. Typical current consumption in Run mode, code with data processing running from Flash memory or RAM, regulator ON (ART accelerator enabled except prefetch), VDD=1.7 V⁽¹⁾

1. When peripherals are enabled, the power consumption corresponding to the analog part of the peripherals (such as ADC, or DAC) is not included.

6.3.17 I/O port characteristics

General input/output characteristics

Unless otherwise specified, the parameters given in *Table 56: I/O static characteristics* are derived from tests performed under the conditions summarized in *Table 16*. All I/Os are CMOS and TTL compliant.

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
	FT, FTf, TTa and NRST I/O	1.7 V≤V _{DD} ≤3.6 V	-	-	$0.35V_{DD} - 0.04^{(1)}$	
V _{IL}	BOOT0 I/O input low level voltage	$1.75 V \le V_{DD} \le$ 3.6 V, - 40 °C≤ T _A ≤ 105 °C	-	_	0.1V _{DD} +0.1 ⁽¹⁾	V
		$\begin{array}{l} 1.7 \ V \leq V_{DD} \leq 3.6 \ V, \\ 0 \ ^{\circ}C \leq T_A \leq 105 \ ^{\circ}C \end{array}$	-	-		
	FT, FTf, TTa and NRST I/O	17/10/ 26/1	0.45V _{DD} +0.3 ⁽¹⁾			
	input high level voltage ⁽⁴⁾	1.7 v≤v _{DD} ≤3.0 v	0.7V _{DD} ⁽²⁾	-	-	
V _{IH}	BOOT0 I/O input high level	1.75 V≤V _{DD} ≤3.6 V, – 40 °C≤T _A ≤105 °C	$0.171/ \pm 0.7(1)$			V
	voltage	1.7 V⊴V _{DD} ≤3.6 V, 0 °C≤T _A ≤105 °C	0.17 V _{DD} +0.7 V	Typ 10%V _{DD} 100m	-	
	FT, FTf, TTa and NRST I/O input hysteresis	1.7 V≤V _{DD} ≤3.6 V	-	10%V _{DD}	-	
V _{HYS}	BOOTO I/O input hystoresis	1.75 V≤V _{DD} ≤3.6 V, –40 °C≤T _A ≤105 °C	-	100m	-	V
		1.7 V⊴V _{DD} ≤3.6 V, 0 °C≤T _A ≤105 °C	-	Typ - - - 10%V _{DD} 100m - - - -	-	
	I/O input leakage current ⁽³⁾	$V_{SS} \leq V_{IN} \leq V_{DD}$	-	-	±1	
l _{lkg}	I/O FT input leakage current	V _{IN} = 5 V	-	-	3	μA

Table 56	5. I/O	static	characteristics
10010 00		0.000	

1. R_S = series protection resistor.

2. R_P = external pull-up resistor.

3. $V_{DD_{12C}}$ is the I2C bus power supply.

Figure 39. I²S slave timing diagram (Philips protocol)⁽¹⁾

1. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first byte.

Figure 40. I²S master timing diagram (Philips protocol)⁽¹⁾

1. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first byte.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
		12-bit resolution Single ADC	-	-	2	Msps
f _S ⁽²⁾	Sampling rate (f _{ADC} = 30 MHz, and t _s = 3 ADC cycles)	12-bit resolution Interleave Dual ADC mode	ConditionsMinTypMax2-bit resolution ingle ADC212-bit resolution iterleave Dual ADC node3.7512-bit resolution iterleave Triple ADC node6130050011.61.81	Msps		
		12-bit resolution Interleave Triple ADC mode		Msps		
I _{VREF+} ⁽²⁾	ADC V _{REF} DC current consumption in conversion mode	-	-	300	500	μA
I _{VDDA} ⁽²⁾	ADC V _{DDA} DC current consumption in conversion mode	-	-	1.6	1.8	mA

Table 74. ADC characteristics (continued)

1. V_{DDA} minimum value of 1.7 V is obtained with the use of an external power supply supervisor (refer to Section 3.16.2: Internal reset OFF).

2. Guaranteed based on test during characterization.

3. V_{REF+} is internally connected to V_{DDA} and V_{REF-} is internally connected to V_{SSA} .

- 4. R_{ADC} maximum value is given for V_{DD}=1.7 V, and minimum value for V_{DD}=3.3 V.
- 5. For external triggers, a delay of 1/f_{PCLK2} must be added to the latency specified in *Table 74*.

Equation 1: R_{AIN} max formula

$$\mathsf{R}_{\mathsf{AIN}} = \frac{(\mathsf{k} - 0.5)}{\mathsf{f}_{\mathsf{ADC}} \times \mathsf{C}_{\mathsf{ADC}} \times \mathsf{ln}(2^{\mathsf{N}+2})} - \mathsf{R}_{\mathsf{ADC}}$$

The formula above (*Equation 1*) is used to determine the maximum external impedance allowed for an error below 1/4 of LSB. N = 12 (from 12-bit resolution) and k is the number of sampling periods defined in the ADC_SMPR1 register.

Symbol	Parameter	Test conditions	Тур	Max ⁽²⁾	Unit
ET	Total unadjusted error	((0.04))	±3	±4	
EO	Offset error	$T_{ADC} = 18 \text{ MHz}$ VDDA = 1.7 to 3.6 V	±2	±3	
EG	Gain error	V_{REF} = 1.7 to 3.6 V	±1	±3	LSB
ED	Differential linearity error	V _{DDA} –V _{REF} < 1.2 V	±1	±2	
EL	Integral linearity error		±2	±3	

Table 75. ADC static accuracy at $f_{ADC} = 18 \text{ MHz}^{(1)}$

1. Better performance could be achieved in restricted V_{DD}, frequency and temperature ranges.

2. Guaranteed based on test during characterization.

General PCB design guidelines

Power supply decoupling should be performed as shown in *Figure 47* or *Figure 48*, depending on whether V_{REF+} is connected to V_{DDA} or not. The 10 nF capacitors should be ceramic (good quality). They should be placed them as close as possible to the chip.

1. V_{REF+} and V_{REF-} inputs are both available on UFBGA144. V_{REF+} is also available on LQFP100, LQFP144, and WLCSP81. When V_{REF+} and V_{REF-} are not available, they are internally connected to V_{DDA} and V_{SSA} .

Symbol	Parameter	Conditions	Min	Тур	Max	Unit	Comments
	Integral non linearity (difference	-	-	-	±1	LSB	Given for the DAC in 10-bit configuration.
INL ⁽⁴⁾	measured value at Code i and the value at Code i on a line drawn between Code 0 and last Code 1023)	-	-	-	±4	LSB	Given for the DAC in 12-bit configuration.
	Offset error (difference	-	-	-	±10	mV	Given for the DAC in 12-bit configuration
Offset ⁽⁴⁾	between measured value at Code (0x800) and	-	-	-	±3	LSB	Given for the DAC in 10-bit at V _{REF+} = 3.6 V
	the ideal value = V _{REF+} /2)	-	-	-	±12	LSB	Given for the DAC in 12-bit at V_{REF+} = 3.6 V
Gain error ⁽⁴⁾	Gain error	-	-	-	±0.5	%	Given for the DAC in 12-bit configuration
t _{SETTLING} (4	Total Harmonic Distortion Buffer ON	-	-	3	6	μs	$C_{LOAD} \le 50 \text{ pF},$ $R_{LOAD} \ge 5 \text{ k}\Omega$
THD ⁽⁴⁾	-	-	-	-	-	dB	$C_{LOAD} \le 50 \text{ pF},$ $R_{LOAD} \ge 5 \text{ k}\Omega$
Update rate ⁽²⁾	Max frequency for a correct DAC_OUT change when small variation in the input code (from code i to i+1LSB)	-	-	-	1	MS/ s	C _{LOAD} ≤ 50 pF, R _{LOAD} ≥ 5 kΩ
t _{WAKEUP} ⁽⁴⁾	Wakeup time from off state (Setting the ENx bit in the DAC Control register)	-	-	6.5	10	μs	$C_{LOAD} \le 50$ pF, $R_{LOAD} \ge 5$ k Ω input code between lowest and highest possible ones.
PSRR+ ⁽²⁾	Power supply rejection ratio (to V _{DDA}) (static DC measurement)	-	-	- 67	- 40	dB	No R _{LOAD} , C _{LOAD} = 50 pF

Table 85. DAC characteristics (continued)

1. V_{DDA} minimum value of 1.7 V is obtained with the use of an external power supply supervisor (refer to Section 3.16.2: Internal reset OFF).

2. Guaranteed by design.

3. The quiescent mode corresponds to a state where the DAC maintains a stable output level to ensure that no dynamic consumption occurs.

4. Guaranteed based on test during characterization.

Figure 51. Asynchronous non-multiplexed SRAM/PSRAM/NOR write waveforms

1. Mode 2/B, C and D only. In Mode 1, FMC_NADV is not used.

Table 99 Acymetraneus nen multi	nloved SPAM/DSPAM/NOP write timings(1)(2)
Table 88. Asynchronous non-multi	plexed SRAM/PSRAM/NOR write timings ^{(*//~/}

Symbol	Parameter	Min	Max	Unit
t _{w(NE)}	FMC_NE low time	3 T _{HCLK} - 2	3 T _{HCLK} +0.5	
t _{v(NWE_NE)}	FMC_NEx low to FMC_NWE low	T _{HCLK} – 0.5	T _{HCLK} + 0.5	
t _{w(NWE)}	FMC_NWE low time	T _{HCLK}	T _{HCLK} + 0.5	
t _{h(NE_NWE)}	FMC_NWE high to FMC_NE high hold time	T _{HCLK} + 0.5	-	
t _{v(A_NE)}	FMC_NEx low to FMC_A valid	-	0	
t _{h(A_NWE)}	Address hold time after FMC_NWE high	T _{HCLK} - 0.5	-	20
t _{v(BL_NE)}	NE) FMC_NEx low to FMC_BL valid		1	115
t _{h(BL_NWE)}	(BL_NWE) FMC_BL hold time after FMC_NWE high		-	
t _{v(Data_NE)}	Data to FMC_NEx low to Data valid	-	T _{HCLK} + 2	
t _{h(Data_NWE)}	A_NWE) Data hold time after FMC_NWE high		-	
t _{v(NADV_NE)}	FMC_NEx low to FMC_NADV low	-	0	
t _{w(NADV)}	FMC_NADV low time	-	T _{HCLK} + 0.5	

1. C_L = 30 pF.

2. Guaranteed based on test during characterization.

- 1. C_L = 30 pF.
- 2. Guaranteed based on test during characterization.

7.2 LQFP100 package information

Figure 70. LQFP100, 14 x 14 mm 100-pin low-profile quad flat package outline

1. Drawing is not to scale.

Table 109. LQPF100, 14 x 14 mm 100-pin low-profile quad flat
package mechanical data

Symbol		millimeters		inches ⁽¹⁾		
Symbol	Min	Тур	Мах	Min	Тур	Мах
А	-	-	1.600	-	-	0.0630
A1	0.050	-	0.150	0.0020	-	0.0059
A2	1.350	1.400	1.450	0.0531	0.0551	0.0571
b	0.170	0.220	0.270	0.0067	0.0087	0.0106
с	0.090	-	0.200	0.0035	-	0.0079
D	15.800	16.000	16.200	0.6220	0.6299	0.6378
D1	13.800	14.000	14.200	0.5433	0.5512	0.5591
D3	-	12.000	-	-	0.4724	-
E	15.800	16.000	16.200	0.6220	0.6299	0.6378

DocID027107 Rev 6

Device marking for UFBGA144 7 x 7 mm package

The following figure gives an example of topside marking orientation versus pin 1 identifier location.

Other optional marking or inset/upset marks, which identify the parts throughout supply chain operations, are not indicated below.

1. Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity.

